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Abstract

Electric circuits and river networks share similarities in both their net-
work structure and derivation from conservation principals. However,
the disciplines have evolved separately and developed methods and
models. This paper presents the foundations for network analysis for
both disciplines and shows how numerical methods developed for cir-
cuit simulations can significantly improve river network models. The
equations, models, and jargon are described, providing a reference for
future studies to transfer knowledge across disciplinary boundaries.

B. R. Hodges and F. Liu. Rivers and Electric Networks: Crossing Disciplines in
Modeling and Simulation. Foundations and TrendsR© in Electronic Design
Automation, vol. 8, no. 1, pp. 1–116, 2014.
DOI: 10.1561/1000000033.
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1
Introduction

1.1 Crossing disciplines is not always interdisciplinary

Interdisciplinary studies typically occur at the boundary between
closely related areas, for example VLSI(Very Large Scale Integration)
design meets at the boundaries of material science, electrical engineer-
ing, and computer science; similarly, water quality modeling depends on
chemistry, biology, and physical transport processes. The importance
of breaking through disciplinary isolation has been well-recognized for
the purpose of addressing such problems. Less recognized are the op-
portunities to apply established ideas from one discipline in another,
seemingly unrelated, discipline. Indeed, there is a significant challenge
here: how do you move ideas across a boundary when there is no prob-
lem at the boundary and no link between the disciplines? We might
call this the “cross-disciplinary” problem. In the present work we are
interested in river networks – at the largest scale covering continents
– that do not share any interdisciplinary boundaries with microscopic
electronic circuits in semiconductors. The only connection is that both
are network problems.

As opposed to interdisciplinary knowledge transfer, cross-
disciplinary transfer tends to be serendipitous rather than organized,

2
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1.1. Crossing disciplines is not always interdisciplinary 3

typically an unexpected result of curiosity. Indeed, unlike interdisci-
plinary studies, there do not appear to be any formal programs for
fostering cross-disciplinary knowledge transfer. It seems that “think-
ing outside the box” mostly means working at the boundaries of your
box, rather than stepping into another completely different box. Cross-
disciplinary transfer can also be a one-way affair; i.e. the methods/ideas
from one discipline may provide immediate improvement or advance-
ment in another, but reverse transfers might be obscure or entirely
non-existent. From the authors’ experience there are three key chal-
lenges to crossing disciplines: (1) identifying the opportunities where
one discipline has advances that might be useful to another, (2) com-
municating across the jargon-laced literature of different disciplines,
and (3) clearly articulating and demonstrating the benefits and value
to broader research communities.

To date, our efforts in crossing disciplines have been one-way: using
insights from electric circuits to improve river models. Because of non-
linear complexities in governing equations, the development path for
river modeling diverged from that of electric circuit modeling. In river
modeling, approximations were made to fit computer and numerical ca-
pabilities in the 1970s and 1980s and were never significantly revisited
– despite increasing computer power and improved numerical meth-
ods. Numerical methods developed in the 1990s and 2000s to solve
microchip circuit simulation problems in VLSI simply never reached
river network modelers. The underlying cause is likely the disparity in
commercial markets, which are limited for river models and give lit-
tle encouragement to investing in model updates; indeed, some of the
most commonly used models are built on numerical frameworks de-
veloped in government-funded projects in the 1970s. Remedying these
problems was the focus of [52], which provided a cross-disciplinary ex-
perience that inspired the present paper. Although we are writing from
the foundations of our electric-to-river experience, it is hoped we might
inspire future synergies that cross boundaries back in the other direc-
tion.

This paper provides the foundations for communication between
electrical and hydraulic engineers/scientists who work on network prob-
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4 Introduction

lems. The audience is intended to be from both disciplines, so we en-
deavor to explain the physics of both systems and draw out their sim-
ilarities and differences. In the process, we present an example of how
numerical methods from microchip circuit analysis have been used in
modeling a river network to a level of detail that previously was not
possible. We are not attempting to provide a rigorous survey of all the
work in these two areas as the background literature is simply too vast;
the citations herein should be considered examples rather than exhaus-
tive. Indeed, our focus is on putting forward what are mostly textbook
ideas in a format that is accessible across boundaries.

