
Time-Predictable
Embedded Software on
Multi-Core Platforms:

Analysis and Optimization

Sudipta Chattopadhyay
Linköping University

Abhik Roychoudhury
National University of Singapore

Jakob Rosén
Linköping University

Petru Eles
Linköping University

Zebo Peng
Linköping University

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1000000037

Foundations and Trends R© in
Electronic Design Automation
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. Chattopadhyay, A. Roychoudhury, J. Rosén, P. Eles, Z. Peng. Time-Predictable
Embedded Software on Multi-Core Platforms:
Analysis and Optimization. Foundations and TrendsR© in Electronic Design
Automation, vol. 8, no. 4-3, pp. 199–356, 2014.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-60198-795-2
c© 2014 S. Chattopadhyay, A. Roychoudhury, J. Rosén, P. Eles, Z. Peng
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000037

Foundations and Trends R© in
Electronic Design Automation

Volume 8, Issue 4-3, 2014
Editorial Board

Editor-in-Chief

Radu Marculescu
Carnegie Mellon University
United States

Editors

Robert K. Brayton
UC Berkeley
Raul Camposano
Nimbic
K.T. Tim Cheng
UC Santa Barbara
Jason Cong
UCLA
Masahiro Fujita
University of Tokyo
Georges Gielen
KU Leuven
Tom Henzinger
Institute of Science and Technology
Austria
Andrew Kahng
UC San Diego

Andreas Kuehlmann
Coverity
Sharad Malik
Princeton University
Ralph Otten
TU Eindhoven
Joel Phillips
Cadence Berkeley Labs
Jonathan Rose
University of Toronto
Rob Rutenbar
University of Illinois
at Urbana-Champaign
Alberto Sangiovanni-Vincentelli
UC Berkeley
Leon Stok
IBM Research

Full text available at: http://dx.doi.org/10.1561/1000000037

Editorial Scope

Topics

Foundations and Trends R© in Electronic Design Automation publishes
survey and tutorial articles in the following topics:

• System level design

• Behavioral synthesis

• Logic design

• Verification

• Test

• Physical design

• Circuit level design

• Reconfigurable systems

• Analog design

• Embedded software and
parallel programming

• Multicore, GPU, FPGA, and
heterogeneous systems

• Distributed, networked
embedded systems

• Real-time and cyberphysical
systems

Information for Librarians

Foundations and Trends R© in Electronic Design Automation, 2014, Volume 8,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000037

Foundations and Trends R© in Electronic Design Automation

Vol. 8, No. 4-3 (2014) 199–356

c© 2014 S. Chattopadhyay, A. Roychoudhury, J. Rosén, P.

Eles, Z. Peng

DOI: 10.1561/1000000037

Time-Predictable Embedded Software on

Multi-Core Platforms:

