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Abstract

Vertically-integrated 3D multiprocessors systems-on-chip (3D MP-
SoCs) provide the means to continue integrating more functionality
within a unit area while enhancing manufacturing yields and runtime
performance. However, 3D MPSoCs incur amplified thermal challenges
that undermine the corresponding reliability. To address these issues,
several advanced cooling technologies, alongside temperature-aware
design-time optimizations and run-time management schemes have
been proposed. In this monograph, we provide an overall survey on
the recent advances in temperature-aware 3D MPSoC considerations.
We explore the recent advanced cooling strategies, thermal modeling
frameworks, design-time optimizations and run-time thermal manage-
ment schemes that are primarily targeted for 3D MPSoCs. Our aim of
proposing this survey is to provide a global perspective, highlighting
the advancements and drawbacks on the recent state-of-the-art.

Keywords: System-Level Design, Thermal Management, MPSoC
Cooling, Temperature Optimization, Reliability, Vertical Integration.
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1
Introduction

The last decades have seen a revolution in data gathering, process-
ing, information storage and communication. This revolution has been
caused by electronic computing systems, which nowadays are one of the
key building blocks of the world’s information technology (IT) infras-
tructure. In fact, computing systems and IT services are an essential
pillar of the developed world, contributing up to 50% of its economy [1].
The IT and computing systems revolutions have been the result of the
advancements in IC processing technology, where the number of com-
ponents (transistors) on the same die area have been doubled every
18 months [2], which is also known as Moore’s law. This has been the
drive to generate more complicated computing systems with higher
performance and computational functionality.

As feature sizes scale with advanced processing technologies, the
performance of processing units has increased because of greater func-
tionality and higher computational capabilities. This functionality aug-
mentation was accompanied by an increase in the operating frequency
of the processing unit. Micro-architects have conventionally used op-
erating frequency as a measure for the processing unit performance,
as higher frequency implies more instructions executed per unit time.

2
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Figure 1.1: Number of processing units integrated in a single IC, as evolved with
time. Blue-labeled ICs are single-core architectures, while red-labeled ICs are multi-
core architectures.

However, at the sub-micron level, the circuit-level delays are getting
dominated by wiring and interconnect delays, which led to frequency
flattening. If the operating frequency would increase with this tech-
nology, significant additional power consumption is required by the
processing unit, which results in an increased heat generation. For ex-
ample, a 90 nm fabricated AMD processing unit would require 60%
additional power consumption to increase the operating frequency by
400MHz [3].

Multi-core architectures have been proposed as an alternative de-
sign paradigm to frequency increase in single-core architectures, to con-
tinue performance improvement with technology scaling [4]. Multi-core
architectures integrate two or more processing units, with shared or dis-
tributed memory modules, interconnected through an on-chip bus or
a network-on-chip [5]. As feature sizes scale with advanced processing
technologies, the number of processing units in multi-core architectures
dramatically increases. Fig. 1.11 shows that the number of cores inte-

1This figure is based on a similar figure found in the course slides given by
Prof. S. Amarasinghe of MIT http://groups.csail.mit.edu/cag/ps3/pdf/6.189-info-
session.pdf
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4 Introduction

grated in a single IC has started to ramp-up in the beginning of the 21st
century. Recent multi-core architectures integrate a number of process-
ing units, multi-level memory hierarchy, an interconnect module, and
in the case of embedded domain, special peripherals such as analog-
to-digital converters (ADC), co-processors, or wireless RF antennas.
This architecture, which is known as Multiprocessor Systems-on-Chip
(MPSoC), has been widely used in various domains. An example of
recent MPSoC utilization at the high performance computing systems
level is data-intensive computing systems, which is also known as the
fourth paradigm [6]. Another example for MPSoC utilization is found
at the embedded systems domain, with small- or tiny-size computing
systems, such as on-body [7] or in-body [8] health monitoring systems.

