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Abstract

This monograph surveys key research challenges and recent results
of manufacturability aware routing in nanometer VLSI designs.
The manufacturing challenges have their root causes from various
integrated circuit (IC) manufacturing processes and steps, e.g., deep
sub-wavelength lithography, random defects, via voids, chemical–
mechanical polishing, and antenna effects. They may result in both
functional and parametric yield losses. The manufacturability aware
routing can be performed at different routing stages including
global routing, track routing, and detail routing, guided by both
manufacturing process models and manufacturing-friendly rules.
The manufacturability/yield optimization can be performed through
both correct-by-construction (i.e., optimization during routing) and
construct-by-correction (i.e., post-routing optimization). This mono-
graph will provide a holistic view of key design for manufacturability
issues in nanometer VLSI routing.
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1

Introduction

Nanometer very large scale integrated (VLSI) circuit design faces
tremendous challenges due to the manufacturing limitations. These
manufacturing and process related challenges include the printability
issues due to deep sub-wavelength lithography, the topography varia-
tions due to chemical–mechanical polishing (CMP), the random defects
due to missing or extra material, and so on. Thus, the conventional
design “closure” (on timing/noise, etc.) may not automatically guar-
antee the manufacturing closure due to the manufacturing yield loss.
Manufacturability aware layout optimization plays a key role in the
overall yield improvement.

In this monograph, we survey key aspects of manufacturability
issues and how to alleviate them during the routing stage. There have
been some design-for-manufacturability (DFM) efforts in earlier design
stages such as logic synthesis and placement [41, 46, 89], yet routing is
often considered one of the most critical stages in addressing the man-
ufacturability issues due to the following reasons [24, 25, 26, 47, 86]:
(1) many key manufacturing issues (e.g., topography variation due to
chemical–mechanical polishing — CMP, random defects, printability
due to optical lithography limitations, and so on) are tightly coupled

1
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2 Introduction

with interconnects/wires which are mainly determined by routing;
(2) routing is the last major VLSI physical design step before manufac-
turing, thus it has comprehensive picture of the physical layout needed
to accurately estimate the overall manufacturability; (3) during routing
it still has considerable flexibility to optimize and trade-off manufac-
turability and other conventional design objectives (e.g., timing, noise,
power). These factors have led to very active academic and industrial
research and development in manufacturability aware routing, which is
the focus of this monograph.

The rest of the monograph will be organized as follows. Section 1
gives an overview of major manufacturability issues in nanometer VLSI
designs, reviews the routing basics, and discusses various approaches
to deal with manufacturability in routing. Then from Section 2 to Sec-
tion 6, key manufacturability issues due to various process limitations
will be discussed and dealt with through different manufacturability
aware routing techniques, including CMP aware routing (Section 2),
random-defect aware routing (Section 3), lithography aware routing
(Section 4), redundant via aware routing (Section 5), and antenna-effect
aware routing (Section 6). In Section 7, some more issues in manufac-
turability aware routing such as dealing with multiple DFM objectives
and complicated design rules will be discussed, followed by summary
and concluding remarks in Section 8.

1.1 Major Manufacturability Issues

In this section, we give an overview of major manufacturing issues
which affect yield in nanometer designs (e.g., 65 nm technology node
and below) [32, 100], and analyze their causes and effects, such as
(1) printability issues due to sub-wavelength lithography system (i.e.,
feature size much smaller than the optical wavelength); (2) random
defects due to missing or extra material; (3) topography variations due
to chemical–mechanical polishing (CMP), and (4) other causes such as
via failure and antenna effects.

(1) A fundamental limitation for the sub-wavelength optical lithogra-
phy is WYSINWYG, i.e., “what you see (at design) is not what you get
(at fab)”. The printability issue arises between neighboring wires/vias
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1.1 Major Manufacturability Issues 3

due to sub-wavelength effects and process variations. As of today, the
193 nm wavelength optical lithography is still the dominant integrated
circuit manufacturing process for 45 nm and 32 nm nodes. It is likely to
remain so for 22 nm node or even below [106] due to delay in other viable
next-generation lithography (e.g., extreme ultra-violet lithography —
EUVL) and continued industry push in extending the 193 nm lithogra-
phy through immersion lithography, resolution enhancement techniques
(RET), and so on. However, if the initial design is very litho-unfriendly,
even aggressive RET may not be able to solve the printability problem.
Thus, the routing tool needs to construct litho-friendly and printable
layouts.

As technology is further scaled down below 32 nm, the current single
exposure immersion lithography is hit by the theoretical limit on feature
resolution. As a candidate solution, EUVL with 13.5 nm wavelength has
been researched heavily, targeting sub-32 nm technology nodes. How-
ever, the deployment of EUVL for commercial volume production has
been delayed multiple times (due to light sources, material issues, mask
fabrication, and so on), and is likely to be pushed out to the 16 nm node
or below, if at all [33, 56, 62]. To bridge the gap between the current sin-
gle exposure immersion lithography and EUV lithography, double pat-
terning lithography (DPL) has received a lot of attention from industry.
DPL is regarded as a technically and practically viable technology to
achieve high resolution for 22 nm node [2, 49, 53, 62, 96, 104, 128].
However, the deployment of DPL needs to tackle two major challenges,
layout decomposition and overlay error [2, 33, 56, 107], and routing and
layout optimization can play a proactive role to mitigate them.

