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Abstract

Today’s Integrated Circuit (IC) architects depend on Electronic Design

Automation (EDA) software to conquer the overwhelming complexity

of Very Large Scale Integrated (VLSI) designs. As the complexity of

IC chips is still fast increasing, it is critical to maintain the momentum

towards growing productivity of EDA tools. On the other hand, single-

core Central Processing Unit (CPU) performance is unlikely to see sig-

nificant improvement in the near future. It is thus essential to develop

highly efficient parallel algorithms and implementations for EDA appli-

cations, so that their overall productivity can continue to increase in a

scalable fashion. Among various emergent parallel platforms, Graphics

Processing Units (GPUs) now offer the highest single-chip computing

throughput. A large body of research, therefore, has been dedicated to

accelerating EDA applications with GPUs. This monograph is aimed to

develop a timely review of the existing literature on GPU-based EDA

computing. Considering the substantial diversity of VLSI CAD algo-

rithms, we extend a taxonomy of EDA computing patterns, which can
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be used as basic building blocks to construct complex EDA applica-

tions. GPU-based acceleration techniques for these patterns are then

reviewed. On such a basis, we further survey recent works on building

efficient data-parallel algorithms and implementations to unleash the

power of GPUs for EDA applications.

Categories and Subject Descriptors: J.6 [Computer-Aided Engi-

neering] — Computer-aided design (CAD).

General Terms: Algorithms, Design, Performance

Additional Keywords and Phrases: Electronic Design Automation

(EDA), VLSI, GPU, Graphics Processor, GPGPU, logic simulation,

circuit simulation, matrix, linear algebra, sparse matrix, graph

traversal, graph algorithm, dynamic programming, simulated anneal-

ing, structured grid
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1

Introduction

As the foundation of information technology, Integrated Circuits (ICs)

are playing a fundamental role in our society. In the foreseeable future,

IC technology will still be one of the major enablers for sustainable

development. To further improve the working efficiency and living stan-

dards of the human beings, the number of ICs deployed around the

world will still be rapidly increasing in the future. It is predicted that

15X more transistors are going to be deployed in the next 5 years to

“manage, store, and interpret data” [194].

At the same time, the complexity of ICs has been growing as indi-

cated by Moore’s law to maintain the momentum towards increasing

performance and functionality. Today, it is already feasible to inte-

grate over 7 billion transistors on a consumer IC chip [187]. To conquer

the overwhelming complexity of modern ICs, circuit designers depend

on Electronic Design Automation (EDA) software to convert a design

intention into working silicon. EDA tools, therefore, have to be scalable

with the growing IC complexity, so that the design turnaround time

can be kept in a reasonable level. Current EDA tools are facing chal-

lenges from two ends, big system and small physics [216]. The former

means the integration of a whole hardware/software system onto a

1
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2 Introduction

single chip, while the latter involves the manufacturability, reliability,

and other issues incurred by the shrinking physical size of IC fabrication

processes. Both trends pose significant requirements to the processing

throughput of EDA software.

In the past, the performance scalability of EDA tools had always

been the result of two interacting factors, smarter algorithms and faster

CPUs. The latter factor is especially handy because the same EDA

algorithm automatically runs faster on a CPU with higher perfor-

mance. In early 2000s, however, single-core CPU performance is satu-

rating due to the inability to extract more instruction-level parallelism

and improve power efficiency. Such a stall in computing performance

had serious implications on the design turnaround time of IC design

projects. Given the complexity of today’s IC designs, the runtime of

EDA applications can still be excessive even using the best algorithm

to date. For instance, a timing analysis will take a couple of hours

to perform on a 5M-gate design. Such a runtime seriously constrains

the number of optimization steps that can be conducted in a given

design turnaround time, since virtually every post-synthesis optimiza-

tion operation requires a run of timing analysis to validate the cor-

rectness. A runtime of a few hours suggests that only a small portion

of the complete solution space can be explored and the design quality

has to be relaxed. Another example is the circuit simulation problem.

