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Abstract

Flexible electronics are emerging as an alternative to conventional Si
electronics for smart sensors, disposable RFID tags, and solar cells. By
utilizing inexpensive manufacturing methods such as ink-jet printing
and roll-to-roll imprinting, flexible electronics can be made on low-cost
plastic films just like printing newspapers. However, the key elements
of flexible electronics, thin-film transistors (TFTs), have slower operat-
ing speeds and are less reliable than their Si electronics counterparts.
Furthermore, TFTs are usually mono-type — either p- or n-type — de-
vices. Making air-stable complementary TFT circuits is very challeng-
ing or sometimes not feasible to most TF'T technologies. Existing design
methodologies for Si electronics, therefore, cannot be directly applied
to flexible electronics. Other factors such as high supply voltage, large
process variation, and lack of trustworthy device modeling also make
designing larger-scale and robust TFT circuits a significant challenge.

The objective of this article is to provide an in-depth overview of
flexible electronics from their applications, manufacturing processes,
device characteristics, to circuit and system design solutions. We first
introduce the low-cost fabrication methods for flexible electronics, in-
cluding ink-jet printing, screen printing, and gravure printing. The de-
vice characteristics and compact modeling of several major TFT tech-
nologies will be illustrated. We will then give an overview of digital and
analog circuit design from basic logic gates to a microprocessor, as well
as design automation tools and methods, for designing flexible elec-
tronics. We also describe a reliability simulation framework that can
predict TFT circuits’ performance degradation under bias-stress. This
framework has been validated using the amorphous-silicon (a-Si) TFT
scan driver for TFT-LCD displays. Finally, we will give an overview
of flexible thin-film photovoltaics using different materials including
amorphous silicon, CdTe, CIGS , and organic solar cells.

T.-C. Huang, J.-L. Huang, and K.-T. Cheng. Design, Automation, and Test for
Low-Power and Reliable Flexible Electronics. Foundations and Trends® in
Electronic Design Automation, vol. 9, no. 2, pp. 99-210, 2015.

DOI: 10.1561/1000000039.
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1

Introduction

In 1947, Shockley, Bardeen, and Brattain invented the first transistor
at Bell Labs, which opened the era of solid-state electronics. In 1958,
Jack Kilby of TI invented the first integrated-circuit (IC) in which he
successfully assembled several electronic components to form a minia-
ture circuit. In 1965, Intel co-founder Gordon Moore published a paper
in the Electronics magazine which predicted that the number of tran-
sistors per IC would double about every two years, later known as the
Moore’s Law Moore, [April 19, 1965]. In 1971, Federico Faggin of Intel
successfully demonstrated the world’s first microprocessor, Intel 4004,
running at a clock rate of 108 KHz with 2,300 transistors in a 10-pm
pMOS technology. In the last 40 years, we have witnessed the tremen-
dous impact of the IC technology that has brought to the world since
its debut. The abundant computing power that comes from faster and
cheaper transistors has made our world today very different from what
it was 40 years ago. For the future of the semiconductor industry, the
ongoing debate has been centered around questions like: "Is the Moore’s
law going to continue?" and "Will the rigid and disc-like silicon wafer
and the printed circuit-board (PCB) continue to be the dominant ways
to make electronics for future applications?"
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Figure 1.1: Conductivity of conjugated polymers