Analysis and Optimization

Sudipta Chattopadhyay

Linköping University

sudipta.chattopadhyay@liu.se

Abhik Roychoudhury

National University of Singapore

abhik@comp.nus.edu.sg

Jakob Rosén

Linköping University

jakob.rosen@gmail.com

Petru Eles

Linköping University

petru.eles@liu.se

Zebo Peng

Linköping University

zebo.peng@liu.se

Full text available at: http://dx.doi.org/10.1561/1000000037

Contents

Abstract 1

1 Introduction 2

2 WCET analysis and multi-core platforms 6

2.1 A background on WCET analysis 6

2.2 Challenges in WCET analysis for multi-core architectures 16

3 WCET analysis for multi-core platforms 19

3.1 Modeling shared caches 20

3.2 Modeling shared buses 38

3.3 Modeling timing interactions 61

3.4 Discussion about analysis complexity 86

3.5 Experimental evaluation 89

3.6 Data caches and branch target buffers 103

3.7 A survey of related techniques 105

4 WCET optimization for multi-core platforms 107

4.1 Optimization of worst-case response time 107

4.2 WCRT optimization approach 108

4.3 Cost function . 110

4.4 Optimization algorithm 112

ii

Full text available at: http://dx.doi.org/10.1561/1000000037

iii

4.5 Simplified algorithm . 121

4.6 Memory consumption 122

4.7 Experimental results . 123

4.8 A survey of related techniques 129

5 Time-predictable multi-core architecture 132

5.1 Resource isolation . 132

5.2 Usage of software controlled memory 135

5.3 Extension of instruction set architecture (ISA) 138

6 Discussion and future work 140

6.1 Summary of recent development 140

6.2 Limitations imposed by current approaches 141

6.3 Other limitations . 142

6.4 Analysis pessimism . 143

6.5 Research challenges in future 144

7 Conclusions 148

Acknowledgements 149

References 150

Full text available at: http://dx.doi.org/10.1561/1000000037

Abstract

Multi-core architectures have recently gained popularity due to their high-

performance and low-power characteristics. Most of the modern desktop sys-

tems are now equipped with multi-core processors. Despite the wide-spread

adaptation of multi-core processors in desktop systems, using such proces-

sors in embedded systems still poses several challenges. Embedded systems

are often constrained by several extra-functional aspects, such as time. There-

fore, providing guarantees for time-predictable execution is one of the key re-

quirements for embedded system designers. Multi-core processors adversely

affect the time-predictability due to the presence of shared resources, such as

shared caches and shared buses. In this contribution, we shall first discuss the

challenges imposed by multi-core architectures in designing time-predictable

embedded systems. Subsequently, we shall describe, in details, a comprehen-

sive solution to guarantee time-predictable execution on multi-core platforms.

Besides, we shall also perform a discussion of different techniques to provide

an overview of the state-of-the-art solutions in this topic. Through this work,

we aim to provide a solid background on recent trends of research towards

achieving time-predictability on multi-cores. Besides, we also highlight the

limitations of the state-of-the-art and discuss future research opportunities

and challenges to accomplish time-predictable execution on multi-core plat-

forms.

S. Chattopadhyay, A. Roychoudhury, J. Rosén, P. Eles, Z. Peng. Time-Predictable Embedded

Software on Multi-Core Platforms:

Analysis and Optimization. Foundations and Trends R© in Electronic Design Automation,

vol. 8, no. 4-3, pp. 199–356, 2014.

DOI: 10.1561/1000000037.

Full text available at: http://dx.doi.org/10.1561/1000000037

1

Introduction

Real-time, embedded systems often need to satisfy several extra-functional

constraints, such as timing. In particular, for hard real-time systems, such

timing constraints are strictly enforced. Violation of these timing constraints

may have serious consequences, potentially costing human lives. Therefore,

static timing-analysis of hard real-time systems has emerged to be a critical

problem to solve.

In general, a real-time, embedded application is made of several compo-

nents, usually called tasks. Therefore, timing analysis of embedded software

is typically performed in two separate phases: (i) a low-level analysis which

derives the worst case execution time (WCET) and best case execution time

(BCET) of individual tasks, and (ii) a system-level schedulability analysis

which uses the WCET/BCET derived for each task and computes the overall

timing characteristics of the application. In this monograph, we shall primar-

ily focus our discussion on low-level WCET analysis.

WCET analysis of an embedded software is typically performed in three

stages: (i) a flow-analysis using the control flow graph (CFG) of the pro-

gram (to determine infeasible paths and loop bounds), (ii) micro-architectural

modeling (to determine the worst case execution time of each basic block

in the CFG) and (iii) a calculation phase which combines the outcome of

2

Full text available at: http://dx.doi.org/10.1561/1000000037

3

flow-analysis and micro-architectural modeling to derive the worst case ex-

ecution time (WCET) of the entire program. Micro-architectural modeling

systematically considers the timing effects of underlying processor features,

such as pipeline, caches, branch prediction and so on. For single-core pro-

cessors, such a micro-architectural modeling involves the analysis of a single

program occupying the processor. However, this criterion no longer holds

with multi-core processors. Since their inception, multi-core processors have

widely been adopted due to their high-performance and low-power character-

istics. Unfortunately, multi-core processors pose some significant challenges

in terms of time-predictability. Basically, these challenges arise due to the

presence of shared resources, such as shared caches and shared buses [5].

The presence of shared resources makes the WCET analysis significantly

more complex than the WCET analysis on single-core processors. In particu-

lar, micro-architectural modeling is affected due to the presence of inter-core

interferences, such as shared cache conflicts or bus contention. Through this

monograph, we primarily aim to highlight the recent advances to address such

challenges.

