
Rigorous System Design

Full text available at: http://dx.doi.org/10.1561/1000000034



Rigorous System Design

Joseph Sifakis

EPFL
Switzerland

Joseph.Sifakis@epfl.ch

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1000000034



Foundations and Trends R© in
Electronic Design Automation

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is J. Sifakis, Rigorous System Design,

Foundations and Trends R© in Electronic Design Automation, vol 6, no 4, pp 293–362,
2012

ISBN: 978-1-60198-660-3
c© 2013 J. Sifakis

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000034



Foundations and Trends R© in
Electronic Design Automation

Volume 6 Issue 4, 2012

Editorial Board

Editor-in-Chief:

Radu Marculescu

Dept. of Electrical & Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Editors

Robert K. Brayton (UC Berkeley)

Raul Camposano (Nimbic)

K.T. Tim Cheng (UC Santa Barbara)

Jason Cong (UCLA)

Masahiro Fujita (University of Tokyo)

Georges Gielen (KU Leuven)

Tom Henzinger (IST Austria)

Andrew Kahng (UC San Diego)

Andreas Kuehlmann (Coverity)

Sharad Malik (Princeton)

Ralph Otten (TU Eindhoven)

Joel Phillips (Cadence Berkeley Labs)

Jonathan Rose (University of Toronto)

Rob Rutenbar (UIUC)

Alberto Sangiovanni-Vincentelli (UC Berkeley)

Leon Stok (IBM Research)

Full text available at: http://dx.doi.org/10.1561/1000000034



Editorial Scope

Foundations and Trends R© in Electronic Design Automation

will publish survey and tutorial articles in the following topics:

• System Level Design

• Behavioral Synthesis

• Logic Design

• Verification

• Test

• Physical Design

• Circuit Level Design

• Reconfigurable Systems

• Analog Design

Information for Librarians
Foundations and Trends R© in Electronic Design Automation, 2012, Volume 6,

4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also

available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000034



Foundations and Trends R© in
Electronic Design Automation

Vol. 6, No. 4 (2012) 293–362
c© 2013 J. Sifakis

DOI: 10.1561/1000000034

Rigorous System Design

Joseph Sifakis

RiSD Laboratory, EPFL, Lausanne, Switzerland, Joseph.Sifakis@epfl.ch

Abstract

The monograph advocates rigorous system design as a coherent and

accountable model-based process leading from requirements to correct

implementations. It presents the current state of the art in system

design, discusses its limitations, and identifies possible avenues for over-

coming them.

A rigorous system design flow is defined as a formal account-

able and iterative process composed of steps, and based on four

principles: (1) separation of concerns; (2) component-based construc-

tion; (3) semantic coherency; and (4) correctness-by-construction. The

combined application of these principles allows the definition of a

methodology clearly identifying where human intervention and inge-

nuity are needed to resolve design choices, as well as activities that

can be supported by tools to automate tedious and error-prone tasks.

An implementable system model is progressively derived by source-to-

source automated transformations in a single host component-based

language rooted in well-defined semantics. Using a single modeling lan-

guage throughout the design flow enforces semantic coherency. Correct-

by-construction techniques allow well-known limitations of a posteriori

verification to be overcome and ensure accountability. It is possible to

Full text available at: http://dx.doi.org/10.1561/1000000034



explain, at each design step, which among the requirements are satis-

fied and which may not be satisfied.

The presented view for rigorous system design has been amply

implemented in the BIP (Behavior, Interaction, Priority) component

framework and substantiated by numerous experimental results show-

ing both its relevance and feasibility.

The monograph concludes with a discussion advocating a system-

centric vision for computing, identifying possible links with other

disciplines, and emphasizing centrality of system design.