1.1 3D-ICs for Augmented Performance Per Unit Area

While the performance of computing architectures has been enhanced
by MPSoCs, MPSoCs’ performance has been recently challenged by
increased propagation delay, primarily due to longer interconnects [9].
This is mainly due to the increased wire-to-gate delay ratio. This de-
lay would lead to degraded MPSoC performance or increased energy
consumption.

This delay limitation, combined with the continued demands for in-
creased integrated functionality while preserving the performance and
area efficiency, have led to the development of vertically-integrated 3D
ICs. 3D integration is viewed as an attractive solution to provide in-
creased functionality with better yield, as well as a technique of com-
bining several technologies in a single enclosure (package) [10]. From
a design perspective, 3D integration can be split into the following
categories:

• Monolithic 3D integration [11]. This integration technology
fabricates the tiers serially at the transistor granularity, within a
single fabrication process. From the bottom tier, the correspond-
ing transistors are fabricated then a substrate layer is placed on
top where another tier is fabricated. These layers are connected
with vertical interlayer vias. Thus, this integration technology is

Full text available at: http://dx.doi.org/10.1561/1000000032



1.1. 3D-ICs for Augmented Performance Per Unit Area 5

promising in terms of providing higher density and performance
gains.

• 3D stacking (also referred to as Parallel 3D integration) [10].
This integration technology stacks vertically 2D die layers to form
a single 3D IC. To enable the communication and power delivery
to these dies, there are several techniques adopted such as wire
bonding, microbumps, and through-silicon vias (TSVs). TSVs are
vertical wires that carry power and signals between different dies,
which are etched in the silicon substrate between the 2D dies.

In this survey, we primarily target 3D stacked ICs with several
digital logic dies and TSV-based interlayer communication. We refer
to the targeted 3D ICs throughout this review by 3D multiprocessors
systems-on-chip, or 3D MPSoCs.

3D MPSoCs are multi-layered stacked 3D ICs, where each die con-
tains a number of processing units, memory modules, and other pe-
ripheral and interconnection units. Examples of typical 3D MPSoCs
integrate a number of processing layers that contain all the processing
units, and a number of memory layers. Another 3D MPSoC example is
where the processing units and the memory modules are co-placed in
each die of the 3D stacked layers. These examples have been shown in
previous works [12, 13], and are shown in Fig. 1.2, which includes an
UltraSPARC T1 [14] version of a 3D MPSoC. This vertical integration
of logical modules brings several benefits to multi-core architectures,
which are as follows:

• Vertical stacking shortens the wiring length between two mod-
ules. In this respect, the propagation delays, which are recently
dominated by interconnect delays [15], are dramatically reduced
leading to an increased performance of 3D MPSoCs. Thus, 3D
MPSoCs would outperform 2D MPSoCs.

• 3D MPSoCs allow heterogenous integration of different compo-
nents, such as DRAM on multi-core architectures [13]. 3D MP-
SoCs enhance the memory access bandwidth and throughput, by
bringing the memory modules (e.g. DRAM) to the top or bottom

Full text available at: http://dx.doi.org/10.1561/1000000032



6 Introduction

Figure 1.2: Schematic view of a 4-tier 3D MPSoC with different architectures [12].

of processing layers. This would enable high-speed, massively-
parallel data access to these stacked DRAM layers.

1.2 Thermal Issues in 3D MPSoCs

Despite the performance and throughput enhancements that 3D MP-
SoCs bring, 3D MPSoC designs face major challenges, particularly in
the extreme elevated temperatures accompanied with high-performance
designs.

While technology continues to scale-down the transistor features,
MPSoCs voltage supply (Vdd) could not be scaled down accord-
ingly [16]. Recent work [17] (Fig. 1.3(a)) has shown that the supply
voltage scaling is saturating that, if combined with increased integra-
tion within a unit area due to reduced transistor features, leads to an
increase in power consumption. In this respect, multi-core architectures
design trends have taken the direction of increasing the power density
by integrating more processing units on the chip (with a fixed chip
area), as shown in Fig. 1.3(b). If the MPSoC power density keeps in-
creasing, it will eventually reach the same magnitude of nuclear power
plants [4, 18].