1.1 Plastic Electronics Revolution

In 1977, 30 years after the first transistor was invented, Heeger, MacDi-
armid, and Shirakawa published their discovery of conductive polymer
in Shirakawa et al| [1977] and received their Nobel Prize in Chem-
istry in 2000. Plastic, which is made of polymer, is usually viewed as
an insulator and not conductive to electron transportation. In their
discovery, however, by proper doping or oxidation, polymers can also
be as conductive as metals if the conjugated chains can be properly
aligned. The conductivity of polymers is shown in Figure This dis-
covery creates alternatives of making electronics, which is not limited
to hard and rigid silicon wafers and PCBs. As of today, thousands
of semiconducting materials are suitable to make flexible electronics,
which brings our imagination of many sci-fi gadgets closer to reality.
For example, amorphous-Si, organic and transparent metal-oxide thin-
film transistors (TFTs) are considered promising candidates for flexible
electronics. We will give an in-depth overview of TFTs in Chapter 3.
Although the carrier mobility of organic materials is still significantly
slower (1072 ~ 1073X) than that of crystalline and poly-crystalline Si,
the steady pace of improvement to their mobility has made organic
digital and analog circuits feasible, which can complement to, or may
eventually compete with, silicon electronics for certain applications.
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1.2 Large-Area Applications

One of the key advantages of flexible electronics is its low manufac-
turing cost on large-area substrates. Since most organic materials can
be converted to a liquid phase, which can be used as functional "inks",
manufacturing organic circuits is similar to printing newspapers for
which roll-to-roll or ink-jet printing can be used. An overview of the
manufacturing methods will be described in Chapter 2. For these low-
cost manufacturing methods, several kinds of flexible substrates, such
as thin-glass, metal foil, and plastic films, can be used. The manufactur-
ing cost per unit area can be as low as one hundredth of that of silicon
electronics. On the other hand, in contrast to silicon electronics that
often require sophisticated heterogeneous integration of silicon VLSI
chips, discrete passive elements, and ceramic packages on rigid epoxy-
resin glass fabric printed circuit boards (PCBs), flexible electronics can
be made through homogeneous integration of active printed circuits,
encapsulation, and thin-film (< 100 pgm in thickness) substrates, which
can be fabricated with a much simpler process and material treatment.
This advantage in integration can significantly reduce manufacturing
costs. Furthermore, since semiconductor materials for flexible electron-
ics do not require high process temperature and high vacuum that are
indispensable for conventional silicon electronics, the energy consump-
tion and the material cost of fabricating flexible electronics are much
lower than those for silicon electronics. [Sakurai(2007) shows a compar-
ison of cost per unit area between organic and silicon VLSIs indicating
that the manufacturing cost of organic ICs is only one hundredth of
silicon VLSIs for a 10cm by 10cm area and it can be even lower for
high-volume production.

The low manufacturing cost on large-area flexible substrates enables
many applications that are not economically practical or mechanically
infeasible with conventional silicon electronics. Figure shows several
applications of flexible electronics, ranging from low-cost RFID tags,
flexible displays, artificial skins for robotics, solar cells, to large-area
wireless power-sheets. Instead of using multi-billion-dollar foundries
for fabrication, electronics for these applications can be mass-produced
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Figure 1.2: Typical applications of flexible electronics

on large-area flexible substrates using simple printing facilities. This is
particularly advantageous for those applications that require fast proto-
typing, demand customization, or have a small volume such as wearable
sensors, disposable biochemical testers as well as personalized health-
care devices. With low capital investment and high flexibility in config-
uring printing facilities, the manufacturers will be able to easily adjust
their production lines as simple as changing the printed contents and
quickly deliver new electronic products to meet fast-changing tastes of
the consumers.

1.3 Differences from Silicon Electronics

Thin-film transistors (TFTs), the key elements of flexible electronics,
can be fabricated using simple process steps (usually less than 5 masks)
at a low process temperature on inexpensive flexible substrates such as
Polyethylene Terephthalate (PET) plastic films, which help lower the
manufacturing costs. An overview of TF'T technologies will be described
in Chapter 3. Compared with MOSFETs, printed TFTs have larger
feature sizes (~ 103X) due to their low-cost printing processes, which
inevitably introduce larger layout-dependent parasitic resistance and
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Crystalline-Si Amorphous-Si

Figure 1.3: Atomic structure of single crystalline-Si and amorphous-Si

Substrate
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Figure 1.4: Device structure of a hydrogenated amorphous silicon (a-Si:H) TFT.
(The white circles show that the high density of defects can trap carriers near the
semiconductor and insulator interface).