Full text available at: http://dx.doi.org/10.1561/1000000034



Contents

1 Introduction 1

1.1 About Design 1

1.2 System Design 4

2 From Programs to Systems —

Significant Differences 11

3 Achieving Correctness 13

3.1 Correctness versus Design Productivity 13

3.2 Trustworthiness Requirements 14

3.3 Optimization Requirements 15

3.4 Levels of Criticality 17

4 Existing Approaches and the State of the Art 19

4.1 System Development Methodologies 19

4.2 Rigorous Design Techniques 21

4.3 The Limits of Correctness-by-Checking for Systems 23

4.4 The Integration Wall — Mixed-Criticality Systems 26

5 Four Principles for Rigorous System Design 31

5.1 Rigorous System Design 31

5.2 Separation of Concerns 32

ix

Full text available at: http://dx.doi.org/10.1561/1000000034



5.3 Component-Based Design 36

5.4 Semantically Coherent Design 40

5.5 Correct-by-Construction Design 44

5.6 Putting Rigorous System Design into Practice in BIP 53

6 A System-Centric Vision for Computing 59

6.1 Linking Computing to Other Disciplines 60

6.2 Rigorous Design versus Controlled Experiments 63

6.3 The Limits of Understanding and Mastering

the Cyber-world 64

6.4 The Quest for Mathematically Tractable and

Practically Relevant Theory 66

Acknowledgments 69

References 71

Full text available at: http://dx.doi.org/10.1561/1000000034



1

Introduction

1.1 About Design

Design is the process that leads to an artifact meeting given require-

ments. These comprise functional requirements describing the func-

tionality provided by the system and extra-functional requirements

dealing with the way in which resources are used for implementation

and throughout the artifact’s lifecycle.

Design is a universal concept, a par excellence intellectual activity

linking the immaterial world of concepts to the physical world. It is

an essential area of human experience, expertise, and knowledge which

deals with our ability to mold our environment so as to satisfy material

and spiritual needs. The built world is the result of the accumulation

of artifacts designed by humans.

Design has at least two different connotations in different fields and

contexts. It may be simply a plan or a pattern for assembling objects

in order to build a given artifact. It also may refer to the creative

process for devising plans or patterns. In this monograph we adopt the

latter denotation with a focus on the formalization and analysis of the

process.

1

Full text available at: http://dx.doi.org/10.1561/1000000034



2 Introduction

Design can be decomposed into two phases. The first is procedural-

ization, leading from requirements to a procedure (executable descrip-

tion) prescribing how the anticipated functionality can be realized by

executing sequences of elementary functions. The second is material-

ization leading from a procedure to an artifact meeting the require-

ments (Figure 1.1). A main concern is how to meet extra-functional

requirements by using available resources cost-effectively.

Design is an essential component of any engineering activity. It

covers multiple disciplines including electrical, mechanical, thermal,

civil, architectural, and computing systems engineering. Design pro-

cesses should meet two often antagonistic demands: (1) productivity to

ensure cost-effectiveness; (2) correctness which is essential for accep-

tance of the designed artifacts, especially when they involve public

safety and security.

Design is a “problem-solving process”. As a rule, requirements are

declarative. They are usually expressed in natural languages. For some

application areas, they can be formalized by using logics. When require-

ments are expressed by logical specifications, proceduralization can be

considered as a synthesis problem: procedures are executable models

meeting the specifications. Model synthesis from logical requirements

often runs into serious technical limitations such as non-computability

or intrinsically high complexity. For all these reasons, in many areas

of engineering, design remains to a large extent an empirical activity

relying on the experience and expertise of engineering teams. New com-

plex products are seldom designed from scratch. Their designs follow

principles and reuse solutions that have proven their worth. Even if

some segments of the design process are fully automated by using tools

(e.g., CAD tools), there exist gaps that can be bridged only by creative

thinking and insightful analysis.

Design formalization raises a multitude of deep theoretical prob-

lems related to the conceptualization of needs in a given area and their

effective transformation into correct artifacts. So far, it has attracted

little attention from scientific communities and is often relegated to

second-class status. This can be explained by several reasons. One is

the predilection of the academic world for simple and elegant theories.

Another is that design is by nature multidisciplinary. Its formalization

Full text available at: http://dx.doi.org/10.1561/1000000034



1.1 About Design 3

F
ig

.
1
.1

D
es

ig
n

is
a

u
n

iv
er

sa
l

co
n

ce
p

t
a
p

p
li
ca

b
le

fr
o
m

co
o
k
in

g
to

co
m

p
u

ti
n

g
sy

st
em

s.