With such increased power densities, MPSoCs face a tremendous

Full text available at: http://dx.doi.org/10.1561/1000000032



1.2. Thermal Issues in 3D MPSoCs 7

promise of radically new technologies becoming commer-

cially viable. In our view, the solution to this energy crisis is
the universal application of aggressive low-voltage operation
across all computation platforms. This can be accomplished

by targeting so-called Bnear-threshold operation[ and by

proposing novel methods to overcome the barriers that

have historically relegated ultralow-voltage operation to

niche markets.
CMOS-based technologies have continued to march in

the direction of miniaturization per Moore’s law. New

silicon-based technologies such as FinFET devices [2] and

3-D integration [3] provide a path to increasing transistor

counts in a given footprint. However, using Moore’s law as

the metric of progress has become misleading since im-

provements in packing densities no longer translate into

proportionate increases in performance or energy effi-
ciency. Starting around the 65 nm node, device scaling no

longer delivers the energy gains that drove the semicon-

ductor growth of the past several decades, as shown in

Fig. 1. The supply voltage has remained essentially con-

stant since then and dynamic energy efficiency improve-

ments have stagnated, while leakage currents continue to

increase. Heat removal limits at the package level have

further restricted more advanced integration. Together,
such factors have created a curious design dilemma: more
gates can now fit on a die, but a growing fraction cannot
actually be used due to strict power limits.

At the same time, we are moving to a Bmore than

Moore[ world, with a wider diversity of applications than

the microprocessor or ASICs of ten years ago. Tomorrow’s

design paradigm must enable designs catering to applica-

tions that span from high-performance processors and
portable wireless applications, to sensor nodes and medical

implants. Energy considerations are vital over this entire

spectrum, including:

• High-performance platforms, targeted for use in data

centers, create large amounts of heat and require

major investments in power and cooling infra-

structure, resulting in major environmental and

societal impact. In 2006 data centers consumed

1.5% of total U.S. electricity, equal to the entire
U.S. transportation manufacturing industry [4],

and alarmingly, data center power is projected to

double every �5 years.

• Personal computing platforms are becoming increas-

ingly wireless and miniaturized, and are limited by

trade-offs between battery lifetimes (days) and

computational requirements (e.g., high-definition

video). Wireless applications increasingly rely on
digital signal processing. While Moore’s law ena-

bles greater transistor density, only a fraction may

be used at a time due to power limitations and

application performance is therefore muzzled by

power limits, often in the 500 mW–5 W range.

• Sensor-based platforms critically depend on ultra-

low power (� �W in standby) and reduced form-

factor ðmm3Þ. They promise to unlock new
semiconductor applications, such as implanted

monitoring and actuation medical devices, as

well as ubiquitous environmental monitoring,

e.g., structural sensing within critical infrastruc-

ture elements such as bridges.

The aim of the designer in this era is to overcome the

challenge of energy efficient computing and unleash

performance from the reins of power to reenable Moore’s
law in the semiconductor industry. Our proposed strategy

is to provide 10X or higher energy efficiency improve-

ments at constant performance through widespread

application of near-threshold computing (NTC), where de-

vices are operated at or near their threshold voltage ðVthÞ.
By reducing supply voltage from a nominal 1.1 V to 400–

500 mV, NTC obtains as much as 10X energy efficiency

gains and represents the reestablishment of voltage scaling
and its associated energy efficiency gains.