As mentioned in the preceding paragraph, shared resources are the key

bottlenecks to build time-predictable embedded software on multi-core plat-

forms. The content of a shared cache is modified by several programs running

in parallel on different cores. Therefore, the modeling of inter-core cache con-

flicts is important to estimate the shared-cache latency accurately. For bus-

based systems, shared buses introduce variable access latency to the shared

resources (e.g. shared caches and main memory). Such a variable access la-

tency highly depends on the bus contention, which in turn depends on the

amount of memory traffic generated by different cores. In this monograph,

we shall first describe an approach to model the timing behavior of shared

caches [21]. Such a modeling systematically combines abstract interpreta-

tion with state-of-the-art program-verification techniques (e.g. model check-

ing and symbolic execution). In particular, such an approach leverages both

the scalability offered by abstract interpretation and the accuracy offered by

program-verification methods to build a tight modeling of shared caches. We

then describe works on analyzing timing behavior for static bus-arbitration

policies, such as time division multiple access (TDMA). Even with static bus-

arbitration policies, an accurate analysis of shared-bus delay is complex. This

Full text available at: http://dx.doi.org/10.1561/1000000037

4 Introduction

is due to the reason that bus delay highly depends on the context, such as

individual loop iterations and procedure calls. In the worst-case, each loop

iteration may experience different bus delay. We describe works [69, 9, 22]

in this direction whose requirements range from full-fledged loop unrolling

to avoiding loop unrolling altogether, depending on the analysis accuracy.

Subsequently, we discuss the development of a full-fledged WCET anal-

ysis framework by combining the modeling of shared resources [18]. Such a

combination is non-trivial due to the possible presence of timing anomalies

[59]. In the presence of timing anomalies, a local worst-case (e.g. a cache miss

or maximum bus delay) may not lead to the overall WCET of a program. As a

result, it is unsound to model the timing behavior of each micro-architectural

component and get the overall timing behavior by a simple composition of in-

dividual timing models. This framework systematically models the timing in-

teraction of shared resources with the rest of the micro-architectural features

(e.g. pipeline, branch prediction) and it does not assume a timing-anomaly-

free architecture. The WCET analysis framework is built on top of Chronos

[52], a freely-available, open-source WCET analysis tool. We show the eval-

uation of this analysis framework via several experiments.

Besides modeling individual micro-architectural features in multi-core

processors, predictability of embedded software can also benefit from cus-

tomized compiler optimizations and time-predictable multi-core hardware.

In this direction, we discuss an optimization of bus schedules to improve

time-predictability. Specifically, we describe the generation of customized

bus schedules that may greatly improve the WCET of a program [69]. Fi-

nally, we discuss several designs of time-predictable hardware to reduce the

pessimism in the WCET analysis on multi-core platforms.

The main purpose of this monograph is to give the readers a thorough

background on time-predictability for multi-core platforms. Therefore, we

have also performed a discussion of research activities by several research

groups in this area. This discussion provides a comprehensive overview of

the state-of-the-art solutions in the respective topic. In particular, our dis-

cussion reveals that the area is fast evolving and there is an active interest

by real-time research groups on the topic discussed in this monograph. Fi-

nally, in the concluding section of this monograph, we have highlighted a

set of open challenges in achieving high-performance and time-predictable

Full text available at: http://dx.doi.org/10.1561/1000000037

5

embedded software on multi-core platforms. We hope that this monograph

will provide a foundation of building time-predictable software on multi-core

platforms and it will help the research community to address the existing

challenges in this area.

Full text available at: http://dx.doi.org/10.1561/1000000037

References

[1] aiT AbsInt. http://www.absint.com/ait.

[2] The KLEE Symbolic Virtual Machine. http://klee.llvm.org.

[3] Multi-Core Execution of Hard Real-Time Applications Supporting

Analysability. http://ginkgo.informatik.uni-augsburg.

de/merasa-web/.

[4] Time-predictable Multi-core Architecture for Embedded Systems. http://

www.t-crest.org/.

[5] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian Hahn,

Florian Haupenthal, Michael Jacobs, Amir H. Moin, Jan Reineke, Bernhard

Schommer, and Reinhard Wilhelm. Impact of resource sharing on performance

and performance prediction: A survey. In International Conference on Concur-

rency Theory, pages 25–43, 2013.

