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Abstract

Graph representations are pervasive in scientific and social comput-
ing. They serve as vital tools to model the interplay among different
interacting entities.

In this paper, we visit the problem of community detection, which is
one of the most widely used graph operations toward scientific discov-
ery. Community detection refers to the process of identifying tightly-
knit subgroups of vertices in a large graph. These sub-groups (or com-
munities) represent vertices that are tied together through common
structure or function. Identification of communities could help in un-
derstanding the modular organization of complex networks. However,
owing to large data sizes and high computational costs, performing
community detection at scale has become increasingly challenging.

Here, we present a detailed review and analysis of some of the lead-
ing computational methods and implementations developed for exe-
cuting community detection on modern day multicore and manycore
architectures. Our goals are to: a) define the problem of community de-
tection and highlight its scientific significance; b) relate to challenges
in parallelizing the operation on modern day architectures; c) provide
a detailed report and logical organization of the approaches that have
been designed for various architectures; and d) finally, provide insights
into the strengths and suitability of different architectures for commu-
nity detection, and a preview into the future trends of the area. It is our
hope that this detailed treatment of community detection on parallel
architectures can serve as an exemplar study for extending the appli-
cation of modern day multicore and manycore architectures to other
complex graph applications.

A. Kalyanaraman, M. Halappanavar, D. Chavarría-Miranda, H. Lu, K. Duraisamy,
and P. P. Pande. Fast Uncovering of Graph Communities on a Chip: Toward
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1
Graphs and Community Detection

Graphs are powerful representations. They serve as vital tools in mod-
eling the interplay between different interacting components of nat-
urally built and human-engineered systems. Today, numerous graph
operations are routinely defined to mine for higher order structural in-
formation that is preserved in the network of interacting components.
Some of these operations are simpler to compute – such as those re-
lating to specific nodal queries (e.g., degrees, neighborhood search),
graph traversals (breadth first search, depth first search), and detec-
tion of connected components. Other operations are more complex to
compute and yet very useful as discovery tools. Belonging to the latter
category is the community detection operation.

Simply put, community detection refers to the process of identifying
tightly-knit subgroups of vertices in a large graph. These sub-groups,
also referred to as “communities”, represent vertices that are tied to-
gether by a strong relationship (on the basis of edge links) but not as
strongly to vertices outside the community. In other words, the edge-
based connectivity within a community simply outweighs the commu-
nity’s connection to the rest of the network. A key factor that compli-
cates the detection of communities is the lack of any prior knowledge
on the number of such communities or their sizes.

3
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4 Graphs and Community Detection

The presence of communities in a graph suggests a modular orga-
nization of its entities, in which smaller groups, identified as commu-
nities, interact cohesively within, while only weak interactions (if any)
are observed across communities. For this reason, communities are also
sometimes referred to as “modules”.

Community detection is used in a broad range of applications, as
a discovery tool to reveal hidden structures within real world networks
that are often missed by other standard graph mining tools. For in-
stance, an analysis of a social networking site such as Facebook could
reveal virtual communities of friends and acquaintances, or of people
who share similar interests. On the other hand, an analysis of a mi-
croblogging site such as Twitter could reveal a more dynamic and evolv-
ing set of virtual communities, as users tweet about different themes
and topics. Searching for community structure is also useful in natu-
rally built systems. For instance, it is now known from the analysis of
protein interaction networks, that proteins within numerous biological
systems interact with one another as modules.

Despite its high potential for discovery and advancement of our un-
derstanding of real world networks, the modern day application of com-
munity detection is challenged by its high computational cost, which is
further exacerbated by the rapid growth in data sizes. Under various
formulations, the problem of community detection is known to be NP-
Hard (Brandes et al., 2008). Therefore, heuristics are used in practice
to allow the processing of large inputs. However, even such heuristics
could take very long time or may run out of memory on modern day
inputs. For instance, the Internet contained ∼46 billion webpages as of
August 2015, as indexed by Google1. Figure 1.1 is a pictorial depiction
of the Internet.

As of March 2015, the social networking site Facebook, Inc. con-
tained 1.18 billion active users. Note that the above sizes are in the
number of nodes. The number of edges typically exceed the number of
nodes by orders of magnitude.

