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Abstract

Multi-core architectures have recently gained popularity due to their high-

performance and low-power characteristics. Most of the modern desktop sys-

tems are now equipped with multi-core processors. Despite the wide-spread

adaptation of multi-core processors in desktop systems, using such proces-

sors in embedded systems still poses several challenges. Embedded systems

are often constrained by several extra-functional aspects, such as time. There-

fore, providing guarantees for time-predictable execution is one of the key re-

quirements for embedded system designers. Multi-core processors adversely

affect the time-predictability due to the presence of shared resources, such as

shared caches and shared buses. In this contribution, we shall first discuss the

challenges imposed by multi-core architectures in designing time-predictable

embedded systems. Subsequently, we shall describe, in details, a comprehen-

sive solution to guarantee time-predictable execution on multi-core platforms.

Besides, we shall also perform a discussion of different techniques to provide

an overview of the state-of-the-art solutions in this topic. Through this work,

we aim to provide a solid background on recent trends of research towards

achieving time-predictability on multi-cores. Besides, we also highlight the

limitations of the state-of-the-art and discuss future research opportunities

and challenges to accomplish time-predictable execution on multi-core plat-

forms.

S. Chattopadhyay, A. Roychoudhury, J. Rosén, P. Eles, Z. Peng. Time-Predictable Embedded

Software on Multi-Core Platforms:

Analysis and Optimization. Foundations and Trends R© in Electronic Design Automation,

vol. 8, no. 4-3, pp. 199–356, 2014.
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Introduction

Real-time, embedded systems often need to satisfy several extra-functional

constraints, such as timing. In particular, for hard real-time systems, such

timing constraints are strictly enforced. Violation of these timing constraints

may have serious consequences, potentially costing human lives. Therefore,

static timing-analysis of hard real-time systems has emerged to be a critical

problem to solve.

In general, a real-time, embedded application is made of several compo-

nents, usually called tasks. Therefore, timing analysis of embedded software

is typically performed in two separate phases: (i) a low-level analysis which

derives the worst case execution time (WCET) and best case execution time

(BCET) of individual tasks, and (ii) a system-level schedulability analysis

which uses the WCET/BCET derived for each task and computes the overall

timing characteristics of the application. In this monograph, we shall primar-

ily focus our discussion on low-level WCET analysis.

WCET analysis of an embedded software is typically performed in three

stages: (i) a flow-analysis using the control flow graph (CFG) of the pro-

gram (to determine infeasible paths and loop bounds), (ii) micro-architectural

modeling (to determine the worst case execution time of each basic block

in the CFG) and (iii) a calculation phase which combines the outcome of

2
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3

flow-analysis and micro-architectural modeling to derive the worst case ex-

ecution time (WCET) of the entire program. Micro-architectural modeling

systematically considers the timing effects of underlying processor features,

such as pipeline, caches, branch prediction and so on. For single-core pro-

cessors, such a micro-architectural modeling involves the analysis of a single

program occupying the processor. However, this criterion no longer holds

with multi-core processors. Since their inception, multi-core processors have

widely been adopted due to their high-performance and low-power character-

istics. Unfortunately, multi-core processors pose some significant challenges

in terms of time-predictability. Basically, these challenges arise due to the

presence of shared resources, such as shared caches and shared buses [5].

The presence of shared resources makes the WCET analysis significantly

more complex than the WCET analysis on single-core processors. In particu-

lar, micro-architectural modeling is affected due to the presence of inter-core

interferences, such as shared cache conflicts or bus contention. Through this

monograph, we primarily aim to highlight the recent advances to address such

challenges.

As mentioned in the preceding paragraph, shared resources are the key

bottlenecks to build time-predictable embedded software on multi-core plat-

forms. The content of a shared cache is modified by several programs running

in parallel on different cores. Therefore, the modeling of inter-core cache con-

flicts is important to estimate the shared-cache latency accurately. For bus-

based systems, shared buses introduce variable access latency to the shared

resources (e.g. shared caches and main memory). Such a variable access la-

tency highly depends on the bus contention, which in turn depends on the

amount of memory traffic generated by different cores. In this monograph,

we shall first describe an approach to model the timing behavior of shared

caches [21]. Such a modeling systematically combines abstract interpreta-

tion with state-of-the-art program-verification techniques (e.g. model check-

ing and symbolic execution). In particular, such an approach leverages both

the scalability offered by abstract interpretation and the accuracy offered by

program-verification methods to build a tight modeling of shared caches. We

then describe works on analyzing timing behavior for static bus-arbitration

policies, such as time division multiple access (TDMA). Even with static bus-

arbitration policies, an accurate analysis of shared-bus delay is complex. This

Full text available at: http://dx.doi.org/10.1561/1000000037



4 Introduction

is due to the reason that bus delay highly depends on the context, such as

individual loop iterations and procedure calls. In the worst-case, each loop

iteration may experience different bus delay. We describe works [69, 9, 22]

in this direction whose requirements range from full-fledged loop unrolling

to avoiding loop unrolling altogether, depending on the analysis accuracy.

Subsequently, we discuss the development of a full-fledged WCET anal-

ysis framework by combining the modeling of shared resources [18]. Such a

combination is non-trivial due to the possible presence of timing anomalies

[59]. In the presence of timing anomalies, a local worst-case (e.g. a cache miss

or maximum bus delay) may not lead to the overall WCET of a program. As a

result, it is unsound to model the timing behavior of each micro-architectural

component and get the overall timing behavior by a simple composition of in-

dividual timing models. This framework systematically models the timing in-

teraction of shared resources with the rest of the micro-architectural features

(e.g. pipeline, branch prediction) and it does not assume a timing-anomaly-

free architecture. The WCET analysis framework is built on top of Chronos

[52], a freely-available, open-source WCET analysis tool. We show the eval-

uation of this analysis framework via several experiments.

Besides modeling individual micro-architectural features in multi-core

processors, predictability of embedded software can also benefit from cus-

tomized compiler optimizations and time-predictable multi-core hardware.

In this direction, we discuss an optimization of bus schedules to improve

time-predictability. Specifically, we describe the generation of customized

bus schedules that may greatly improve the WCET of a program [69]. Fi-

nally, we discuss several designs of time-predictable hardware to reduce the

pessimism in the WCET analysis on multi-core platforms.

The main purpose of this monograph is to give the readers a thorough

background on time-predictability for multi-core platforms. Therefore, we

have also performed a discussion of research activities by several research

groups in this area. This discussion provides a comprehensive overview of

the state-of-the-art solutions in the respective topic. In particular, our dis-

cussion reveals that the area is fast evolving and there is an active interest

by real-time research groups on the topic discussed in this monograph. Fi-

nally, in the concluding section of this monograph, we have highlighted a

set of open challenges in achieving high-performance and time-predictable
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embedded software on multi-core platforms. We hope that this monograph

will provide a foundation of building time-predictable software on multi-core

platforms and it will help the research community to address the existing

challenges in this area.
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