Our introduction begins with an overview of the key similarities and
differences between rivers and electric circuits (§1.2 – 1.4), which intro-
duces the reader to the jargon and relationships between disciplines.
Interestingly, because today’s general physics curriculum typically in-
troduces electric circuits but not open-channel flow, hydraulic engineers
might have a better foundation in electrical jargon than vice-versa. Un-
fortunately, a major impediment to quickly understanding hydraulics is
that the jargon is rooted in history. Because civil engineering projects
are long-lived and costly the discipline is slow to change; there are cu-
riosities in the jargon and equations that must be accepted simply as
echoes of history. With this problem in mind, we provide a short intro-
duction on how river hydraulics developed (§1.5), which will help the
electrical engineering reader understand not just what the hydraulic
equation are, but why they take their peculiar forms.

In keeping with our goal of introducing the disciplines across bound-
aries, beyond this introduction the reader will find a brief review of
electric theory (Chapter 2), which is intended as both a primer for hy-
draulic engineers and to provide analogies between circuits and rivers
to guide electrical engineers through the in-depth discussion of the gov-
erning equations for river flow in a single channel (Chapter 3) and the
peculiarities of river networks (Chapter 4). These sections on theory
are followed by a discussion of numerical approaches that have been
applied crossing disciplines (Chapter 5). We close with some final
thoughts on the similarities and contrasts between these disciplines,
and possible areas for future work (Chapter 6).

Full text available at: http://dx.doi.org/10.1561/1000000033



1.2. Networks 5

1.2 Networks

The common feature of large-scale river networks, e.g. Fig. 1.1, and
VLSI networks, e.g. Fig. 1.2, is the complexity of their interconnec-
tions. At the most basic level, river networks can be treated as directed
acyclic graphs (DAG) connecting tributary junctions with differential
equations representing the evolution of water surface elevation and flow
rate. River systems are inherently acyclic because water must flow
downhill; i.e. without a pump it is impossible for water to return to
an uphill point to form a cyclic graph. In contrast, the network struc-
ture for a VLSI can include cyclic connections. Furthermore, rivers
are mostly simple tree structures as upstream tributary branches join
to downstream main-stem channels in the classic root-branch pattern
(Fig. 1.1). However, important exceptions occur – particularly where
water flows around a mid-channel island (Figs. 1.3, 1.4), where man-
made canals create acyclic paths (Fig. 1.5), or the distributaries where
a river debouches into the ocean in a network of channels that branch
and join through a complex maze of marshes (Fig. 1.6).

Figure 1.1: Amazon River basin. URL:
http://daac.ornl.gov/LBA/guides/CD06_CAMREX.html
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6 Introduction

Figure 1.2: Connection network of a VLSI chip. URL:
http://vlsicad.eecs.umich.edu/BK/FGR/. Reproduced with permission

Figure 1.3: Charley River at Yukon showing mid-channel islands (Photo by
USGS) URL: http://ak.water.usgs.gov/yukon/index.php
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1.2. Networks 7

Figure 1.4: Niagara River and Grand Island from Lake Erie (south) to Niagara
Falls (USA/Canada) illustrating river split and rejoining. GoogleEarth, image
c©USGS and DigitalGlobe
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8 Introduction

Figure 1.5: Atchafalaya River and canals near Morgan City (Louisiana, USA).
GoogleEarth, image c©TerraMetrics

Figure 1.6: Wax Lake Delta (Louisiana, USA). GoogleEarth, image
c©TerraMetrics
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1.3. Notation 9

1.3 Notation

Cross-disciplinary research in any area is particularly challenging due
to the difference in jargon and notation. To facilitate the readers from
diverse backgrounds, Table 1.1 provides some of the common variables
in river hydraulics, and Table 1.2 provides the same for electric circuits.