Consequently, high performance computing (HPC) has a critical
role to play in extending the application of community detection to

1See (http://www.worldwidewebsize.com/).

The full text is available at: http://dx.doi.org/10.1561/1000000044
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5

Figure 1.1: A map of the Internet as of July 2015, as reported by “The Opte
Project / Barrett Lyon” (http://www.opte.org/). Colors show communities of in-
ternet address by their geographical region. The image has been reproduced with
permission from the OPTE project ( c© 2014 by LyonLabs, LLC and Barrett Lyon).

modern day inputs. However, the application of HPC is not trivial.
Community detection, as do most advanced graph operations, gen-
erates highly irregular computational and data access patterns that
pose serious technical difficulties and scalability challenges during par-
allelization. This is in contrast to most classical scientific computing
operations (e.g., Fast Fourier Transform, Molecular Dynamics simula-
tions) where computations are largely regular and floating point calcu-
lations dominate the landscape.

The combinatorial nature of exploration within graph operations
calls for newer paradigms in parallel algorithm and parallel architecture
design. This specialized demand has generated a significant amount of

The full text is available at: http://dx.doi.org/10.1561/1000000044
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6 Graphs and Community Detection

interest in graph applications among the HPC community, making the
design and development of frameworks for optimized computation of
complex graph operations such as community detection, a hotly re-
searched topic.

In this paper, we have attempted to provide a comprehensive survey
of this topic in what has become a continuously changing landscape in
research. We focus on community detection and on how to achieve
performance at scale for this operation using state-of-the-art multicore
and many-core architectures. Our goal is to enlighten the reader on the
following:

• the computational fundamentals and scientific underpinnings of
the community detection operation (Chapters 1 and 2);

• classical approaches that have been developed for performing
community detection (Chapter 3);

• details of two architectures as representatives of state-of-the-art
multicore and manycore platforms (Chapter 4), and insights into
the key algorithmic design challenges in parallelizing community
detection on such architectures (Chapter 5);

• a detailed report and logical organization of parallel algorithms
and architectures that have been designed for performing fast
and scalable community detection on real world graphs (Chap-
ter 6), along with results categorized by the target architecture
(Chapter 7); and

• emerging Network-on-Chip (NoC) architectures and the improve-
ments over modern day System-on-Chip architectures that they
have to offer (Chapter 8).

More specifically, in Chapter 6, we cover parallelization in detail
on traditional multicore systems (e.g., x86) and System-on-Chip (SoC)
manycore architectures (specifically, EZchip Tilera TileGx). In Chap-
ter 8, we cover parallelization on an emerging paradigm in NoC ar-
chitectures that use wireless and wired on-chip interconnect links, and

The full text is available at: http://dx.doi.org/10.1561/1000000044
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report results through simulation studies. These emerging architectures
offer a potential improvement over current SoC architectures.

Chapter 9 concludes the article with a discussion of the key results
and insights, and a preview on future trends.

We hope that the aforementioned organization of the paper and its
contents will expose an interested reader to key advances in parallel
algorithms and architectures for community detection, and will even-
tually motivate the reader to contribute to future advances. We note
that graph-theoretic operations happen to be a relatively new venue for
exploration in many of these architectures, making it a vibrant area for
research and development.

We note here that a complete survey on the broader topic of com-
munity detection is out of scope for this article. For that, the reader is
referred to several authoritative survey articles that are already avail-
able (Fortunato, 2010; Papadopoulos et al., 2012). The material pre-
sented in this paper will introduce the community detection problem
with all the necessary background. However, as stated above, the fo-
cus will rest on scalability and high performance computing methods
and architectures designed for this graph operation. To the best of our
knowledge, a survey article with a similar focus does not exist in the
literature.

