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Abstract

As device sizes shrink, manufacturing challenges at the device level
are resulting in increased variability in physical circuit characteris-
tics. Exponentially increasing circuit density has not only brought
about concerns in the reliable manufacturing of circuits but also
has exaggerated variations in dynamic circuit behavior. The resulting
uncertainty in performance, power, and reliability imposed by com-
pounding static and dynamic nondeterminism threatens the continu-
ation of Moore’s law, which has been arguably the primary driving
force behind technology and innovation for decades. This situation is
exacerbated by emerging computing applications, which exert consid-
erable power and performance pressure on processors. Paradoxically,
the problem is not nondeterminism, per se, but rather the approaches
that designers have used to deal with it. The traditional response to
variability has been to enforce determinism on an increasingly non-
deterministic substrate through guardbands. As variability in circuit
behavior increases, achieving deterministic behavior becomes increas-
ingly expensive, as performance and energy penalties must be paid
to ensure that all devices work correctly under all possible condi-
tions. As such, the benefits of technology scaling are vanishing, due
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to the overheads of dealing with hardware variations through tradi-
tional means. Clearly, status quo cannot continue.

Despite the above trends, the contract between hardware and
software has, for the most part, remained unchanged. Software expects
flawless results from hardware under all possible operating conditions.
This rigid contract leaves potential performance gains and energy sav-
ings on the table, sacrificing efficiency in the common case in exchange
for guaranteed correctness in all cases. However, as the marginal
benefits of technology scaling continue to languish, a new vision for
computing has begun to emerge. Rather than hiding variations under
expensive guardbands, designers have begun to relax traditional cor-
rectness constraints and deliberately expose hardware variability to
higher levels of the compute stack, thus tapping into potentially signif-
icant performance and energy benefits and also opening the potential
for errors. Rather than paying the increasing price of hiding the true,
stochastic nature of hardware, emerging stochastic computing tech-
niques account for the inevitable variability and exploit it to increase
efficiency. Stochastic computing techniques have been proposed at
nearly all levels of the computing stack, including stochastic design
optimizations, architecture frameworks, compiler optimizations, appli-
cation transformations, programming language support, and testing
techniques. In this monograph, we review work in the area of stochas-
tic computing and discuss the promise and challenges of the field.
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1

Introduction

The primary driver for innovations in computer systems has been the
phenomenal scalability of the semiconductor manufacturing process,
governed by Moore’s law, that has allowed us to literally print cir-
cuits and systems growing at exponential capacities for the last three
decades. The resulting exponentially reducing cost per function has
resulted in an unprecedented penetration of technology in homes and
beyond, leading to profound impacts on society and quality of life.

Moore’s law has come under threat, however, due to the result-
ing exponentially deteriorating effects of material properties on chip
reliability and power. As transistors become smaller (the oxide in a
22 nm process is only five atomic layers thick, and gate length is only
42 atoms across), it is becoming increasingly expensive for the current
design and manufacturing technology to keep transistors functioning
deterministically, even under normal operating conditions. There are
three primary sources of nondeterminism [23]. First, decreasing tran-
sistor sizes lead to different transistors being doped differently dur-
ing the manufacturing process, causing them to have nondeterministic
electrical characteristics [24]. Second, transistors have become smaller
than the wavelength of the light used to pattern them (by 6×) [2].
This causes nondeterminism in the dimensions and characteristics of
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2 Introduction

the manufactured transistors. Finally, the unprecedented increase in
the power density of chips, coupled with time and context-dependent
variation in temperature and utilization across the chip, cause voltage
and timing variations in circuits [7]. These variations are dynamic and
largely nondeterministic. The most immediate impact of such nondeter-
minism is decreased chip yields. A growing number of parts are thrown
away since they do not meet timing and power-related specifications.
A 5% yield loss on a 90 nm process today directly translates into a
cost to the manufacturer that exceeds 2× the design cost for a typi-
cal cell-phone manufacturer [19], arguably one of the highest volume
parts. Clearly the status quo cannot continue. Left unaddressed, the
entire computing and information technology industry will soon face
the prospect of parts that neither scale in capability nor cost. We must
find a solution to the nondeterminism problem if semiconductor tech-
nology and industry are to remain a viable driver of science innovation
and technology capabilities for the future.