capacitance and therefore limit their operating speeds. On the other
hand, although low process temperature can reduce the manufacturing
cost and energy consumption, semiconductor materials made with this
low process temperature are usually amorphous and have many dan-
gling bonds as illustrated in Figure This amorphous atomic struc-
ture limits the carrier mobility and causes reliability concerns during
the operation because the carriers could be trapped in the dangling
bonds and alter the device properties.
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1.4 Challenges for Circuit and System Design

In addition to the reliability concerns, the high supply voltage (> 20V')
and mono-type device (only either p- or n-type, but not both, is avail-
able) also make designing low-power TFT circuits a challenging task.
Figure shows a typical device structure of a-Si:H TFT, in which the
gate insulator material is hundreds-nanometer thick amorphous silicon-
nitride (a-SiNx). The a-SiNx material has many advantages in manufac-
turing such as low process temperature, high uniformity across a large
area with plasma-enhanced chemical-vapor-deposition (PECVD), and
a relatively high dielectric constant (e, ~ 7). In order to suppress the
gate leakage problem, however, the a-SiNx layer needs to be kept suffi-
ciently thick due to its inferior quality to the thermally-grown SiO, gate
insulator in Si-MOSFET. As a result, a high supply voltage is required.
On the other hand, unlike Si-MOSFET, in which the device-type (p-
or n-type) can be determined by doping either p-type (ex. Boron) or
n-type (ex. Phosphorus) materials into intrinsic Si, the device-type of
TFTs is determined by the majority carrier of the material. For in-
stance, a-Si:H and metal-oxide materials (ex. InGaZnO and ZnO) are
n-type, in which the majority carrier is the electron, while most or-
ganic materials, including small-molecule and polymer, are p-type and
their major carrier is the electron hole. With only mono-type TFTs,
the widely-used CMOS design cannot be directly applied to TFT cir-
cuit design. This attribute causes many challenges in circuit design for
achieving high noise margin and low leakage power which are required
for large-scale circuits.

Furthermore, unlike mature single crystalline-Si manufacturing of
which the process variation is well-controlled (often less than 5%), pro-
cess variation of flexible electronics using these low-cost manufacturing
methods is very significant. This adds extra challenges for designing
flexible circuits and a fabricated circuit could have substantial devia-
tion from its target performance. Other factors such as the process-
temperature dependent dimension deformation (ex. shrinking or ex-
panding) of flexible substrates and environmental instability (ex. chem-
ical degradation due to moisture or oxygen contents in the ambient air)
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also make realizing a robust flexible circuit a very challenging task.
For flexible electronics applications, system-level solutions to build
a reliable system based on unreliable devices are equally important
to, if not more important than, device- and circuit-level solutions. For
example, a system-level solution to electronic textiles (e-textiles) was
proposed in Park et al. [2002], Marculescu et al.[[2003], Stanley-Marbell
et al|[2003]. E-textiles are computational fabrics that form a large-
area, flexible, and conformable information system for both consumer
electronics and aerospace/military applications. A Model of Colloidal
Computing [Marculescu and Marculescu| [2002] is introduced to provide
mechanisms for extracting useful work out of the unreliable elements.
Two techniques, code migration and remote execution, are proposed
to provide feasible means of adapting to failures in the presence of
redundancy Marculescu et al. [2003], Stanley-Marbell et al.| [2003].

1.5 Summary

With rapid advances of flexible semiconducting materials, the perfor-
mance of TET circuits has been improving significantly and the con-
cerns of their ambient stability have been alleviated to a great extent
in the past few years. After a brief introduction to flexible electronics,
this chapter highlights its key difference from silicon electronics, and
the challenges and opportunities of circuit design for emerging applica-
tions such as wearable electronics, personalized healthcare, and flexible
displays. While the main objective of this overview article is on the
design, EDA and test issues, we also offer brief technical reviews on
TFT technologies, manufacturing methods, and flexible photovoltaics
for the purpose of providing a more comprehensive introduction of this
emerging field.
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