The full text is available at: http://dx.doi.org/10.1561/1000000044



2
Community Detection: Background and Problem

Definition

2.1 A Brief History of Networks and Community Detection

The documented origins of graph theory date back to 1736 when Leon-
hard Euler (1707-1783), a Swiss mathematician, was presented a prob-
lem by the city authorities of Königsberg, Prussia (Kaliningrad in mod-
ern day Russia). In what was to become known as the “Seven Bridges
of Königsberg” problem, the city wanted to know whether it would be
possible to parade through the town, crossing each of the seven bridges
that connected the four land masses across the river Pregel, exactly
once while returning to the origin of the circuit — as illustrated in
Figure 2.1. Euler formulated this as a graph problem, by representing
the land masses as “nodes” and bridges as “edges”, and in fact arrived
at a negative result for this circuit problem.

Despite the early work by Euler, it was not until the early part of the
20th century when graph theory, as a field, started to take shape. Struc-
tural properties of networks conceived out of real world data started to
emerge at this time. Scottish epidemiologists Kermack and McKendrick
(1927) (Kermack and McKendrick, 1927) modeled the spread of infec-
tious diseases as a network and proposed a theory to capture the rates

9
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10 Community Detection: Background and Problem Definition

Figure 2.1: An illustration of Euler’s Seven Bridges of Königsberg problem.

at which infection spreads and eventually terminates among a popu-
lation. Rapoport and Solomonoff (1951) (Solomonoff and Rapoport,
1951) argued that naturally built systems such as neural nets and phe-
nomena such as disease epidemiology can be represented in the form
of random graphs. This study resulted in a systemic formulation and
treatment of random networks, which would subsequently influence the
later work by Paul Erdős and Alfréd Rényi in their pioneering work on
Erdős-Rényi model (Erdös and Rényi, 1960). According to the Erdős-
Rényi model, all possible graphs for a given set of vertices and a fixed
number of edges are equally likely. In an equivalent random model,
each edge has an independent and fixed probability of existence.

However, a significant departure from the random graph model was
already observed by British statistician Udny Yule in 1927. In an at-
tempt to derive a mathematical explanation for Darvin’s evolutionary
theory (Yule, 1925), he arrived at a notion that we today refer to as
preferential attachment. He observed that the growth rates of individ-
ual genera (counted in the number of species within a genus) correlate
with their previous sizes. This notion of preferential attachment, where
the “rich” get “richer”, would later be studied extensively in the con-
text of degree distribution of real world networks, and in effect laying
the foundation for scale-free networks (Barabási et al., 2000).

A second influential study in the context of non-random networks
arose in the context of social sciences. Using a simple mailing experi-
ment, Stanley Milgram at Yale (1967) concluded that the social network
that connected people has a “six degree of separation” (Milgram, 1967).

The full text is available at: http://dx.doi.org/10.1561/1000000044



2.2. Problem Definition 11

This study pointed to surprisingly short pairwise distances in large so-
cial networks, and eventually this result would lead to the extensive
study of small-world networks (Watts and Strogatz, 1998).

Despite these early advances, it was not until the 70′s that a clearer
picture of the structural organization of non-random real world net-
works emerged. In a pivotal 1973 paper titled “The strength of weak
ties” (Granovetter, 1973), Granovetter argued that social networks
(aka. “sociograms”) contained strongly tied groups (or “communities”)
built out of friendships and relationships, and weaker ties built out
of acquaintances that acted as “bridges” between communities. This
key observation was one of the first studies to reveal a higher order
organization of networks into tightly-knit communities and their in-
terconnection. Since then, such community-level organization has been
discovered and studied in a wide variety of real world networks, both
within nature-built and human-built systems. These include (but not
limited to) the Internet, social networks such as Facebook and Twitter
(Papadopoulos et al., 2012), C. Elegans neural system (Watts and Stro-
gatz, 1998), protein interaction networks (Girvan and Newman, 2002),
electric power grid (Newman, 2003), dolphin communication network
(Connor et al., 1999), collaboration networks (Newman, 2003), cus-
tomer preference databases (Reddy et al., 2002), and climate variabil-
ity networks (Steinhaeuser et al., 2011). In these systems, discovering
the community structures within networks have proved to be a critical
step in advancing the knowledge and understanding of the underlying
system and its functions.