[6] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Cache related pre-

emption delay aware response time analysis for fixed priority pre-emptive sys-

tems. In Real-Time Systems Symposium, pages 261–271, 2011.

[7] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis: tight-

ening the CRPD bound for set-associative caches. In ACM SIGPLAN/SIGBED

conference on Languages, compilers, and tools for embedded systems, pages

153–162, 2010.

[8] Sidharta Andalam, Partha Roop, and Alain Girault. Predictable multithread-

ing of embedded applications using PRET-C. In International Conference on

Formal Methods and Models for Codesign, pages 159–168, 2010.

150

Full text available at: http://dx.doi.org/10.1561/1000000037

http://www.absint.com/ait
http://klee.llvm.org
http://ginkgo.informatik.uni-augsburg.de/merasa-web/
http://ginkgo.informatik.uni-augsburg.de/merasa-web/
http://www.t-crest.org/
http://www.t-crest.org/

References 151

[9] Alexandru Andrei, Petru Eles, Zebo Peng, and Jakob Rosén. Predictable im-

plementation of real-time applications on multiprocessor systems-on-chip. In

IEEE International Conference on VLSI Design, pages 103–110, 2008.

[10] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for

computer system modeling. Computer, 35(2):59–67, 2002.

[11] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan,

Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, Maurice

Sebastien, Reinhard von Hanxleden, Reinhard Wilhelm, and Wang Yi. Build-

ing timing predictable embedded systems. ACM Transactions on Embedded

Computing Systems, Accepted for publication.

[12] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86

executables. In Compiler Construction, pages 5–23, 2004.

[13] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M Balakrishnan, and Peter

Marwedel. Scratchpad memory: design alternative for cache on-chip mem-

ory in embedded systems. In International Symposium on Hardware/software

Codesign, pages 73–78, 2002.

[14] Christoph Berg. PLRU cache domino effects. International Workshop on

Worst-Case Execution Time (WCET) Analysis, 2006.

[15] Bach Duy Bui, Rodolfo Pellizzoni, and Marco Caccamo. Real-time scheduling

of concurrent transactions in multidomain ring buses. IEEE Trans. Computers,

61(9):1311–1324, 2012.

[16] Dai N. Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, and Jan Reineke. Tem-

poral isolation on multiprocessing architectures. In Design Automation Con-

ference, pages 274–279, 2011.

[17] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and

automatic generation of high-coverage tests for complex systems programs. In

USENIX Symposium on Operating Systems Design and Implementation, pages

209–224, 2008.

[18] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter,

Peter Marwedel, and Heiko Falk. A unified WCET analysis framework for

multi-core platforms. ACM Transactions on Embedded Computing Systems,

Accepted for publication (An earlier version appeared in IEEE Real-Time and

Embedded Technology and Applications Symposium, 2012).

[19] Sudipta Chattopadhyay and Abhik Roychoudhury. Unified cache modeling for

WCET analysis and layout optimizations. In IEEE Real-time Systems Sympo-

sium, pages 47–56, 2009.

Full text available at: http://dx.doi.org/10.1561/1000000037

152 References

[20] Sudipta Chattopadhyay and Abhik Roychoudhury. Static bus schedule aware

scratchpad allocation in multiprocessors. In ACM SIGPLAN/SIGBED 2011

conference on Languages, compilers, and tools for embedded systems, pages

11–20, 2011.

[21] Sudipta Chattopadhyay and Abhik Roychoudhury. Scalable and precise re-

finement of cache timing analysis via path-sensitive verification. Real-Time

Systems, 49(4):517–562, 2013 (An earlier version appeared in IEEE Real-time

Systems Symposium, 2011).

[22] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling

shared cache and bus in multi-cores for timing analysis. In International Work-

shop on Software and Compilers for Embedded Systems, pages 6:1–6:10, 2010.

[23] Lee Kee Chong, Clément Ballabriga, Van-Thuan Pham, Sudipta Chattopad-

hyay, and Abhik Roychoudhury. Towards parallel programming models for

predictability. In IEEE Real-time Systems Symposium, 2013.

[24] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded

model checking using satisfiability solving. Formal Methods in System Design,

19(1):7–34, 2001.

[25] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In Tools and Algorithms for the Construction and Anal-

ysis of Systems, pages 168–176. 2004.

