
Error-Efficient Computing

Systems

Phillip Stanley-Marbell

University of Cambridge

phillip.stanley-marbell@eng.cam.ac.uk

Martin Rinard

Massachusetts Institute of Technology

rinard@csail.mit.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1000000049

Foundations and Trends® in

Electronic Design Automation

Published, sold and distributed by:

now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510

www.nowpublishers.com

sales@nowpublishers.com

Outside North America:

now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is

P. Stanley-Marbell and M. Rinard. Error-Efficient Computing Systems. Foundations and

Trends® in Electronic Design Automation, vol. 11, no. 4, pp. 362–461, 2017.

This Foundations and Trends® issue was typeset in LATEX using a class file designed by Neal

Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-358-4

© 2017 P. Stanley-Marbell and M. Rinard

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior
written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or
the internal or personal use of specific clients, is granted by now Publishers Inc for users registered
with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at:
www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment has been
arranged. Authorization does not extend to other kinds of copying, such as that for general distribution,
for advertising or promotional purposes, for creating new collective works, or for resale. In the rest of the
world: Permission to photocopy must be obtained from the copyright owner. Please apply to now Pub-
lishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission to use this
content must be obtained from the copyright license holder. Please apply to now Publishers, PO Box 179,
2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000049

Foundations and Trends® in

Electronic Design Automation

Volume 11, Issue 4, 2017

Editorial Board

Editor-in-Chief

Radu Marculescu

Carnegie Mellon University

United States

Editors

Robert K. Brayton

UC Berkeley

Raul Camposano

Nimbic

K.T. Tim Cheng

UC Santa Barbara

Jason Cong

UCLA

Masahiro Fujita

University of Tokyo

Georges Gielen

KU Leuven

Tom Henzinger

Institute of Science and Technology

Austria

Andrew Kahng

UC San Diego

Andreas Kuehlmann

Coverity

Sharad Malik

Princeton University

Ralph Otten

TU Eindhoven

Joel Phillips

Cadence Berkeley Labs

Jonathan Rose

University of Toronto

Rob Rutenbar

University of Illinois

at Urbana-Champaign

Alberto Sangiovanni-Vincentelli

UC Berkeley

Leon Stok

IBM Research

Full text available at: http://dx.doi.org/10.1561/1000000049

Editorial Scope

Topics

Foundations and Trends® in Electronic Design Automation publishes survey

and tutorial articles in the following topics:

• System level design

• Behavioral synthesis

• Logic design

• Verification

• Test

• Physical design

• Circuit level design

• Reconfigurable systems

• Analog design

• Embedded software and parallel

programming

• Multicore, GPU, FPGA, and

heterogeneous systems

• Distributed, networked embedded

systems

• Real-time and cyberphysical

systems

Information for Librarians

Foundations and Trends® in Electronic Design Automation, 2017, Volume 11, 4 is-

sues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also available

as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000049

Foundations and Trends® in Electronic Design Automation

Vol. 11, No. 4 (2017) 362–461

© 2017 P. Stanley-Marbell and M. Rinard

DOI: 10.1561/1000000049

Error-Efficient Computing Systems

Phillip Stanley-Marbell

University of Cambridge

phillip.stanley-marbell@eng.cam.ac.uk

Martin Rinard

Massachusetts Institute of Technology

rinard@csail.mit.edu

Full text available at: http://dx.doi.org/10.1561/1000000049

Contents

1 Introduction 2

1.1 The Cost of Correctness 3

1.2 Historical Context . 3

1.3 Why Precision Matters in Many Numerical Computations . . 5

1.4 Why Some Applications Can Tolerate Errors 6

1.5 Examples of Improving Efficiency by Permitting Errors . . . 6

1.6 Fundamental Physical Limits, Energy, and Noise 8

1.7 Hardware and Software Systems That Exploit Errors 10

1.8 Outline of the Remainder of This Review 17

2 Types of Errors and Randomization 19

2.1 Precision, Repeatability, Accuracy, and Reliability 20

2.2 Accuracy of Models versus Precision of Computations . . . 21

2.3 Randomized Algorithms . 21

2.4 Stochastic Digital and Analog Computing 23

2.5 Probabilistic Programming 26

3 Computation, Energy, and Noise 28

3.1 Devices Use Energy to Guard against Faults 29

3.2 Types and Sources of Noise and Faults 29

3.3 Traditional Fault-Tolerant Systems 34

ii

Full text available at: http://dx.doi.org/10.1561/1000000049

iii

4 Tolerating Errors in Outputs 40

4.1 Human Perception of Color 42

4.2 Quantifying Errors in Images 43

4.3 Display Technology . 44

4.4 Exploiting Perception for Display Energy Efficiency 45

4.5 Exploiting Perceptual Flexibility in End-To-End Systems . . 48

5 Tolerating Errors in Inputs 50

5.1 Lax . 51

5.2 VDBS Encoding . 61

5.3 End-to-end Evaluation . 77

6 Conclusion 82

References 84

Full text available at: http://dx.doi.org/10.1561/1000000049

Abstract

This survey explores the theory and practice of techniques to make computing

systems faster or more energy-efficient by allowing them to make controlled

errors. In the same way that systems which only use as much energy as nec-

essary are referred to as being energy-efficient, you can think of the class of

systems addressed by this survey as being error-efficient: They only prevent

as many errors as they need to. The definition of what constitutes an error

varies across the parts of a system. And the errors which are acceptable de-

pend on the application at hand.

In computing systems, making errors, when behaving correctly would be

too expensive, can conserve resources. The resources conserved may be time:

By making some errors, systems may be faster. The resource may also be

energy: A system may use less power from its batteries or from the electrical

grid by only avoiding certain errors while tolerating benign errors that are

associated with reduced power consumption. The resource in question may be

an even more abstract quantity such as consistency of ordering of the outputs

of a system.

This survey is for anyone interested in an end-to-end view of one set of

techniques that address the theory and practice of making computing systems

more efficient by trading errors for improved efficiency.

P. Stanley-Marbell and M. Rinard. Error-Efficient Computing Systems. Foundations and

Trends® in Electronic Design Automation, vol. 11, no. 4, pp. 362–461, 2017.

DOI: 10.1561/1000000049.

Full text available at: http://dx.doi.org/10.1561/1000000049

1

Introduction

All software eventually works;

all hardware eventually fails.

— Clod Berrera.

This review explores the theory and practice of techniques to make computing

systems faster or more energy-efficient by allowing them to make controlled

errors. In the same way that systems which only use as much energy as nec-

essary are referred to as being energy-efficient, you can think of the class of

systems addressed by this review as being error-efficient: they only prevent

as many errors as they need to.

There are numerous related fields relevant to understanding, designing,

and evaluating systems which trade controlled errors for improved perfor-

mance or energy efficiency. These related fields range from sub-areas of com-

puter science, electrical engineering, and materials science, to applied math-

ematics and psychophysics (the study of perception). There are numerous

techniques proposed by researchers in these diverse areas, with a vibrant and

growing body of research results. This review focuses on two elements:

• Fundamental concepts that underpin any exploration of errors, time-

efficiency (i.e., performance), and energy efficiency. These concepts

2

Full text available at: http://dx.doi.org/10.1561/1000000049

1.1. The Cost of Correctness 3

have been developed over many decades in areas ranging from numer-

ical analysis to the physics of semiconductor device behavior.

• Practical hardware and software implementations of error-efficient

techniques to reduce energy usage in either practical engineering ap-

plications or experimental research platforms.

Throughout the review, we will focus specifically on the interplay between

errors and the effects of errors as processed by human perception.