(2) Smaller feature size makes nanometer VLSI designs more vulner-
able to random defects, which can be further divided into open or short
defects [31, 61]. The back-end-of-line (BEOL) defects [57] may cause
electrical opens or shorts on the interconnects. While it is generally
believed that the yield loss due to systematic sources is greater than
that due to random defects during the technology and process ramp-
up stage, the systematic yield loss can be largely eliminated when the
process becomes mature and systematic variations are ultimately com-
pensated. On the other hand, the random defects which are inherent
due to manufacturing limitations will still be there even for mature
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4 Introduction

fabrication process. Thus, its relative importance will indeed be bigger
for mature process with systematic variations designed in [25].

(3) Topography (thickness) variation due to dishing and erosion
after CMP is shown to be systematically determined by wire density
distribution [37, 66, 101, 122, 142]. Even after CMP, intra-chip topog-
raphy variation can still be in the order of 20–40% [42, 101]. Such
topography variation leads to not only significant performance degra-
dation due to increased wire resistance, but also acute manufacturing
issues like etching and printability due to defocus [37, 42, 101, 122].
The main reason for the copper CMP problems is uneven wire den-
sity distribution. Higher wire density usually leads to copper thickness
reduction due to erosion after CMP [66, 142], making resistance worse.
Also, the reduced copper thickness after CMP can worsen the scattering
effect, further increasing resistance [52]. The wire density distribution
is directly affected by routing.

(4) Vias may fail due to various reasons such as random defects, elec-
tromigration, cut misalignment, and/or thermal stress-induced voiding
effects. Redundant vias (or double vias) can be inserted during VLSI
routing to make the vias more robust [134]. Redundant via insertion is
known to be highly effective, leading to 10–100× lower failure rate [11].

(5) During IC fabrication process, charges from plasma etching
can be accumulated in long floating wires. Such charges may result
in high currents to thin-oxide gates (i.e., Fowler-Nordheim tunneling
current), and cause permanent damages to the gates. This is known as
the antenna effect [82]. There are three kinds of solutions to resolve
the antenna effect: protection diode embedding, diode insertion after
placement and routing, and jumper insertion. While the first two solu-
tions need extra area for diode, the jumper insertion incurs overhead
in routing system due to additional vias [18].

These nanometer manufacturing issues will be addressed in manu-
facturability aware VLSI routing.

1.2 VLSI Routing Basics

Routing is a key step in integrated circuit physical design to connect
signal nets together through geometrical embedding after block/cell
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1.2 VLSI Routing Basics 5

placement. Due to the complexity of routing, divide-and-conquer
approach is usually used to make the problem size manageable, e.g.,
through global routing and detailed routing. Global routing divides
the chip into global routing cells and plans approximate routing paths
for global nets (i.e., the signal nets between different routing cells).
Detailed routing follows the guidance from global routing and finalizes
the exact geometrical embedding/routing for all nets while satisfying all
the design rule checking (DRC). Track routing, as an intermediate step
between global and detailed routing, can expedite detailed routing by
embedding major trunks from each net within a panel (a row/column
of global routing cells) in DRC-friendly manner [4].

Figure 1.1 illustrates an example of modern routing systems [22, 23,
35, 73, 87, 91, 94, 103]. The input to the routing system is the legalized
placement result where pins are not yet connected. The entire chip area
is further dissected into global routing grid in order to reduce routing
complexity as shown in Figure 1.1(a). Once partitioned properly into
routing grids, the goal of global routing is to find a grid-to-grid routing
path instead of pin-to-pin connection for each net. One possible global
routing solution is shown in Figure 1.1(b). However, such solution could
cause routing to be heavily congested and even unroutable. An alter-
native global routing solution is shown in Figure 1.1(c) where wires are
more evenly distributed without any overflow [59, 127].

Once a global routing solution is fixed, track routing tunes the loca-
tions of wire pieces such that the wires can be more DRC friendly (e.g.,
connected to the pins, minimum spacing rules, and so on), while hon-
oring the global routing decisions [4]. An example of track routing is
shown in Figure 1.1(d) where wire pieces are placed such that max-
imum number of pins can be connected. Detailed routing follows the
track routing solution to finalize all the electrical connections. Mainly,
it performs local wiring to connect pins to wires (from track routing)
as shown in Figure 1.1(e), or pins to pins for short wires (which are
not considered during global routing) as in Figure 1.1(f). The final
detailed routing solution should not have any electrical open or short
in a DRC-clean manner. For difficult designs, these steps may need to
be repeated in order to satisfy multiple design constraints (e.g., timing,
power, noise, and so on) and reach the design closure.
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6 Introduction

Fig. 1.1 Illustration of a modern routing system which consists of three routing stages:

global routing, track routing, and detailed routing.
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1.3 Rule vs. Model-Based Manufacturability Aware Routing 7

As seen from Figure 1.1, each routing stage has information on wire
distribution, connectivity, and so on but at different levels of accuracy.
For example, wire density distribution can be estimated as early as
global routing with a high accuracy, and the spacing between majority
of wires may be known during track routing. However, detailed wire
shapes will be finalized only during detailed routing.