Full text available at: http://dx.doi.org/10.1561/1000000034



4 Introduction

requires consistent integration of heterogeneous system models sup-

porting different levels of abstraction including logics, algorithms and

programs as well as physical system models.

1.2 System Design

The monograph deals with the formalization of the design of mixed

hardware/software systems. As a rule, these are interactive systems

continuously interacting with an external environment. Their behavior

is driven by stimuli from the environment, which, in turn, is affected

by their outputs. They drastically differ from function systems which

compute an action on an input, producing an output some time later,

and stopping. Interaction systems can receive new inputs and produce

new outputs while they are already in operation. They are expected to

operate continuously.

Interactive systems are inherently complex and hard to design due

to unpredictable and subtle interactions with the environment, emer-

gent behaviors, and occasional catastrophic cascading failures, rather

than to complex data and algorithms. Compared to function software,

their complexity is aggravated by additional factors such as concurrent

execution, uncertainty resulting from interaction with unpredictable

environments, heterogeneity of interaction between hardware and soft-

ware, and non-robustness (small variations in a certain part of the

system can have large effects on overall system behavior). Henceforth,

the term “system” stands for interactive system.

In system design, proceduralization leads to an application soft-

ware meeting the functional requirements. Materialization consists in

building an implementation from application software and models of

its execution platforms. As program synthesis is intractable, writing

trustworthy application software requires a good deal of creativity and

skills. Materialization also requires a deep understanding of how the

application software interacts with the underlying hardware and, in

particular, how dynamic properties of its execution are determined by

the available physical resources.

The monograph advocates rigorous system design as a coherent and

accountable process aimed at building systems of guaranteed quality

Full text available at: http://dx.doi.org/10.1561/1000000034



1.2 System Design 5

cost-effectively. We need to move away from empirical approaches to

a well-founded discipline. System design should be studied as a for-

mal systematic process supported by a methodology. The latter should

be based on divide-and-conquer strategies consisting of a set of steps

leading from requirements to an implementation. At each step, a partic-

ular humanly tractable problem must be solved by addressing specific

classes of requirements. The methodology should clearly identify seg-

ments of the design process that can be supported by tools to automate

tedious and error-prone tasks. It should also clearly distinguish points

where human intervention and ingenuity are needed to resolve design

choices through requirements analysis and confrontation with experi-

mental results. Identifying adequate design parameters and channeling

the designers’ creativity are essential for achieving design goals.

The design methodology should take into consideration theoretical

obstacles as well as the limitations of the present state of the art. It

should propose strategies for overcoming as many of the obstacles as

possible. The identified theoretical obstacles are the following:

Requirements formalization: Despite progress in formalizing require-

ments over the past decades (e.g., by using temporal logics), we still

lack theoretical tools for the disciplined specification of extra-functional

requirements.

For instance, security and privacy requirements should take into

account human behavior which is mostly unpredictable and hardly

amenable to formalization. Exhaustive and precise specification of

system security threats depends on our ability to figure out all pos-

sible attack strategies of intruders. Similarly, for privacy violation we

need theory for predicting how global personal data can be inferred by

combining and interpreting partial data.

Another difficulty is linking user-defined requirements to concrete

properties satisfied by the system. This is essential for checking system

correctness. The simple requirement that “when an elevator cabin is

moving all doors should be closed” may be implied by a mutual exclu-

sion property at system level. To prove formally such an implication,

requirements should be analyzed to relate system states to stimuli pro-

vided by user interfaces.

Full text available at: http://dx.doi.org/10.1561/1000000034



6 Introduction

Intractability of synthesis/verification: Designers need automated tech-

niques either to synthesize programs from abstract specifications or

to verify derived models against requirements. Both problems do not

admit exact algorithmic solutions for infinite state systems.

Hardware–Software interaction: We currently have no theory for

predicting precisely the behavior of some given software running on

a hardware platform with known characteristics. This difficulty lies in

the fundamental difference between hardware and software. Software

is immaterial. Software models ignore physical time and resources.