[26] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verifica-

tion of finite-state concurrent systems using temporal logic specifications. ACM

Transactions on Programming Languages and Systems (TOPLAS), 8(2):244–

263.

[27] EG Coffman Jr and Ronald L. Graham. Optimal scheduling for two-processor

systems. Acta Informatica, 1(3):200–213, 1972.

[28] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a

processor with branch prediction. Real-Time Systems, 18(2-3):249–274, 2000.

[29] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of fix-

points. In Symposium on Principles of programming languages, pages 238–

252, 1977.

[30] Georgia Giannopoulou, Kai Lampka, Nikolay Stoimenov, and Lothar Thiele.

Timed model checking with abstractions: towards worst-case response time

analysis in resource-sharing manycore systems. In International Conference

on Embedded Software, pages 63–72, 2012.

Full text available at: http://dx.doi.org/10.1561/1000000037

References 153

[31] Kees Goossens, John Dielissen, and Andrei Radulescu. Æthereal network on

chip: concepts, architectures, and implementations. Design & Test of Comput-

ers, IEEE, 22(5):414–421, 2005.

[32] Sven Goossens, Jasper Kuijsten, Benny Akesson, and Kees Goossens. A re-

configurable real-time SDRAM controller for mixed time-criticality systems.

In International Conference on Hardware/Software Codesign and System Syn-

thesis, pages 1–10, 2013.

[33] Daniel Grund and Jan Reineke. Abstract interpretation of FIFO replacement.

In Static Analysis Symposium, pages 120–136. 2009.

[34] Daniel Grund and Jan Reineke. Precise and efficient FIFO-replacement anal-

ysis based on static phase detection. In Euromicro Conference on Real-Time

Systems, pages 155–164, 2010.

[35] Daniel Grund and Jan Reineke. Toward precise PLRU cache analysis. In In-

ternational Workshop on Worst-Case Execution Time Analysis, pages 23–35,

2010.

[36] Daniel Grund, Jan Reineke, and Gernot Gebhard. Branch target buffers: WCET

analysis framework and timing predictability. Journal of Systems Architecture,

57(6):625–637, 2011.

[37] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The

mälardalen WCET benchmarks: Past, present and future. In International

Workshop on Worst-Case Execution Time Analysis, pages 136–146, 2010.

[38] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper. Auto-

matic derivation of loop bounds and infeasible paths for WCET analysis using

abstract execution. In Real-Time Systems Symposium, pages 57–66, 2006.

[39] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to tighten

WCET estimates for multi-core processors with shared instruction caches. In

IEEE Real-time Systems Symposium, pages 68–77, 2009.

[40] Damien Hardy and Isabelle Puaut. WCET analysis of multi-level non-inclusive

set-associative instruction caches. In IEEE Real-time Systems Symposium,

pages 456–466, 2008.

[41] Damien Hardy and Isabelle Puaut. WCET analysis of instruction cache hierar-

chies. Journal of Systems Architecture, 57(7):677–694, 2011.

[42] Christopher Healy, Mikael Sjödin, Viresh Rustagi, David Whalley, and Robert

Van Engelen. Supporting timing analysis by automatic bounding of loop itera-

tions. Real-Time Systems, 18(2-3):129–156, 2000.

[43] Christopher A Healy, Robert D Arnold, Frank Mueller, David B Whalley, and

Marion G Harmon. Bounding pipeline and instruction cache performance.

Computers, IEEE Transactions on, 48(1):53–70, 1999.

Full text available at: http://dx.doi.org/10.1561/1000000037

154 References

[44] Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumera-

tion and model checking based WCET analysis. In International Workshop on

Worst-Case Execution Time Analysis, 2009.

[45] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache

analysis for WCET estimation. In IEEE Real-Time and Embedded Technology

and Applications Symposium, pages 203–212, 2011.

[46] Ilog, Inc. Solver CPLEX, 2003. http://www.ilog.fr/products/

cplex/.

[47] Lei Ju, Bach Khoa Huynh, Abhik Roychoudhury, and Samarjit Chakraborty.

Performance debugging of Esterel specifications. In International conference

on Hardware/Software codesign and system synthesis, pages 173–178, 2008.

[48] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik

Roychoudhury. Bus-aware multicore WCET analysis through TDMA offset

bounds. In Euromicro Conference on Real-Time Systems, pages 3–12, 2011.