Paradoxically, the problem is not nondeterminism, per se, but how
computer system designers approach it. Chip components no longer
behave like the precisely chiseled machines of the past; yet, the basic
approach to designing and operating computing machines has remained
unchanged. While there have been many swings in computing plat-
form paradigms, such as from general-purpose to specialized, and from
single-core to multi-core, the contract between hardware and soft-
ware has remained unchanged. This contract guarantees that hardware
will return correct values for every computation, under all conditions.
In other words, we demand hardware to be overdesigned to meet the
mindsets in computer systems and software design of the past. Guard-
bands imposed upon hardware result in increased cost [12], because
getting the last bit of performance incurs too much area and power
overhead, especially if performance is to be optimized for all possi-
ble computations. Conservative guardbands also leave enormous per-
formance and energy potential untapped, since the software assumes
lower performance than what a majority of instances of that platform
may be capable of attaining most of the time.

As the marginal benefits of technology scaling continue to languish,
a new vision for computing has begun to emerge. Rather than hiding
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3

variations under expensive guardbands, designers have begun to relax
traditional correctness constraints and deliberately expose hardware
variability to higher levels of the compute stack, thus tapping into
potentially significant energy benefits, but also opening up the potential
for errors. Rather than paying the increasing price of hiding the true,
stochastic nature of hardware, emerging stochastic computing tech-
niques exploit error resilience by exposing hardware errors and allowing
hardware reliability to be traded for increased energy efficiency.

Truly, designers have begun to embrace stochasticity at many layers
of the compute stack [37]. Resulting stochastic architecture frameworks
[20, 29, 38, 42] are structured around stochastic computing techniques,
which they exploit to enable energy-reliability tradeoffs and increase
efficiency in the face of nondeterministic hardware. For example, the
Variation-Adaptive Stochastic Computer Organization (VASCO) [38]
dynamically adapts its own hardware reliability based on workload
characteristics and environmental conditions to maximize the energy
and performance benefits of exploiting error resilience.

Architecture frameworks such as VASCO rely on microarchitecture
and design-level techniques that manipulate the error distribution of
hardware to enable energy-reliability tradeoffs and increase the effi-
ciency of operating in the stochastic domain. Design-level stochastic
computing techniques [11, 16, 18, 25, 26, 27, 33, 43, 44] aim to make
stochastic computing itself more efficient. For example, recovery-driven
design [26] assumes a stochastic operating condition and the availabil-
ity of hardware or software error resilience and asks how circuits can
be designed to be more efficient when errors are allowed even in the
nominal case. Microarchitectural techniques [35] attempt to reduce the
number of errors that a processor produces for a given operating con-
dition. Compiler optimizations [36, 37] can further improve the extent
of benefits on programmable stochastic architectures by manipulating
the activity distribution of a stochastic processor to reduce the error
rate or cost of error recovery.

Programming language [13, 32] and application [37, 39] support for
stochastic processors facilitates programming for stochastic processors
and enables more programs to be executed on stochastic processors.
Testing techniques [4] are also being re-evaluated so as to not require
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4 Introduction

all parts of the chip to function flawlessly. The focus is especially on
increasing chip yields in spite of permanent faults.

Going forward, as variability continues to grow and designers
continue to abandon traditional variability-mitigation practices and
embrace stochastic computing, stochastic design optimizations, archi-
tecture frameworks, compiler optimizations, application transforma-
tions, programming language support, and testing techniques will be
essential to maximize the potential of stochastic computing to increase
performance and energy efficiency.

In the first section of this chapter, we discuss design-level opti-
mization techniques that aim to enable energy-reliability tradeoffs and
improve the efficiency of error resilient designs.
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