Hardware is subject to laws of physics. Its behavior is bound to timing

constraints, its resources are limited by their physical characteristics.

Program execution dynamics inherit hardware-dynamic properties.

These properties cannot be precisely characterized or estimated owing

to inherent uncertainty and the resulting unpredictability.

Despite these obstacles and limitations, it is important to study

design as a systematic process. As absolute correctness is not achiev-

able, we advocate accountability, that is, the possibility to assert which

among the requirements are satisfied and which may not be satisfied.

Accountability can be enhanced by using property-preservation results:

if some essential property holds at some design step then it should hold

in all subsequent steps. We present rigorous design as a process rooted

in four principles.

Separation of concerns: The separation between proceduralization and

materialization is crucial for taming complexity. It allows separation

of what functionality is provided by the system by focusing only on

functional requirements, from how this functionality is implemented by

using resources. Rigorous system design is a formally defined process

decomposed into steps. At each step the designer develops a model of

the system to be designed at some abstraction level. Within each step,

abstraction is progressively reduced by replacing conceptual constructs

and primitives by more concrete ones. The final model is a blueprint

for building the physical implementation.

Component-based construction: Components are essential for enhanced

productivity and correctness through reuse and architectures. In

contrast to many other engineering disciplines, computing systems

Full text available at: http://dx.doi.org/10.1561/1000000034



1.2 System Design 7

engineering lacks a component taxonomy and theory for component

composition. Electrical and mechanical engineering are based on the

use of a few component types. Electrical engineers build circuits from

elements of predictable behavior such as resistances, capacitances,

and inductances. System designers deal with a large variety of

heterogeneous components with different characteristics and unrelated

coordination principles: synchronous or asynchronous, object-based or

actor-based, and event-based or data-based. This seriously limits our

ability to ensure component interoperability in complex systems.

Semantic coherency : The lack of a framework for disciplined

component-based construction is reflected in the existence of a large

variety of languages used by designers. Application software may be

written in Domain-Specific Languages (DSL) or general purpose pro-

gramming languages. Specific languages may be used for modeling,

simulation, or performance analysis. These languages often lack well-

founded semantics and this is a main obstacle to establishing seman-

tic coherency of the overall design process. Frequently, validation and

performance analyses are carried out on models that cannot be rigor-

ously related to system development formalisms. This introduces gaps

in the design process which seriously lessen productivity and limit our

ability for ensuring correctness. To overcome these limitations, design-

ers should use languages rooted in well-founded semantics defined in a

common host language. This language should be expressive enough to

establish source-to-source translations between the hosted languages,

in particular for enhanced traceability of analysis results at different

abstraction levels.

Correctness-by-construction: Correctness-by-checking suffers from

well-known limitations. An alternative approach is achieving

correctness-by-construction. System designers extensively use algo-

rithms, architectures, patterns, and other principles for structuring

interaction between components so as to ensure given properties. These

can be described and proven correct in well-founded languages and

made available to system designers. A key issue is how to combine

existing solutions to partial problems and their properties in order to

solve design problems. For this we need theory and rules for building

Full text available at: http://dx.doi.org/10.1561/1000000034



8 Introduction

complex designs meeting a given requirement by composing properties

of simpler designs.

The monograph proposes a view for rigorous system design and

identifies the main obstacles and associated scientific challenges. This

view summarizes key ideas and principles of a research program pursued

for more than 10 years at Verimag. It has been amply implemented in

the BIP (Behavior, Interaction, Priority) component framework [30]

and substantiated by numerous experimental results showing both its

relevance and feasibility.

BIP consists of a language for component-based construction

and an associated suite of system design tools. The language allows

the modeling of composite, hierarchically structured systems from

atomic components characterized by their behavior and their interface.

Components are coordinated by layered application of interactions and

of priorities. Interactions express synchronization constraints between

actions of the composed components, while priorities are used to filter

amongst possible interactions and to steer system evolution so as to

meet performance requirements, e.g., to express scheduling policies.