The use of ultralow-voltage operation, and in particular

subthreshold operation ðVdd G VthÞ, was first proposed

over three decades ago when the theoretical lower limit of

Vdd was found to be 36 mV [5]. However, the challenges

that arise from operating in this regime have kept sub-

threshold operation confined to a handful of minor mar-

kets, such as wristwatches and hearing aids. To the
mainstream designer, ultralow-voltage design has re-

mained little more than a fascinating concept with no

practical relevance. However, given the current energy

crisis in the semiconductor industry and stagnated voltage

scaling we foresee the need for a radical paradigm shift

where ultralow-voltage operation is applied across appli-

cation platforms and forms the basis for renewed energy

efficiency.
NTC does not come without some barriers to wide-

spread acceptance. In this paper we focus on three key

challenges that have been poorly addressed to date with

respect to low-voltage operation, specifically: 1) 10X or
greater loss in performance, 2) 5X increase in performance
variation, and 3) 5 orders of magnitude increase in functional
failure rate of memory as well as increased logic failures.

Fig. 1. Technology scaling trends of supply voltage and energy.

Dreslinski et al.: Near-Threshold Computing: Reclaiming Moore’s Law Through Energy Efficient Integrated Circuits

254 Proceedings of the IEEE | Vol. 98, No. 2, February 2010

(a) Voltage and energy scaling
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portable electronics. In the latter situations, there is a 
basic trade-off between the available functionality and  
the need to carry heavy batteries to power it.  

Despite tremendous progress over the past three 
decades, modern silicon transistors are still over three 
orders of magnitude (>1000×) more energy inefficient 
than fundamental physical limits, as shown in 
Fig. 1(a). These limits have been estimated as 
approximately 3kBT ≈ 10–20 J at room temperature for 
a binary switch with a single electron and energy level 
separation kBT, where kB is the Boltzmann constant 
and T is the absolute temperature [3]. In the average 
modern microprocessor the dissipated power is  
due, in approximately equal parts, to both leakage 
(or “sleep”) power and active (dynamic) switching 
power [4], as detailed in Section 2. Power dissipation 

is compounded at the system level, where each CPU 
Watt demands approximately 1.5× more for the supply, 
PC board, and case cooling [1]. Such power (mis)use 
is even more evident in systems built on otherwise 
power-efficient processors, e.g., in the case of the 
Intel Atom N270 (2.5 W power use) which is typically 
paired up with the Intel 945GSE chipset (11.8 W power 
use) [5]. At the other extreme, data centers require 
50%–100% additional energy for cooling (Fig. 1(c)), 
which is now the most important factor limiting their  
performance, not the hardware itself. 

If present growth trends are maintained, data center 
and overall electronics power use could reach one 
third of total U. S. consumption by 2025 [1]. Worldwide, 
the growth trends could be even steeper, given that 
technologically developed regions such as the U. S., 

 
Figure 1 Energy and power dissipation from transistors, to CPUs, to data centers. (a) Switching energy of modern silicon transistors is
still over 1000× higher than fundamental physical limits, but on a trend toward them [3]. (b) Near-exponential increase of CPU power density
in recent decades has flattened with the introduction of multi-core CPUs (solid lines show approximate trends); by comparison, the
power density on the surface of the sun is approximately 6000 W/cm2 [2]. (c) Data center power use in the U. S. doubled in six years,
with an extremely large proportion devoted to cooling. (d) Approximate breakdown of total power used by digital electronics in the
U. S., where data are available [1, 6, 8] 

(b) Power density scaling

Figure 1.3: Voltage/Energy [17] and power density [18] scaling trends.

increase in heat generation that has a direct impact on the lifetime of
MPSoCs. This increased heat generation leads to high temperature in
the MPSoCs. While high-frequency single processing units have faced
the similar case of high temperatures, the thermal profile of MPSoCs
can have a more severe impact. This is mainly related to the localized
heat generation of the several processing units of MPSoCs. Thus, the
localized heat generation creates several localized high temperatures,
which is known as thermal hot spots. The existence of several thermal
hot spots would imply that there are other localized cold spots, which
leads to the creation of the undesirable spatial thermal gradients. More-
over, the time-varying nature of workload processing requirements, or
even when the processing goes to power-up and power-down cycles,
leads to temporal thermal cycles [19] formation. To demonstrate the
MPSoC thermal issues, an example of various hot spots location and
thermal gradient is shown in Fig. 1.4(b). This figure shows a thermal
response snapshot of the UltraSPARC T1 (Niagara) [20] MPSoC to a
typical workload execution.

