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Abstract

Providing a constant and perpetual energy source is a key design

challenge for implantable medical devices. Harvesting energy from the

human body and the surrounding is one of the possible solutions. Deliv-

ering energy from outside the body through different wireless media is

another feasible solution. In this monograph, we review different state-

of-the-art mechanisms that do “in-body” energy harvesting as well as

“out-of-body” wireless power delivery. Details of the energy sources,

transmission media, energy harvesting and coupling techniques, and

the required energy transducers will be discussed. The merits and dis-

advantages of each approach will be presented. Different mechanisms

have very different characteristics on their output voltage, amount of

harvested power and power transfer efficiency. Therefore different types

of power conditioning circuits are required. Issues of designing the

building blocks for the power conditioning circuits for different energy

harvesting or coupling mechanisms will be compared.
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1

Introduction

Implantable Medical Devices (IMDs) have been used for more than

50 years. The early IMDs dated back to the implantable pacemaker

in 1958 [45]. Since then numerous types of IMDs were introduced

to tackle different health issues. Implantable cardioverter-defibrillators

were developed for detecting cardiac arrhythmia and correcting through

electric pulses [61]. Implantable insulin pumps were developed to deliver

insulin into the body depending on the blood sugar level of the diabetic

patients [82]. These traditional IMDs mainly function by monitoring

the local signals and activating certain event for reaction. The required

power level ranges from µW to mW. With the advancement in VLSI

technology, more sophisticated implantable circuits and systems have

been developed that have more sensing capability and stimulation func-

tions. Low power wireless data transmissions are also possible. This cre-

ates a new class of IMDs which not only monitor and activate signals

in the local region, but also collect data, send it back through wireless

channel to a local host to do signal processing and receive commands

wirelessly to execute massive stimulation and activation. Examples are

the implantable retinal prosthesis devices [50, 89], of which the goal

is to restore some vision to people who have degenerative eyesight.

1
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2 Introduction

Implants are either on the retina (epiretinal implants) or behind the

retina (subretinal implants). Images are either captured by an exter-

nal camera or the implanted micro-photodiodes. After processing, the

signals are either generated locally or transmitted from a host proces-

sor through a wireless channel to generate electrical simulation signals

to the retina cells. Power hungry circuits such as wireless receivers

and electrical stimulators are required. Another example is cochlear

implants, which generate electrical stimulation to the auditory system

to recover some of the auditory function for the hearing-impaired [23].

Also neural implants are used to directly stimulate the neural cells at

the areas of the brain that are dysfunctional due to diseases [80, 31].

Neural implants that have the capability of capturing the activity of the

brain and using it for brain–computer or brain–machine interface are

also becoming reality. These neural implants require circuits to do elec-

trical stimulation, data capture and also wireless communication, and

hence require significant amount of power. Table 1.1 gives a summary

of the power requirement of different types of IMDs.

There are many design challenges for IMDs. Power consumption,

size, durability, reliability and biocompatibility are some of the key

ones. Among them, power consumption is probably the dominant issue

as it also affects the other factors. Traditional IMDs such as pace-

maker and defibrillator use battery to provide power to the device.

Even though the current consumption of the device is in the range of

µA, the battery only lasts for a certain period of time (15 years for

pacemaker and 7–8 years for defibrillator). When the battery is gone,

another operation is required to replace the old device with a new one.

For other devices such as neural implants which consume significantly

larger power, either a larger battery is used which leads to a larger vol-

ume or the frequency of replacement is increased. Both are not desirable

Table 1.1. Power requirement of IMDS.

Neural Cardiac Cochlear Retinal Insulin
IMDs implants pacemaker implants implants pump

Power required 10 mW 1µW 10 mW 1 mW 10 mW

∼200 mW ∼10µW ∼100 mW ∼100 mW ∼50 mW
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as we want the IMDs to work perpetually and we want them small. To

achieve this contradicting goal, energy harvesting and wireless power

delivery methodologies were proposed as the power supply methods for

IMDs. Energy harvesting has become popular recently as a strategy

to provide power for low power sensors or microsystems used in areas

with environmental hazard where it is difficult to recharge or replace the

battery [5, 65]. Different types of devices were developed to scavenge

energy from the environment. Sources of energy include solar, wind,

vibration, radioactivity, ambient RF and heat. Human body, at the

same time, is also a great source of energy. Every day for an adult, the

average daily diet provides about 10 MJ of energy. Different amounts

of power are generated for different daily normal activities, e.g., house-

keeping generates 175 W and 81 W is produced during sleeping [84].

Therefore it is tempted to use this as the energy source for IMDs. For

the case that we cannot harvest energy from the body, if we can obtain

the power wirelessly from outside to power up the implanted devices or

recharge the battery, it will remove the requirement of an internal bat-

tery or help to reduce its size, and prolong the lifetime of the devices.

In this monograph, we will review the recent trends in the research and

development of the power provisioning methodologies for IMDs.

We categorize the methods of providing power to IMDs into two

types, the “in-body” type and the “out-of-body” type. The in-body

energy sources come from the human body. These include the kinetic,

thermal, biochemical and direct electrical energy. The movements of the

human body or even the internal organs [26] are good sources of kinetic

energy. In [60] and [25] it is shown that several µW to mW of power

can be extracted from the trunk and the head of the body during walk-

ing or running. The inner human body temperature is maintained at

a relatively constant value of 37◦C and there is a temperature gradi-

ent between the inner body, the skin and the air ambience. Exploiting

this existing thermal gradient, thermal electric generator (TEG) can

be used to generate electric power. Another abundant source of energy

inside the body is glucose. Implantable biofuel cells using glucose as a

reactant have been investigated and researched for a long time. It has

been demonstrated recently that tens of µW/cm2 power density can be

generated constantly for over a month using glucose biofuel cell. Some

Full text available at: http://dx.doi.org/10.1561/1000000029



4 Introduction

of our body part is itself a natural electrical battery, e.g., endocochlear

potential. If the potential is large enough and the corresponding power

condition circuits can be designed to match with the requirement, elec-

trical energy can be harvested directly from this potential. In [58] it

has been shown that nW of power can be extracted from the ear of a

guinea pig for up to 5 hours.

For out-of-body power delivery, external energy source is used to

couple the energy into the IMDs or directly activate the energy har-

vester implanted inside the body. The external power sources come from

magnetic energy, ultrasonic wave, optical wave and the most common

one, electromagnetic induction.

The whole implantable energy harvester/receiver consists of three

parts (Figure 1.1), the primary energy source, the energy transducer

and the power conditioning blocks. The primary energy source is either

“in-body” or “out-of-body” source. The energy transducer collects the

harvestable energy in a certain form and transforms it into electrical

energy. The harvested electrical energy is time varying and usually the

output voltage and power levels are low. Therefore power condition-

ing system is required to regulate the output voltage and deliver the

output to the load in the required form. In some energy harvesters,

the harvested power varies with the environment and there exist some

operation points that the harvested power is maximized. In this situa-

tion, the power conditioning block is also required to track and operate

the system in the maximum power point (MPP) in order to optimize

the power transfer efficiency.

Fig. 1.1 Building blocks of the implantable energy harvester.

Full text available at: http://dx.doi.org/10.1561/1000000029
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The rest of the monograph is organized as follows. Section 2 will

discuss different types of energy harvesting sources and wireless power

delivery mechanisms. The corresponding energy transducer designs will

also be presented and the optimum design strategies will be discussed.

The building blocks of the power condition circuits will be presented

in Section 3. Detail system and circuit design will also be provided.

Conclusions will be given in Section 4.
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