Symbol Meaning Units
β velocity non-uniformity coefficient –
η free surface elevation m
ρ density kg/m3

ν kinematic viscosity m2/s
σ cross-section breadth m2/s
a wetted cross-sectional area m2

g gravity m/s2

h depth m
L length m
n Manning’s n see §1.5.2
p pressure Pa
P time-averaged pressure Pa
q inflow rate per unit length m2/s
Q volume flow rate m3/s
Rh hydraulic radius m
S water surface slope –
Sf friction slope –
S0 slope of channel bottom –
u flow velocity m/s
U time-averaged flow velocity m/s
z vertical elevation –

Table 1.1: Common variables in river hydraulics

Full text available at: http://dx.doi.org/10.1561/1000000033



10 Introduction

Symbol Meaning Unit
G conductance siemens (S)
I electric current ampere (A)
L inductance henry (H)
R resistance ohm (Ω)
Q electric charge coulomb (C)
V voltage volt (V)
σ conductivity S ·m−1

Table 1.2: Common variables in electric circuits

1.4 Rivers and electric circuits

River networks develop because water flows downhill; more precisely,
the potential energy difference between higher and lower elevations
causes water to seek a lower energy state. The elevation gradients of
a river bed give rise to hydrostatic pressure differences that are effec-
tively the voltages driving the river current. However as the landscape
elevations cannot be reversed in the same way as an electric potential,
a river flow is (for the most part) a unidirectional process, which makes
river networks topologically simpler than electric circuits. With a clear
path in an open channel, water seeks the lower potential energy state
at a flow rate balancing the driving pressure gradient against frictional
resistance. Dynamic river network models represent the flow rate and
water surface elevation as functions of space and time.

The fundamental analogy for our work is that the water flow rate
Q, in m2s−1, is similar to electric current (I); the local water sur-
face gradient ∂η/∂x, provides a driving pressure gradient similar to a
voltage between two terminals V ; and water flow, like charge flow, is
moderated by resistance. To illustrate this point, consider a simple re-
sistive conductor versus a simple river channel, as shown in Fig. 1.7.
For this conceptual model, the current (I) is caused by the voltage
(or potential difference in the electric field) between two terminals of
the conductor and is moderated by the resistance (R) in Ohm’s law as

Full text available at: http://dx.doi.org/10.1561/1000000033



1.4. Rivers and electric circuits 11

I = V/R. Similarly, for the river channel the water flow is caused
by the potential difference in earth’s gravitational field associated with
the different water elevations (∆η), and moderated by frictional resis-
tance R. This idea can be written as an idealized energy law in the
form Q2 = g∆η/R, where g is gravitational acceleration.

Except in the superconductivity state, all conductors have resis-
tivity. The resistance to charge flow (or its inverse, conductance) is
a function of the cross-section area, material, and the element length.
Similarly, the water flow resistance of some section of river channel de-
pends on its physical characteristics: the cross-section area, the length
of “wetted” perimeter where water contacts the river bed, the material
of the river bed (e.g. sand, gravel, or boulders), the turbulence in the
flow, and how all these physical characteristics change over the length.

I
Q

Figure 1.7: Current flow in an ideal resistor with rectangular cross section versus
water flow in a rectangular channel

This simplistic river-circuit analogy is useful for an intuitive un-
derstanding of relationships between the disciplines. However, for
quantitative analysis of more realistic problems, we must face several
confounding factors. Firstly, unlike electrons, water has significant mass
and therefore inertia. Inertia provides flow “memory,” such that the
recent past affects the near future flow evolution. As a result, simple
models using proportional and instantaneous response to changing con-
ditions (which are common in electric circuits) are poor representations
of flow physics. Inertia is governed by Newton’s second law,

∑
F = ma,

so sudden introduction of an adverse pressure gradient (the equivalent
of reversing V ) requires time and distance to slow, stop and reverse
the flow. The equivalent behavior in an electric circuit requires a
component in which ∂I/∂t = f(I, V ), where f may be a nonlinear in
the independent variables. To the first order, this behavior is similar

Full text available at: http://dx.doi.org/10.1561/1000000033



12 Introduction

to an inductive element in a circuit, albeit more complicated since the
underlying function can be nonlinear. This topic is discussed more fully
in §2.4.