While high-density 2D MPSoCs face strong thermal challenges,
these challenges are more prominent in the vertically-stacked 3D MP-
SoCs [21, 12]. Due to the vertical stacking of different dies, the thermal
resistance of 3D MPSoCs is significantly increased to alarming val-
ues [12], compared to the increased temperature we demonstrate in
the case of 2D MPSoCs. This is mainly due to the increased and non-

Full text available at: http://dx.doi.org/10.1561/1000000032



8 Introduction

(a) Layout (b) Temperature

Figure 1.4: Floorplan layout and thermal response of the UltraSPARC T1 MP-
SoC [20].

uniform thermal resistance at different stacked layers, based on their
relative heat dissipation paths using conventional techniques such as
placing heat sink on top of the top-most layer. For example, Fig. 1.5
shows the temperature of an emulated 3D MPSoC. This emulator is
built by stacking 4 heat dissipation tiers on a substrate tier. In each
of the heat dissipation tiers there is a number of controllable micro-
heaters that are used to emulate the heat generation pattern of pro-
cessing units similar to the actual pattern of each processing unit. In
addition to these micro-heaters, there is a number of thermal sensors
to capture the thermal profile of this emulator. This 3D thermal emu-
lator has a heat sink placed at the top-most layer. The temperatures
shown in this figure indeed confirm the expected high temperature and
thermal gradient values of prospective high-performance 3D MPSoCs.

Thus, it is expected that high-density high-performance 3D MP-
SoCs are more prone to hot spots and thermal gradients. The existence
of hot spots, thermal gradients, and thermal cycles heavily affect the
MPSoC (2D and 3D) operation and lifetime, as shown in the following
section.

1.3 Thermal Impact on 3D MPSoC Reliability and Perfor-
mance

High temperature is undesirable in 3D MPSoCs operation due to the
different device and interconnect reliability and degraded performance

Full text available at: http://dx.doi.org/10.1561/1000000032



1.3. Thermal Impact on 3D MPSoC Reliability and Performance 9

Figure 1.5: Thermal state of a 5 tier (4 thermal dissipating tiers + 1 substrate base
tier) high-density MPSoC thermal emulator. Temperature values are in Kelvin [22].

sources that are highly affected, directly and indirectly, by this rise
in temperature. These sources would affect the reliability of 3D MP-
SoCs by accelerating the processor aging or the Mean-Time to Fail-
ure (MTTF) [23], which is the statistical average time for the MP-
SoC to breakdown permanently, as well as creating irreversible func-
tional failures in the computation modules (e.g., storage) that limit the
full utilization of these modules. In addition to the impacted reliabil-
ity, high 3D MPSoC temperature would eventually lead to degraded
performance by reducing the operating frequency due to increased
propagation delays or reduced energy-efficiency resulted from the in-
creased leakage power consumption. Thus, it is important to identify
the temperature-induced reliability and degraded performance sources
and elaborate more on their corresponding impact. The following para-
graphs give an overview of these sources:

Bias Temperature Instability (BTI) [24]. This factor causes insta-
bilities in the device behavior, due to the stress applied on the bias
(e.g., a negative bias on the gate source voltage of a PMOS transistor).
BTI can be split to two types, namely Negative BTI, which is related
to the PMOS device stress, and Positive BTI, which is related to the
NMOS device stress. The main degraded parameter due to BTI is the

Full text available at: http://dx.doi.org/10.1561/1000000032



10 Introduction

threshold voltage, as shown in prior work [24]. The change in threshold
voltage during stress (increase in threshold voltage) and release times
(decrease in threshold voltage) has a dependency on a number of fac-
tors, which includes temperature [25]. Higher operating temperatures
indeed have a direct impact on the threshold voltage based on BTI,
which results in longer circuit delays and increase in dynamic power
consumption.