Interactions are described in BIP as the combination of two types of

protocols: rendezvous, to express strong symmetric synchronization

and broadcast, to express triggered asymmetric synchronization. The

combination of interactions and priorities confers BIP expressiveness

not matched by any other existing formalism. It defines a clean and

abstract concept of architecture separate from behavior. Architecture

in BIP is a first-class concept with well-defined semantics that can

be analyzed and transformed. BIP relies on rigorous operational

semantics that has been implemented by specific run-time systems for

centralized, distributed, and real-time execution.

The monograph is structured as follows.

Section 2 presents significant differences between programs and sys-

tems. Section 3 discusses the concept of correctness characterized by

two types of hardly reconcilable requirements: trustworthiness and opti-

mization. Trustworthiness requirements capture qualitative correctness

while optimization requirements are constraints on resources. Their

interplay determines levels of criticality in system design. Section 4

presents existing approaches for system design and their limitations.

Full text available at: http://dx.doi.org/10.1561/1000000034



1.2 System Design 9

We discuss how existing rigorous design paradigms can be transposed

to system design. Section 5 discusses the four principles for rigorous

system design and their application in the BIP framework. Section 6

presents a system-centric vision for computing, discusses possible links

with other disciplines and emphasizes on centrality of system design.

Full text available at: http://dx.doi.org/10.1561/1000000034



References

[1] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based implementation of real-
time applications,” EMSOFT, pp. 229–238, 2010.

[2] K. J. Astrom and B. Wittenmark, Adaptive Control. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., 2nd ed., 1994.

[3] Beck, Kent; et al., Manifesto for Agile Software Development. Agile Alliance,
2001.

[4] S. Bensalem, M. Bozga, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan, “Incre-
mental component-based construction and verification using invariants,” in
FMCAD, pp. 257–256, Lugano, Switzerland, October 20–23 2010.

[5] S. Bliudze and J. Sifakis, “A Notion of Glue Expressiveness for Component-
Based Systems,” Lecturer Notes in Computer Science, vol. 5201, pp. 508–522,
2008.

[6] P. Bogdan and R. Marculescu, “Towards a science of cyber-physical systems
design,” Proceeding ICCPS ’11 Proceedings of the 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, pp. 99–108.

[7] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis, “From high-
level component-based models to distributed implementations,” EMSOFT,
pp. 209–218, 2010.

[8] P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, and K. Huang, “Rig-
orous system level modeling and analysis of mixed HW/SW systems,” MEM-
OCODE, pp. 11–20, 2011.

[9] M. Butler, M. Leuschel, S. L. Presti, and P. Turner, “The use of formal methods
in the analysis of trust (Position Paper),” Lecture Notes in Computer Science,
vol. 2995/2004, pp. 333–339, 2004.

71

Full text available at: http://dx.doi.org/10.1561/1000000034



72 References

[10] G. Buttazzo, Hard Real-Time Computing Systems, Predictable Scheduling Algo-
rithms and Applications. Real-Time Systems Series, Springer, vol. 24, 2001.

[11] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: Algorithmic
verification and debugging,” CACM, vol. 52, no. 11, November 2009.

[12] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke, “Breaking up is hard to do:
An evaluation of automated assume-guarantee reasoning,” ACM Transactions
on Software Engineering and Methodology, vol. 17, no. 2, 2008.

[13] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-physical
systems,” Proceedings of the IEEE (special issue on CPS), vol. 100, no. 1,
pp. 13–28, January 2012.

[14] D. Garlan, R. Monroe, and D. Wile, “Acme: An architecture description inter-
change language,” in Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 97), pp. 169–183, IBM
Press, 1997.

[15] D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger, “Turing
machines, transition systems, and interaction,” Information and Computation,
vol. 194, no. 2, pp. 101–128, November 2004.

[16] N. Halbwachs, Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Pub., 1993.

[17] T. Hannay, “The controlled experiment,” in This Will Make You Smarter,
(J. Brockman, ed.), Happer Perennial.

[18] D. Harel, A. Marron, and G. Weiss, “Behavioral programming,” Communica-
tions of the ACM, vol. 55, no. 7, July 2012.