Given a Giga-Hertz phase-lock loop (PLL) circuit, a transient analysis

needs to simulate the circuit for millions of cycles before the frequency

can be stabilized. Thus a complete run will take months to finish on

a single CPU. Besides, the continuously shrinking market window of

today’s electronic appliances also poses challenging requirements to the

productivity of EDA software.

In spite of the relative saturation of single-core CPU performance

in the conceivable future, the semiconductor processes are still offering

continuously growing integration capacity. As a result, all major CPU

vendors switched to offer multi-core products since 2006. Multi-core

processors are inevitably becoming the dominant computing platform

for EDA applications. Accordingly, it is crucial to develop parallel solu-

tions to EDA software such that the momentum of function increase in

VLSI designs can be maintained [46].
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3

In the past few years, major EDA vendors proposed R&D initia-

tives to take advantage of the computing power of multi-core pro-

cessors [220]. At the present time, the POSIX threads or Pthreads

[115] based multithreading has been the most popular programming

model for multi-core CPUs. Multithreaded versions of cutting-edge

EDA software have already been released. Such applications include

parallel circuit simulator (e.g., [42, 240]), router (e.g., [241]), and physi-

cal verification (e.g., [126]). Among these, multithreaded parallel circuit

simulation proves to be especially successful. Meanwhile, the academia

also introduced parallel algorithms for many EDA applications (e.g.,

[110, 157, 170, 220]).

Despite their many successful applications, the multithreaded

parallel programming model on multi-core CPUs still has serious limi-

tations. A CPU thread is associated with a relatively high overhead in

initialization, context switching, and synchronization [40]. Accordingly,

P threads and similar programming models belong to the category of

coarse-grain multithreading, which suggests parallel processing of tasks

and/or large chunks of data of a problem. However, many complex

EDA applications feature abundant fine-grain parallelism (i.e., data

parallelism) exemplified by matrix and graph operations. A multi-core

microprocessor at most supports a few tens of threads and cannot fully

take advantage of the inherent fine-grain parallelism. In addition, the

scalability of a coarse-grained multithreaded program is seriously lim-

ited by the thread management overhead. A context switching of a

thread on a multi-core CPU takes a few hundreds of microseconds [145].

Generally, such an overhead will outweigh the speed-up of increasing

parallelism when the number of threads is beyond a given level. A recent

work showed that the performance of a highly optimized parallel logic

simulator saturated at 15 threads on a 10-core CPU [201].

The above problems of multi-core processors as well as the pursuit

for more computing power motivate EDA researchers and engineers

to explore alternative parallel computing platforms. Recently, Graphic

Processing Units (GPUs) have emerged as a new general-purpose

computing platform [28, 195, 196]. GPUs were originally designed as

application-specific ICs for graphics rendering. Pushed by the relentless

pursuit for better visual experiences, GPUs evolved to offer both high
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4 Introduction

Fig. 1.1 Comparison of peak throughput of CPUs and GPUs.

programmability and superior computing throughput. In 2004, NV35

GPU began to deliver a higher level of performance than the best CPU

at that time. Current GPUs outperform their multi-core CPU equiva-

lents by a factor of over 30 in terms of peak computing throughput.

The above performance trend is depicted in Figure 1.1, where

the computing throughputs of NVIDIA and AMD GPUs and Intel

CPUs are compared in terms of Giga FLoating Operation Per Second

(GFLOPS). We collected performance data from publically available

datasheets [5, 186]. GPU chip makers usually release multiple GPUs

with varying performance levels at each technology node. Meanwhile,

the above three companies have different schedules for releasing new

products. In Figure 1.1 we only show the “flagship” GPU for each

generation and take NVIDIA’s release schedule as the time reference.

Clearly, GPU has been outperforming CPU since 2004 and the perfor-

mance gap is still broadening.

Along with the high computing throughput, GPUs are also equipped

with a high bandwidth memory bus because it is installed on the

Full text available at: http://dx.doi.org/10.1561/1000000028



5

Fig. 1.2 Comparison of peak throughput of CPUs and GPUs.

graphics card and dedicated to GPU applications. The memory

characteristics of major GPUs are demonstrated in Figure 1.2. The

bandwidth values of four generations of DDR memories, i.e., the mem-

ory standard for CPUs, are also depicted as reference. The latest

NVIDIA and AMD GPUs have a peak memory bandwidth of 208 GB/s

and 264 GB/s, respectively, while the current DDR3 memory standard

only supports 17GB/s (the next generation DDR4 will double the band-

width to 34GB/s) [122]. Certainly the superior memory bandwidth of

GPUs will significantly benefit memory-intensive EDA applications.