Hot-Carrier Injection [26]. Hot-carrier injection occurs when a car-
rier gains enough energy to tunnel from the transistor source or drain
to the dielectric material. This even accompanied with a rise in the de-
vice temperature. Hot-carrier injection occurs at normal temperature
range, but the injection rate is increased as the operating (or stress)
temperature is increased [27]. Based on the above observations, hot-
carrier injection could lead to thermal positive feedback loop situation,
i.e., the injection leads to increase in temperature that may trigger an
increase in the injection rate. Consequently, hot-carrier injection would
lead to thermal run-away.

Time-Dependent Dielectric Breakdown (TDDB) [28, 29] in high-k
device dielectric and low-k interconnect dielectric. This is modeled as
trap generated that leads to a leakage path through the oxide layer of
the transistor. This is also referred in literature as gate oxide break-
down. TDDB has an exponential dependency on temperature [28] that
accelerates the failure of a transistor by breaking down the dielectric,
hence forming a constant conducting path. As a consequence, the faulty
transistor would be permanently in a conducting state.

ElectroMigration (EM) in metallic interconnect [30]. Electromigra-
tion is a phenomenon that occurs in the IC interconnects (metal layers)
due to high current densities. EM leads to a shift in the conducting
ions location, hence causing a breakdown in the interconnects. EM has
a strong dependency on the temperature resulted from the utilization
of the IC and the joule self-heating of the interconnects due to the high
current density. In this respect, higher operating temperatures would
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eventually lead to a breakdown of the metal layer, which may result in
a complete failure of the IC.

Subthreshold Leakage Current [31]. Subthreshold leakage current is
one of the sources of leakage current, and hence static power consump-
tion in MPSoCs. It is the drain-source current of a transistor oper-
ating in the weak inversion region. Unlike the strong inversion region
in which the drift current dominates, the subthreshold conduction is
due to the diffusion current of the minority carriers in the channel.
Subthreshold leakage is found to be the dominant component in the
overall leakage current sources [32]. Subthreshold leakage current has
a strong dependency on the operating temperatures with a sensitivity
of 8− 12x/100oC [31].

The aforementioned sources can lead to system failure if no proper
measures are taken. But these sources also degrade the MPSoCs (2D
and 3D) operation from its original (also called time-zero) operating
conditions. The following paragraphs highlight more on these affected
parameters:

Mean-Time To Failure [23, 31]. The mean-time to failure would be
heavily impacted due to the temperature impact on Time-Dependent
Dielectric Breakdown (TDDB), Electromigration (EM), as well as
stress migration and thermal cycling.

Temperature-Dependent Propagation Delays [33]. This change in
the time required for a signal to travel between two modules is related
to the thermally-induced delays in the logic gates (e.g. resulted from
BTI), as well as the increase of the interconnect resistivity (e.g. resulted
from Electro-migration). Another cause for the propagation delay is in
the clock skew between different modules experiencing diverse thermal
stress. In this respect, propagation delays have a strong dependency not
just on the overall thermal state of the IC, but on the spatial thermal
gradient as well. Indeed, previous work reports that a spatial gradient of
40oC would create a 10% clock skew between different modules within
a single IC.
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Temperature-Dependent Leakage Power [31]. Leakage power is one
of the sources of static power consumption in MPSoCs. The leakage
power is a cause of various elements, such as the reverse-biased junc-
tion leakage current and the subthreshold leakage. These elements have
a strong dependency on the operating temperatures. In fact, it has been
shown by previous work that the leakage power has an exponential [34]
dependency on temperature. Thus, it is crucial to prevent the operat-
ing MPSoCs from entering thermal runaway situations. Temperature-
dependent leakage power may not be viewed as a failure mechanism,
but high leakage power would cause a significant degradation in the
power efficiency, as it would surpass the dynamic power consumption,
where dynamic power is the effective power used in computations and
is mainly workload dependent.