[49] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu,

and Ragunathan Raj Rajkumar. Bounding memory interference delay in COTS-

based multi-core systems. In IEEE Real-Time and Embedded Technology and

Applications Symposium, 2014.

[50] James C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, 1976.

[51] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. Pipeline mod-

eling for timing analysis. In Static Analysis Symposium, pages 294–309, 2002.

[52] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A

timing analyzer for embedded software. Science of Computer Programming,

2007. http://www.comp.nus.edu.sg/~rpembed/chronos.

[53] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling control spec-

ulation for timing analysis. Real-Time Systems, 29(1):27–58, 2005.

[54] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order

processors for WCET analysis. Real-Time Systems, 34(3):195–227, 2006.

[55] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache modeling for

real-time software: beyond direct mapped instruction caches. In IEEE Real-

time Systems Symposium, pages 254–263, 1996.

[56] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy

Suhendra. Timing analysis of concurrent programs running on shared cache

multi-cores. Real-Time Systems, 48(6):638–680, 2012.

Full text available at: http://dx.doi.org/10.1561/1000000037

http://www.ilog.fr/products/cplex/
http://www.ilog.fr/products/cplex/
http://www.comp.nus.edu.sg/~rpembed/chronos

References 155

[57] Björn Lisper. Towards parallel programming models for predictability. In In-

ternational Workshop on Worst-Case Execution Time Analysis, pages 48–58,

2012.

[58] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. A fast

and precise static loop analysis based on abstract interpretation, program slic-

ing and polytope models. In International Symposium on Code Generation and

Optimization, pages 136–146, 2009.

[59] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically

scheduled microprocessors. In IEEE Real-time Systems Symposium, pages 12–

21, 1999.

[60] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. Combining abstract interpre-

tation with model checking for timing analysis of multicore software. In IEEE

Real-time Systems Symposium, pages 339–349, 2010.

[61] Arian Maghazeh, Unmesh D Bordoloi, Petru Eles, and Zebo Peng. General

purpose computing on low-power embedded GPUs: Has it come of age? In In-

ternational Conference on Embedded Computer Systems: Architectures, Mod-

eling, and Simulation, 2013.

[62] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Cac-

camo, and Rodolfo Pellizzoni. Real-time cache management framework for

multi-core architectures. In IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 45–54, 2013.

[63] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and

Mateo Valero. Hardware support for WCET analysis of hard real-time mul-

ticore systems. In International Symposium on Computer Architecture, pages

57–68, 2009.

[64] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Fast exploration

of bus-based on-chip communication architectures. In IEEE/ACM/IFIP in-

ternational conference on Hardware/software codesign and system synthesis,

pages 242–247, 2004.

[65] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell,

Marco Caccamo, and Russell Kegley. A predictable execution model for

COTS-based embedded systems. In IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium, pages 269–279, 2011.

[66] Rodolfo Pellizzoni and Marco Caccamo. Impact of peripheral-processor in-

terference on WCET analysis of real-time embedded systems. IEEE Trans.

Computers, 59(3):400–415, 2010.

Full text available at: http://dx.doi.org/10.1561/1000000037

156 References

[67] Jan Reineke and Daniel Grund. Relative competitive analysis of cache replace-

ment policies. In ACM SIGPLAN/SIGBED conference on Languages, compil-

ers, and tools for embedded systems, pages 51–60, 2008.

[68] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, and Edward A. Lee.

PRET DRAM controller: bank privatization for predictability and temporal

isolation. In International Conference on Hardware/Software Codesign and

System Synthesis, pages 99–108, 2011.

[69] Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access opti-

mization for predictable implementation of real-time applications on multipro-

cessor systems-on-chip. In IEEE Real-time Systems Symposium, pages 49–60,

2007.

[70] Jakob Rosén, C Neikter, Petru Eles, Zebo Peng, Paolo Burgio, and Luca Benini.

Bus access design for combined worst and average case execution time opti-

mization of predictable real-time applications on multiprocessor systems-on-

chip. In IEEE Real-Time and Embedded Technology and Applications Sympo-

sium, pages 291–301, 2011.

[71] Erno Salminen, Vesa Lahtinen, Kimmo Kuusilinna, and Timo Hamalainen.