Traditionally, GPUs are programmed with shading languages like

OpenGL [191]. Although OpenGL can be used for general-purpose

computing on GPUs (GPGPU), the resultant programming process is

laborious and error-prone. To ease the programming effort of GPGPU,

NVIDIA introduced the Compute Unified Device Architecture (CUDA)

technology [178, 183] so that programmers can develop GPGPU pro-

grams in a C/C++ alike language with a few extensions. While CUDA
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6 Introduction

can only be used on NVIDIA GPUs, OpenCL is defined by a group of

industry players as a standard cross-platform GPGPU language [134].

The synergy of GPU hardware and software has resulted in suc-

cessful applications in a diverse range of scientific and engineering

domains [28, 195]. On workloads with appropriate computing and

memory accessing patterns, GPU can even attain a speed-up of over

100X. It is thus appealing to unleash the computing power of GPU for

EDA applications.

Different CPUs, GPUs adopt a fine-grain multithreading model.

Equipped with dedicated hardware for context switching, GPU threads

are light-weighted and excel in massively data-parallel processing. Such

an execution model makes GPU proper for EDA applications featuring

data-parallelism. There is already a large body of literature presenting

encouraging results on utilizing GPU to solve various EDA problems.

GPGPU proved to be effective in such time consuming applications

as system level design, logic simulation, timing analysis, power grid

analysis, placement, and routing. The positive results suggest that the

superior computing power of GPUs can be unleashed by developing

carefully designed data-parallel algorithms and highly tuned implemen-

tations.

On the other hand, EDA applications pose unique challenges to the

GPGPU model. The nature of circuits determines that the underly-

ing data structures capturing IC designs tend to be irregular. Typical

EDA applications are thus constructed on the basis of such irregular

data structures as sparse matrix, tree, and graph.1 The resultant mem-

ory accessing patterns are less amenable to GPUs, which only have

a limited capacity of cache and assume regular memory accesses to

fully utilize its large memory bandwidth. Accordingly, current works on

GPU-based EDA computing generally resort to two strategies: (1) iden-

tifying regular sub-problems in an EDA application and then use GPU

as an accelerator for them; and (2) re-designing or re-structuring algo-

rithms on GPU so as to convert irregular data accesses into (at least

partially) regular ones. Another challenge is that EDA applications are

1There exist special cases where the data structure can be quite regular. One such typical

example is the power distribution network, which in many designs consists of a relatively
regular power mesh.
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extremely complex and cover many different domains of computations.

Accordingly, an application-by-application parallelization approach can

be infeasible. A viable line of attack, instead, is to identify the funda-

mental computing patterns and perform parallelization on them. Such

a pattern-based strategy of parallel programming proves to be crucial

for many other software applications [162].

In this monograph, we present an up-to-date survey on the

progresses in GPU-accelerated EDA computing. Considering the high

complexity of EDA applications, an essential objective of this work is

to extract key computing patterns of EDA and present state-of-the-art

GPU programming techniques to resolve such patterns. We believe that

this approach will substantially ease the deployment of GPUs in future

EDA software. This monograph focuses on using GPU to accelerate

applications in the EDA domain, while the techniques also have wide

applications in many other scientific and engineering domains. Inter-

ested readers please also refer to [Owens et al. 2007; Refs. [28, 195]] for

surveys on applications in other disciplines.

The remainder of this monograph is organized as follows. Section 2

provides an overview of GPU hardware architectures and the corre-

sponding data-parallel programming model. In Sections 3 and 4, we

develop a taxonomy for the basic computing patterns of EDA appli-

cations and then review relevant GPU programming techniques for

these patterns. In Section 5, we survey successful applications of GPU-

accelerated EDA computing. In Section 6, we conclude this work and

propose future research directions.
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