2.2 Problem Definition

2.2.1 Basic Notation

Let G(V,E, ω) be an undirected weighted graph, where V is the set
of vertices, E is the set of edges and ω(.) is a weighting function that
maps every edge in E to a non-zero, positive weight. If the graph is
unweighted, then we treat every edge to be of unit weight. In the input
graph, edges that connect a vertex to itself are allowed — i.e., (i, i)
can be a valid edge. However, multi-edges are not allowed. Let the

The full text is available at: http://dx.doi.org/10.1561/1000000044



12 Community Detection: Background and Problem Definition

adjacency list of i be denoted by Γ(i) = {j|(i, j) ∈ E}. Let ki denote
the weighted degree of vertex i — i.e., ki =

∑
j∈Γ(i) ω(i, j). We will use

n to denote the number of vertices in G, m to denote the number of
edges in the graph, and M to denote the sum of all edge weights —
i.e., M = 1

2
∑

i∈V ki.

2.2.2 Problem Formulation

The generic version of the community detection problem is defined as
follows:

Given an input graph G(V,E, ω), the objective is to compute a set
of “communities” C = {c1, c2, . . . ck}. Each community ci represents
a maximal subset of V with a significantly higher concentration of
edges flowing between its constituent vertices than to vertices in V \ ci.
We assume that the number of communities (k) and the sizes of the
individual communities are not known a priori.

There are two variants of the community detection problem, based
on whether to allow for overlaps between the computed communities or
not. Many application use-cases enforce a partitioning (i.e., the output
communities are mutually disjoint), whereas some application use-cases
justify a relaxation to allow for potential overlaps among the output
communities. Figure 2.2 shows an example for the partition version of
the community detection problem.

2.2.3 Related Problems

It is noteworthy that community detection is not entirely unique in its
goals and that there are other graph operations that are similar in their
intent. Therefore, it is perhaps prudent to clarify on their relationships
and differences.

Community detection is not to be confused with clique finding. In
graph theory, cliques refer to complete subgraphs (i.e., each vertex has
an edge to every other vertex in the subgraph). In community detection,
this condition is relaxed. In other words, each vertex in a community
is expected to be connected to most (if not all) vertices of the same
community, and very few (if at all) vertices outside the community.

The full text is available at: http://dx.doi.org/10.1561/1000000044



2.2. Problem Definition 13

Figure 2.2: An example showing an input graph G(V,E). Part (a) shows a can-
didate partitioning of its vertices into communities. Part (b) shows an alternative
community structure that allows for overlaps between communities.

This relaxation to the clique criterion is essential for ensuring practi-
cal relevance. In real world, there are typically missing edges within
otherwise strongly knit groups, and in some cases identifying remote
homologs (related entities) become important.

Data clustering encompasses a broad class of algorithms that at-
tempt to achieve a similar goal with grouping — except that the term
“clustering” is used in a more generic context for clustering points of an
arbitrary data type, over which a pairwise distance/similarity function
is defined. It is possible to view community detection as a cluster-
ing problem applied to graphs — i.e., with the points represented by
vertices and their pairwise relationships represented by edges. For this
reason, the term community detection is sometimes used synonymously
with graph clustering. However, the problem settings are still different.
For instance, in clustering it is typical for the pairwise distance func-
tions to respect the triangular inequality property. This need not be the
case with the edge weights of a graph. Also, since graphs are defined in

The full text is available at: http://dx.doi.org/10.1561/1000000044



14 Community Detection: Background and Problem Definition

a coordinate-free manner, it is typically not possible to take advantage
of spatial data structures during implementation.

In graph-theory, there is another closely related problem that is
similar to that of community detection. Graph partitioning is also a
problem of binning vertices into groups. However, there are a few fun-
damental differences between the two problems. In graph partitioning,
the number of partitions (i.e., clusters) and their expected sizes are
known a priori. This is in contrast to community detection. In fact,
the very purpose of community detection is to reveal the presence of
any such community-wise organization of the input graph. On the other
hand, graph partitioning aims to partition an input set of dependent
tasks on a parallel system in a way that minimizes the cut (or depen-
dencies across the partitions), while ensuring even load distribution.
Consequently, graph partitioning is used as a load balancing tool while
community detection is used as a discovery tool.

2.2.4 Measures for Community Detection

A critical aspect within the problem definition for community detection
is how to measure the goodness of a given community assignment —
i.e., the basis for binning vertices into the same community. Once such
a measure is defined, it can be used as the optimization objective for
computing communities.