[19] T. A. Henzinger and J. Sifakis, “The discipline of embedded systems design,”
COMPUTER, vol. 40, pp. 36–44, 2007.

[20] H. Hoos, “Programming by optimization,” Communications of the ACM,
vol. 55, no. 2, February 2012.

[21] International Council on Systems Engineering (INCOSE), Systems Engineering
Handbook Version 3.1. August 2007.

[22] H. Kopetz, “The rationale for time-triggered ethernet,” Proceedings of the 29th
IEEE Real-Time Systems Symposium.

[23] H. Kopetz, R. Obermaisser, C. E. Salloum, and B. Huber, “Automotive soft-
ware development for a multi-core system-on-a-chip,” Fourth International
Workshop on Software Engineering for Automotive Systems (SEAS’07), 2007.

[24] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 773–801, May 1995.

[25] J. Magee and J. Kramer, “Dynamic structure in software architectures,” in
Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT 96), pp. 3–14, ACM Press, 1996.

[26] S. Maoz, D. Harel, and A. Kleinbort, “A compiler for multimodal scenarios:
Transforming LSCs into AspectJ, September 2011,” Transactions on Software
Engineering and Methodology (TOSEM), vol. 20, no. 4.

[27] D. H. Mcknight and N. L. Chervany, “The meanings of trust,” Trust in Cyber-
Societies-LNAI, pp. 27–54, 2001.

[28] R. A. D. Millo, R. J. Lipton, and A. J. Perlis, “Social Processes and Proofs of
Theorems and Programs,” CACM, vol. 22, no. 5, May 1979.

Full text available at: http://dx.doi.org/10.1561/1000000034



References 73

[29] D. K. Mulligany and F. B. Schneider, “Doctrine for Cybersecurity,” Technical
Report, Cornell University, May 2011.

[30] Rigorous Design of Component-Based Systems — The BIP Component
Framework: http://www-verimag.imag.fr/Rigorous-Design-of-Component-
Based.html.

[31] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker, “A definition and classification of timing anomalies,” in Sixth Inter-
national Workshop on Worst-Case Execution Time (WCET) Analysis, Dres-
den, Germany, July 4 2006.

[32] J. Sifakis, “A framework for component-based construction,” in IEEE Inter-
national Conference on Software Engineering and Formal Methods (SEFM05),
pp. 293–300, Koblenz, September 7–9 2005.

[33] SOFTWARE 2015: A national software strategy to ensure U.S. security and
competitiveness report of the 2nd national software summit, April 29, 2005.

[34] R. J. van Glabbeek, “Ursula Goltz: Refinement of actions and equiva-
lence notions for concurrent systems,” Acta Information, vol. 37, no. 4/5,
pp. 229–327, 2001.

[35] J. van Leeuwen and J. Wiedermann, “The turing machine paradigm in
contemporary computing,” in Mathematics Unlimited — 2001 and Beyond,
(B. Enquist and W. Schmidt, eds.), LNCS, Springer-Verlag, 2000.

[36] D. A. Watt, B. A. Wichmann, and W. Findlay, “Ada: Language and Method-
ology,” 1987.

Full text available at: http://dx.doi.org/10.1561/1000000034


	Introduction
	About Design
	System Design

	From Programs to Systems --- Significant Differences
	Achieving Correctness
	Correctness versus Design Productivity
	Trustworthiness Requirements
	Optimization Requirements
	Levels of Criticality

	Existing Approaches and the State of the Art
	System Development Methodologies
	Rigorous Design Techniques
	The Limits of Correctness-by-Checking for Systems
	The Integration Wall --- Mixed-Criticality Systems

	Four Principles for Rigorous System Design
	Rigorous System Design
	Separation of Concerns
	Component-Based Design
	Semantically Coherent Design
	Correct-by-Construction Design
	Putting Rigorous System Design into Practice in BIP

	A System-Centric Vision for Computing
	Linking Computing to Other Disciplines
	Rigorous Design versus Controlled Experiments
	The Limits of Understanding and Mastering the Cyber-world
	The Quest for Mathematically Tractable and Practically Relevant Theory

	Acknowledgments
	References