A second confounding factor is the complicated relationship be-
tween the water surface elevation and the driving pressure gradient
in a river. To the first order, the pressure gradient is proportional
to the gradient of the water surface elevation, i.e. ∂η/∂x, where η is
the vertical distance of the water surface from a z = 0 baseline. To
make another river-circuit analogy, we can imagine a circuit where
a local voltage V is generated as a gradient of some auxiliary variable
(η), which is itself a function of current I and another auxiliary vari-
able representing effects of the conductor’s geometry (Γ). As another
layer of complication, a change in water elevation will change a river’s
cross-sectional area, so to continue the analogy we imagine an elec-
tric conductor that also changes geometry Γ as a function of auxiliary
variable η.

A third confounding factor is the relationship between resistance
and flow in a river. The frictional resistance of a river is a strong func-
tion of both flow rate and geometry, whereas resistance in an electric
conductor is strongly affected by geometry but only weakly affected
by current – the latter typically through changes in material tempera-
ture when carrying large currents. Therefore, our river-circuit analogy
requires a resistance R that is a function of both I and Γ.

To summarize, an electric circuit that has functional dependencies
analogous to a river requires:

Γ = f1 (η) (1.1)
V = f2 (η, I,Γ) (1.2)
R = f3 (I,Γ) (1.3)
I = f4 (V,R,Γ) (1.4)

where V , R, and I are the traditional electric circuit variables, Γ is
geometry, and η is an auxiliary function that couples geometry and
potential. For rivers, the equivalent functions are typically nonlinear
and require empirical coefficients that vary in different rivers – and
often vary in different reaches of a single river. In contrast, simple

Full text available at: http://dx.doi.org/10.1561/1000000033



1.4. Rivers and electric circuits 13

electric circuit relationships typically follow:

I = V

R
(1.5)

R = f (Γ) (1.6)
Γ = constant. (1.7)

where empirical coefficients are generally associated with material prop-
erties. Thus, key differences between electric circuits and river networks
are in the complicated nonlinearities and dependencies between flow,
the driving potential, and geometry associated with rivers.

The above analogy glosses over the central problem of fluid me-
chanics: uncertainties associated with turbulence. The functional de-
pendence of turbulence on both flow rate and geometry adds empirical
complexity to quantifying frictional losses (i.e. the R in an analogous
electric circuit). In a river, the resistance depends on both the shape of
the channel and the bed material in contact with the flow. Typically, we
have incomplete data on both river geometry and bed material, which
makes it difficult to parameterize flow resistance. Detailed bathymetric
surveys are expensive and, to date, the only remote sensing technique
that can directly measure river geometry is blue-green lidar, which re-
quires clear water for effectiveness [40]. Furthermore, river channels are
continually undergoing both erosion and aggradation, so even a perfect
survey has only ephemeral validity. From satellite photogrammetry it
is possible to define river widths and monitor water level changes with
time [2, 31], but routinely quantifying the shape and composition of
the channel bottom for a continental-scale network of more than 106

km of river requires surveying resources that are simply beyond prac-
tical capabilities. Surprisingly, lack of adequate data is also a problem
in semiconductor circuits, where the average width of the conducting
wires is less one micrometer (10−6 m). However, this particular issue is
partially addressed by macromodeling in electric circuit analysis, which
we revisit in §2.6.

In summary, river networks are topologically simpler than electric
circuit networks, but are governed by coupled nonlinear equations that
are more complicated than the simplest electrical relationships. How-
ever, the more sophisticated devices that are common in semiconductor
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14 Introduction

circuitry allow a more complete, albeit more complicated, analogy be-
tween systems (see Chapter 2).