1.4 Advanced Cooling Technologies for 3D MPSoCs

To address the increasing thermal rise of 3D MPSoCs, several research
initiatives have explored several advancing cooling strategies for the
target architectures. For instance, there has been several research ef-
forts to insert dummy thermal through-silicon vias (TTSVs) [35] to
dissipate the heat generated from the layers further from the heat sink
in a more efficient way.

Another advanced cooling technology uses injected fluids (single- or
two-phase), between the different layers of the 3D MPSoCs. This cool-
ing methodology, which is also known as interlayer liquid cooling [36],
is achieved by manufacturing a cavity layer, for example rectangular
microchannels or micro pin-fin structures [37], on the back-side of each
silicon layer. A typical structure of 3D MPSoCs consists of two or
more silicon tiers, which contain the processing and storage elements
of the system. The communication between these tiers is realized with
through-silicon vias (TSVs) that are etched in the residual silicon slab.
To account for inter-tier liquid cooling, the porous cavity is realized by
etching porous structures of different form and shapes (cf. Fig. 1.6). In
the example shown in Fig. 1.6, the micro-channels are built, and dis-
tributed uniformly, in between the vertical layers for liquid flow. The
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Figure 1.6: Layouts of the interlayer liquid-cooled 3D MPSoCs [38].

fluid flows through each channel at the same flow rate, but the liquid
flow rate provided by the pump can be dynamically altered at runtime.

Manufacturing 3D MPSoCs with TSV interconnections and mi-
crochannels requires a series of microfabrication processes, namely (1)
deep-reactive-ion-etching (DRIE) process for anisotropic silicon etch-
ing of both TSV openings and backside microchannels (cf. Fig. 1.7); (2)
conformal thin film deposition for TSV sidewall insulation; (3) electro-
plating for conductive layer formation; (4) grinding for chip thinning,
and finally (5) wafer- or die-level bonding for the stacking. A simpli-
fied illustration of a 3D stack with inter-tier liquid cooling is shown in
Fig. 1.8.

Despite the benefits that liquid cooling brings in terms of significant
thermal reduction, liquid cooling adds additional challenges to obtain
a balanced thermal state with low spatial thermal gradients. As the
coolant flows in microchannels, it experiences sensible heat absorption
along the path [41]. This results in the coolant temperature increase
from inlet to outlet, which causes a thermal gradient formation on the
MPSoC surface even when the heat dissipation is uniform, as shown
in Fig. 1.9(a). More commonly, in 3D MPSoCs with non uniform heat
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200µm

Figure 1.7: SEM photos the wafer Back-side with the inlet-outlet openings while
showing the micro-channels [39].

Figure 1.8: Simplified illustration of 3D stack with inter-tier liquid cooling [39].

dissipations, the existing thermal gradients and hot spots are aggra-
vated by this characteristic of interlayer liquid cooling, as shown in
Fig. 1.9(b). As a result, thermal gradients proliferate in 3D MPSoCs
with liquid cooling. These gradients cause uneven thermally-induced
stresses on different parts of the MPSoC, significantly undermining
overall system reliability [31] (cf. Section 1.3.