Overview of bus-based system-on-chip interconnections. In Circuits and Sys-

tems, 2002. ISCAS 2002. IEEE International Symposium on, volume 2, pages

II–372, 2002.

[72] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kasapaki. A

statically scheduled time-division-multiplexed network-on-chip for real-time

systems. In International Symposium on Networks on Chip, pages 152–160,

2012.

[73] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. Timing analysis for

TDMA arbitration in resource sharing systems. In IEEE Real-Time and Em-

bedded Technology and Applications Symposium, pages 215–224, 2010.

[74] Rathijit Sen and YN Srikant. WCET estimation for executables in the pres-

ence of data caches. In Proceedings of the 7th ACM & IEEE international

conference on Embedded software, pages 203–212, 2007.

[75] SPIN. SPIN Model Checker, 1991. http://spinroot.com/spin/

whatispin.html.

[76] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient longest

executable path search for programs with complex flows and pipeline effects.

In International conference on Compilers, architecture, and synthesis for em-

bedded systems, pages 132–140, 2001.

Full text available at: http://dx.doi.org/10.1561/1000000037

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html

References 157

[77] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET

centric data allocation to scratchpad memory. In Real-Time Systems Sympo-

sium, pages 10–pp. IEEE, 2005.

[78] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. Efficient

detection and exploitation of infeasible paths for software timing analysis. In

Design Automation Conference, pages 358–363, 2006.

[79] Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra. Scratchpad alloca-

tion for concurrent embedded software. ACM Transactions on Programming

Languages and Systems, 32(4):13, 2010.

[80] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise

WCET prediction by separated cache and path analyses. Real-Time Systems,

18(2/3):157–179, 2000.

[81] Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. An-

derson. Making shared caches more predictable on multicore platforms. In

Euromicro Conference on Real-Time Systems, pages 157–167, 2013.

[82] Reinhard Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor

ILP alone. In International Conference on Verification, Model Checking, and

Abstract Interpretation, pages 309–322, 2004.

[83] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, et al. The worst-case execution-time problemâĂŤoverview

of methods and survey of tools. ACM Transactions on Embedded Computing

Systems, 7(3):36, 2008.

[84] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pis-

ter, and Christian Ferdinand. Memory hierarchies, pipelines, and buses for

future architectures in time-critical embedded systems. Computer-Aided De-

sign of Integrated Circuits and Systems, IEEE Transactions on, 28(7):966–978,

2009.

[85] Jun Yan and Wei Zhang. WCET analysis for multi-core processors with shared

L2 instruction caches. In IEEE Real-Time and Embedded Technology and Ap-

plications Symposium, pages 80–89, 2008.

[86] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PAL-

LOC: DRAM bank-aware memory allocator for performance isolation on mul-

ticore platforms. In IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, 2014.

Full text available at: http://dx.doi.org/10.1561/1000000037

158 References

[87] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha.

Memguard: Memory bandwidth reservation system for efficient performance

isolation in multi-core platforms. In IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium, pages 55–64, 2013.

[88] Mohamed Zahran, Kursad Albayraktaroglu, and Manoj Franklin. Non-

inclusion property in multi-level caches revisited. International Journal of

Computers and Their Applications, 14(2):99, 2007.

Full text available at: http://dx.doi.org/10.1561/1000000037

	Abstract
	Introduction
	WCET analysis and multi-core platforms
	A background on WCET analysis
	Challenges in WCET analysis for multi-core architectures

	WCET analysis for multi-core platforms
	Modeling shared caches
	Modeling shared buses
	Modeling timing interactions
	Discussion about analysis complexity
	Experimental evaluation
	Data caches and branch target buffers
	A survey of related techniques

	WCET optimization for multi-core platforms
	Optimization of worst-case response time
	WCRT optimization approach
	Cost function
	Optimization algorithm
	Simplified algorithm
	Memory consumption
	Experimental results
	A survey of related techniques

	Time-predictable multi-core architecture
	Resource isolation
	Usage of software controlled memory
	Extension of instruction set architecture (ISA)

	Discussion and future work
	Summary of recent development
	Limitations imposed by current approaches
	Other limitations
	Analysis pessimism
	Research challenges in future

	Conclusions
	Acknowledgements
	References