1.5 The development of river hydraulics

1.5.1 A brief history

Organized hydraulics can be traced back to the digging of irrigation
channels in pre-historic Mesopotamia. As cities grew throughout the
ancient world, the need for effective water supply, sanitation, and trans-
portation resulted in dominant cities appearing on major rivers. For
millennia, hydraulics principally advanced through slow accumulation
of empirical knowledge, whose apex is arguably seen in the viaducts
of the Roman Empire. An engineer from that era would have been
unsurprised by the hydraulics of medieval Europe. This slow advance
changed in the 18th century with the widespread dissemination of the
calculus along with theoretical and experimental advances in fluid me-
chanics. A short history of the foundations of modern hydraulics from
this era can be found in [24], from which we will extract some high
points to provide context for some of the curious equation forms that
are still used in river engineering.

Arguably, modern hydraulics begins with Antoine Chézy (1718-
1798) and Pierre-Georges-Louis du Buat, who observed a relationship
between flow velocity (u) and the channel slope (S) now known as the
Chézy equation: u = C

√
Sa/Pw, where a is the cross-sectional area,

Pw is the wetted perimeter of the channel (i.e. where water contacts
the bed, see Fig. 1.8.), and C is an empirical coefficient that varies in
different rivers, now known as the Chézy coefficient. Note that the C is
a “conveyance” coefficient in that increasing values result in increasing
velocity (and hence flow rate for a given a). Most modern hydraulic
equations use a “roughness” coefficient – essentially an inversion of C
– such that increasing values cause decreasing flow rates. Roughness
and conveyance are similar to inverse concepts of resistivity and con-
ductivity in electric circuits. In later notation, the “hydraulic radius”
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1.5. The development of river hydraulics 15

(Rh) was introduced into the Chézy equation as

Rh ≡
a

Pw
(1.8)

so u = C
√
RhS. Although the 18th century Chézy equation is rarely

used today, the hydraulic radius is still encountered as a key geometry
definition in many 20th and 21st century hydraulic models.

fr
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Figure 1.8: Illustrative example of a trapezoidal cross section, as often used by
hydraulic engineers in viaducts for water transport. A natural river cross section is
much more complicated.

In the 19th and early 20th centuries, the Chézy approach was mod-
ified and eventually supplanted by Manning’s equation (§1.5.2) for
steady flow, while on a separate path Newton’s equations of motion
were developed into the three-dimensional (3D) Navier-Stokes equa-
tions (§3.2) and the 1D Saint-Venant equations (§1.5.3).

1.5.2 Chezy-Manning equation

In the mid 1800s, experimentalists Darcy and Bazin provided data
from which Phillippe Gauckler (1826-1905) observed that Chézy’s C
could be further refined by using u = αR

2/3
h S1/2 for S > 7 × 10−4 or

u = βR
3/4
h S for S < 7 × 10−4; where α, β are empirical coefficients.

Gauckler put forward his formula in 1868 [33], but his place in history
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was supplanted by Robert Manning, who published a more widely-read
version of a similar equation in 1889 that usually bears his name. This
formula is now generally written as

u = 1
n
R

2/3
h S1/2 (1.9)

where n has a reciprocal relationship with Chézy’s C and Gauckler’s
[α, β]. Commonly known as “Manning’s n” in the English-speaking
world, this coefficient is also misnamed: n was not in the original for-
mula of Manning, but became a common adaptation to match the
roughness n proposed by Wilhelm R. Kutter [24]. In the U.S. eq. (1.9)
is often called the Chézy-Manning equation to acknowledge the contri-
bution of Chézy in the 1/2 power relationship with the channel slope.
In Europe the equation is known as Manning-Strickler or Gauckler-
Manning-Strickler to acknowledge Albert Strickler, whose early 20th
century work provided a rigorous approach to quantifying roughness
[70].

Note that eq. (1.9) implies that n has units of TL−1/3, so that a
common non-dimensional reformulation is to replace n−1 with Kn−1,
so that n can be considered non-dimensional. The coefficient K takes
on a value of unity for [m, s] and K = 1.486 for units of [ft, s]. The K
form is not consistently used in the literature, but implicitly hydraulic
engineers treat n as non-dimensional and use either 1.486/n or 1/n
along with consistent units for u and Rh. Because n is generally not
known with great precision, K = 1.49 or K = 1.5 are often seen for
[ft, s] units.