Notable measures defined in the literature for evaluating the good-
ness of a community-wise partitioning include normalized cut (Shi and
Malik, 2000), conductance (Kannan et al., 2004) and modularity (New-
man, 2004b). An elaborate discussion on all their individual definitions
is out of scope for this article, and a curious reader is referred to some of
the authoritative reviews in literature (Fortunato, 2010; Papadopoulos
et al., 2012).

In what follows, we select modularity for further discussion, as this
measure has found a wide adoption in practice, and numerous algo-
rithms and parallel implementations have been designed to compute a
clustering based on modularity as the primary objective for optimiza-
tion.

The full text is available at: http://dx.doi.org/10.1561/1000000044



2.2. Problem Definition 15

Modularity

Modularity was introduced by Mark E.J. Newman in his seminal paper
(Newman, 2004b). It is a statistical measure that is defined for a given
partitioning of an input graph (i.e., vertex to community assignment).

Given a graph G(V,E, ω), let C = {c1, c2, . . . ck} denote a set of
communities that represents a partitioning of the vertices in V . We
will use c(i) to denote the community containing vertex i. A community
consisting of a single vertex is referred to as a singleton.

Note that the partitioning C also partitions the set of edges in G
into two types:

• An intra-community edge is one that connects two vertices of the
same community; and

• An inter-community edge is one that connects vertices of different
communities.

Let Ei→c refer to the set of all edges connecting a vertex i to the
vertices in a community c. And let ei→c denote the sum of the edge
weights for the edges in Ei→c.

ei→c =
∑

(i,j)∈Ei→c

ω(i, j) (2.1)

Let ac denote the sum of the weights of all edges incident on all vertices
of community c (also referred to as community degree).

ac =
∑
i∈c

ki (2.2)

Note that in the above definition, each intra-community edge in
community C is double-counted.

Definition 2.1. Given an input graph G(V,E, ω) and a community-
wise partitioning of its vertices C, the modularity (denoted by Q) of
the partitioning C is given by (Newman, 2004b):

Q = 1
2M

∑
i∈V

ei→c(i) −
∑
c∈C

(
ac

2M ·
ac

2M

)
(2.3)

The full text is available at: http://dx.doi.org/10.1561/1000000044



16 Community Detection: Background and Problem Definition

Figure 2.3: An example showing a simple graph input and two different partitions
of its vertices (C and C′). The modularity of the partitioning C is given by QC =
0.875(= 5+13

20 − 28+2
40×40 ). The modularity of the partitioning C′ is given by QC′ =

0(= 20
20 −

40×40
40×40 ).

The first term is the observed fraction of intra-community edges im-
posed by the partitioning C on V . The second term is a probabilistic
estimate on the same fraction in a random graph with an identical ver-
tex degree sequence. Intuitively, a good community-wise partitioning
maximizes the fraction of intra-community edges. However, the fraction
can be maximized by simply assigning all vertices to a single commu-
nity. The second term is a statistical term that is intended to prevent
such noisy outputs.

It should be easy to see that modularity is bounded by 1, and that
a partitioning that achieves a value closer to 1 should be preferred. In
other words, the community detection problem becomes one of com-
puting a partition C that maximizes modularity.

Modularity optimization is an NP-Complete (Brandes et al., 2008).
Figure 2.3 shows a simple example of a graph and two different

partitions of it alongside their modularity scores.
It is to be said that modularity is not necessarily the ideal metric for

community detection. Issues such as resolution limit have been identi-
fied Fortunato (2010); Traag et al. (2011), and there are a few variants

The full text is available at: http://dx.doi.org/10.1561/1000000044
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of modularity definitions have also been devised Traag et al. (2011);
Bader and McCloskey (2009); Berry et al. (2011). However, the defini-
tion provided in Eqn. (2.3) continues to be the more widely adopted
version in practice, including for most of the methods for which par-
allelization has been implemented. Therefore, for sake of consistency
with current literature, we stay with the aforementioned classical form
of the definition.

The full text is available at: http://dx.doi.org/10.1561/1000000044
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