From these observations we deduce that these new advanced cool-
ing technologies bring both additional benefits and challenges. Thus,
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(a) Uniform heat flux (b) UltraSPARC T1

Figure 1.9: Steady-state temperature distribution of a 14mm x 15mm two-die 3D
IC with (a) uniform (combined) heat flux density of 50W/cm2 and (b) the Ultra-
SPARC T1 (Niagara-1) chip architecture [14]- the (combined) heat flux densities
range from 8W/cm2 to about 64W/cm2. Direction of the coolant flow is from the
bottom to the top of the figure [40].

it is crucial to find an optimized methodology to apply these technolo-
gies, alongside conventional 2D temperature balancing techniques in
the context of resource-efficient temperature-aware 3D MPSoCs. Our
interest in resource-efficiency varies from area to applied energy.

1.5 Survey Overview and Outline

In this survey, we provide an extensive survey that covers temperature-
aware design optimizations and run-time management schemes for 3D
MPSoCs, to avoid the rapid degradation of these architectures due to
the thermal impact on reliability. The survey shows how the state-
of-the-art tackles the thermal issues in the emerging 3D MPSoCs that
include advanced cooling mechanisms, such as thermal-through-silicon-
vias (TTSVs) and interlayer liquid cooling. We perform this survey
exploration in a top-down manner to cover all the temperature-aware
aspects in the target architecture. In particular, we provide two main
research directions that tackle the thermal issues, namely:
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1. Design-time technological solutions and temperature-
aware optimizations. In this category we explore various tech-
niques that address, at design-time, the means of generating
and dissipating heat in 3D MPSoCs. This includes the optimiza-
tion of new advanced cooling and heat dissipation mechanisms,
temperature-aware floorplanning, and design-time optimization
of different parameters that would affect the thermal behavior of
3D MPSoCs.

2. Run-time thermal management mechanisms. We show in
this category the various temperature-affecting knobs in the tar-
get 3D MPSoC, and how the state-of-the-art utilizes these knobs
in developing several run-time thermal management mechanisms.

1.5.1 Related Survey Works

Our proposed survey overlaps with several surveys that exist in lit-
erature. An initial survey in thermally-aware design [42] explores the
various design-optimization mechanisms for MPSoCs, both planar 2D
and vertical 3D. In particular, this previous survey explains the various
modeling framework approaches and explores thermal-aware floorplan-
ning, and the means to recover from temperature-induced parameters
degradation such as run-time shifts. However, there is no exploration for
advanced cooling mechanisms, other design-time optimization mecha-
nisms, or run-time thermal management techniques, which are explored
in our proposed survey.

There is a recent survey work that explores various thermal man-
agement mechanisms for processing architectures [43]. In this previous
survey, several mechanisms for balancing temperatures in 2D and 3D
MPSoCs are explored, namely thermal sensor placement, run-time ther-
mal management, floorplanning, operating system/compilation tech-
niques, and a brief exploration on liquid cooling. However, this survey
does not provide a systematic classification of the temperature opti-
mization research field. In our proposed survey, however, we provide
our classification in a more systematic methodology that follows a top-
down reasoning to cover most of the research directions in 3D MPSoC

Full text available at: http://dx.doi.org/10.1561/1000000032



1.5. Survey Overview and Outline 17

temperature optimization.
Finally, another survey explores thoroughly vertical integration in

3D ICs [44]. This previous work explores the various electronic-design
automation tools needed for 3D architectures. Then it explores the
various architecture flavors in 3D ICs, namely 3D field programmable
gate arrays (FPGA) and 3DMPSoC designs. Thus, this previous survey
work is complementary to our proposal.

1.5.2 Survey Organization

This survey starts with providing an overview of the recent thermal
modeling approaches developed for the target 3D MPSoC architec-
tures in Section 2. In Section 3, we explore the design-time optimiza-
tion schemes to minimize the temperature-oriented issues in 3D MP-
SoCs. Section 4 shows our exploration in run-time thermal manage-
ment schemes for 3D MPSoCs. We first start by stating the various
temperature-affecting control knobs, then we show the classification of
different management schemes that use these knobs to balance the dis-
sipated heat in the target architecture. Finally, we summarize our work
in this survey in the conclusion.
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