In river modeling, Manning’s equation is typically written in terms
of the cross-section integrated volumetric flow rate, Q with units of
m3s−1 or ft3s−1. Treating the u in eq. (1.9) as the average velocity,
the flow rate for cross-sectional area of a is given by Q = ua so that

Q = 1
n
aR

2/3
h S1/2 (1.10)

The above provides a simple approach for quantifying steady flow in
rivers that are either “uniform” or “gradually varying” in space. In
hydraulics jargon, a uniform flow does not have spatial gradients in
geometry, S, or n, whereas a gradually-varying flow allows weak gra-
dients of independent variables. Where sharp spatial changes in any
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variable occur, Manning’s equation is invalid and the flow is considered
“rapidly varying.” The use of “gradually” and “rapidly” to describe spa-
tial gradients rather than temporal gradients is an unfortunate legacy
in hydraulic engineering jargon that can only be defended by resorting
to a Lagrangian viewpoint: when following a particle in a gradually-
or rapidly-varying flow the observed temporal changes will indeed be
either gradual or rapid, respectively.

Strictly speaking, the slope S in the Chézy and Manning equations
is the channel bottom slope, which is typically designated as S0. If a
long section of river is spatially uniform in both S0 and channel ge-
ometry, then for steady flow (constant in time) the water surface slope
will be exactly parallel to the channel bottom implying an identical
slope. Such flows are said to be uniform and the “normal” flow (§4.3)
will approximately satisfy eq. (1.10) using S0. A more general form
of Manning’s equation uses the “friction slope,” Sf for S. The friction
slope is defined in §4.5 and discussed in more detail in §3.8, but for now
we simply note that Manning’s equation with Sf is generally valid for
any quasi-steady gradually-varying flow, which has made it a common
model equation to relate Q to frictional losses, even when modeling
river physics with more complex unsteady-flow equations.

1.5.3 Saint-Venant’s equation

The approximations used in Manning’s equation are degraded when
encountering time-varying flow rates or spatial gradients of the water
surface slope, river geometry, or channel bed roughness. Alexandre de
Saint-Venant derived more general differential conservation equations
for mass and momentum [19], which may be written for a uniform
density fluid as

∂a

∂t
+ ∂

∂x
(au) = 0 (1.11)

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x
− 1
Rh

f (1.12)

where g is gravity, η is the local elevation of the fluid free surface, f is a
dimensional model of frictional losses, x is an along-channel coordinate
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that increases going downstream, and Rh is the “hydraulic radius,” of
eq. (1.8).

The Saint-Venant equations did not become a practical tool for river
analysis until the advent of digital computers (e.g. [62]). However, com-
puters were not a panacea: the Saint-Venant equations are difficult to
solve for a natural river due to nonlinear relationships between η and a,
as well as f being cast typically as a nonlinear function of u, Rh, and n.
More than a half century of literature is replete with simplifications of
the Saint-Venant equations, typically falling into the categories of “dif-
fusive wave” or “kinematic wave” approximations [28]. These approx-
imate models have some advantages in simplicity, numerical stability,
and amenity to calibration. Although such models are likely to remain
in practical engineering use for the near future, it seems likely that in-
creases in computational power and data availability will render them
obsolete. The Saint-Venant equations are the fundamental equations
for river network analysis and are discussed in detail in §3.7.

1.6 Summary

In the same way that electric circuits have their idealized equations
such as Ohm’s law, I = V/R, hydraulics has a suite of equations
with varying levels of idealization. These were developed over the past
250 years by numerous scientists and engineers, but only some are
commonly remembered in equation names: Chézy, Manning, and Saint-
Venant. The key complicating factor for river hydraulics is the nonlinear
relationship between the free-surface slope, i.e. ∂η/∂x in eq. (1.12), and
the flow velocity. This relationship is further strained by the difficulty
in accurately estimating the river geometry and bed composition, which
affects flow resistance and has a nonlinear feedback into flow rates and
free-surface gradients.
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