Depending on how a router places polygon shapes, a router can
be classified into either grid-based routing or gridless routing [105]. In
a grid-based routing system, polygons like vias or wires need to fol-
low the underlying routing grid, thus only discrete wire widths and
spacings such as 1×, 2×, 3×, and so on are available. A gridless router
does not assume any underlying grid but directly manipulates the poly-
gon shapes using some tile graph, thus it can have arbitrary width or
spacing as long as the design rules are satisfied. In general, grid-based
routing is more popular due to regular wire width, wire spacing, and
faster runtime. On the other hand, gridless routing has more flexibility
and solution space due to variable width and spacing. Thus, it could
potentially achieve better solution quality. But the router complexity
and runtime may be significantly higher [15, 30]. In a modern routing
systems, a hybrid approach may be adopted, or a finer subgrid could
be used to mimic a gridless router [75].

1.3 Rule vs. Model-Based Manufacturability Aware Routing

The approaches for manufacturing aware routing can be roughly clas-
sified into two groups: rule-based and model-based. The rule-based
approach imposes additional manufacturability-driven design rules on
a router to avoid manufacturability-unfriendly patterns. The model-
based approach utilizes some chip manufacturing process models to
estimate the manufacturability/yield and guide the router. There are
pros and cons for both rule-based and model-based approaches in terms
of runtime, scalability, implementation, controllability, trade-off, etc.

Rule-based approach extends the conventional design rules
paradigm, by imposing a new set of manufacturability friendly design
rules provided by the fab. These new manufacturability aware rules
can be required/hard rules, or recommended/soft rules. Since existing
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8 Introduction

routing systems have been based on design rules for decades [85], the
rule-based approach is friendly to the conventional design flow, which
makes it seemingly easy to implement and apply. However, there are
several serious challenges with rule-based approach.

(1) The number of such manufacturability aware rules is increas-
ing exponentially with the introduction of each new technol-
ogy node. For example, while the number of rules is only a
few dozen at 180 nm node, it reaches to several hundreds at
65 nm node.

(2) The complexity of ensuring these rules becomes more com-
putationally expensive, as the rules are becoming more com-
plicated and increasingly context-sensitive [29, 32, 74]. For
example, the minimum spacing between wires may depend
on the wire lengths and the neighborhood wires, as shown
in an example in Figure 1.2. Therefore, simply checking

Fig. 1.2 A context-dependent minimum spacing rule in a 65 nm technology is shown [29].
There are more and more complicated rules like this in sub-65 nm designs.
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1.3 Rule vs. Model-Based Manufacturability Aware Routing 9

rules would need considerable amount of computing resource.
More examples of how to deal with these rules will be dis-
cussed in Section 7.2.

(3) The rules are binary in nature, i.e., either following the rule
or violating the rule, thus the rule-based approach does not
provide smooth trade-off among different design objectives,
such as timing, noise, area, and manufacturability.

(4) The rules may be too restrictive and pessimistic. Sometimes,
it may be infeasible to achieve the area or performance goal
due to large guard-bands from these rules. For this reason,
the restrictive design rules (RDR) [76, 77, 98, 129], which
are widely used for transistor/poly layout, are not widely
adopted for routing, as routing patterns can be extremely
complicated. Furthermore, the rules themselves may not be
accurate enough to model very complicated manufacturing
processes, in particular for the future deeper sub-wavelength
lithography processes.

Due to these limitations of the rule-based approach, there have
been significant research efforts in the model-based manufacturabil-
ity aware routing recently, expecting that models will capture the
overall manufacturability more accurately and holistically at affordable
computational overhead. A modern IC manufacturing system involves
non-linear optical, chemical, electrical, and mechanical processes which
could be extremely complicated to model accurately and efficiently. For
example of lithography, the model needs to capture the process where
light source will pass through a mask and react with photoresists on the
wafer surface, and result in printed images. There are process variations
involved, and various resolution enhancement techniques may be used.
The challenge with model-based approach is how to abstract a set of
reasonably accurate and high-fidelity models at various abstraction lev-
els to guide physical layout optimizations. Meanwhile, the models have
to be compact and efficient enough to be embedded in the already time-
consuming VLSI routing system. Therefore, a key technical bottleneck
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10 Introduction

for model-based manufacturability aware routing is to develop simple
yet high-fidelity models, and apply them at proper routing stages in a
seamless manner with consideration of other routing objectives. The
model-based approach can be coupled with a small set of required
design rules.
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