1.1 The Cost of Correctness

In computing systems, making errors when behaving correctly would be too

expensive can conserve resources. The resources conserved in doing so may

be time: by making some errors, they may be faster. The resource may also be

energy: a system may use less power from its batteries or from the electrical

grid by only avoiding certain errors while tolerating benign errors that are

associated with reduced power consumption. The resource in question may be

an even more abstract quantity such as consistency of ordering of the outputs

of the system in question.

Which errors are acceptable depends on the application. The degree to

which resources such as time or energy can be conserved likewise depends

on the design of the computing system. And there are many different kinds of

deviations in behavior which can be classified as “errors”. This Chapter pro-

vides an overview of the landscape of the applications, computing systems,

and techniques that can be used to trade improved efficiency in exchange for

occasional errors.

1.2 Historical Context

All hardware eventually fails. Reducing the likelihood of failure and the ef-

fects of failure comes at the cost of time, energy, or space. Making computing

hardware more reliable was particularly important when the dominant appli-

cations of computing systems were in controlling weaponry and in financial

applications. Today however, a large fraction of computing systems generate

output solely for visual consumption.

Early computing systems based on vacuum tubes provided improvements

in switching speed over their predecessors which were based on mechanical

Full text available at: http://dx.doi.org/10.1561/1000000049

4 Introduction

relays. They however also failed frequently: Failure rates in early vacuum-

tube-based systems were as high as once every eight hours [von Neumann,

1956]. Because the possibility of intermittent and permanent failures has al-

ways been present in computing systems, the design of the basic elements

of computation has evolved over time to inherently attempt to counteract the

effects of failures.

One of the most fundamental techniques for dealing with the most ba-

sic source of failures (environmental noise) is to use digital logic, instead of

performing computation directly in the analog signal domain. There is a rich

body of work studying the tradeoffs between digital and analog computation,

as well as on techniques to reduce both manufacture-time defects and runtime

faults [Bushnell and Agrawal, 2000].

Redundancy, either in energy, space, or time, is a common approach used

in digital logic to overcome the effects of noise. Error-correcting codes [Ham-

ming, 1950] use redundancy in the representation of information to make it

possible to detect and correct errors; the particular kinds and numbers of er-

rors that can be detected and corrected depend on the amount of redundancy

employed.

At a coarser grain, redundancy is also employed across complete com-

puting systems, such as by replicating entire processors, complete servers,

or even by replicating clusters and data centers. The challenges involved in

such fault-tolerant computing systems are also the subject of a rich area of

study [Avižienis et al., 2004].

Unlike traditional applications of computing systems, many modern ap-

plications of computation are in situations where the inputs to the system are

from sources which are themselves noisy, unlike the inputs to a payroll appli-

cation. Examples are the computations on sensor values in the many variants

of health-tracking wearables. Similarly, the outputs of many applications are

primarily for consumption via the human visual channel; an example is the

rendering of images for a display. These applications could of course continue

to be implemented with the level of redundancy used to guard against errors

in traditional applications. Employing redundancy in space, time, and energy,

independent of the needs of individual applications would likely have contin-

ued to be the way all computing systems are built. However, as the amount of

energy used in a single logic operation reduced over time due to semiconduc-

Full text available at: http://dx.doi.org/10.1561/1000000049

1.3. Why Precision Matters in Many Numerical Computations 5

tor process technology improvements, the overhead of the redundancy has

become significant.

In those applications which do not require the same extremely low levels

of errors, it is therefore now interesting to design systems which can trade

errors for efficiency. And it is possible to go even further, to induce controlled

amounts of errors if doing so would enable simpler, faster, cheaper, or more

energy-efficient computing systems.

1.3 Why Precision Matters in Many Numerical Computations

There are many important computations whose implementations require care-

ful attention to numerical stability, however few implementors of large-scale

scientific computations have deep knowledge of numerical analysis. In the

absence of such expertise, an alternative is to employ greater numerical pre-

cision [Bailey, 2005]. Because there are few automated techniques for trans-

forming applications to improve their numerical stability [Panchekha et al.,

2015], high-precision computations will continue to be important for a large

class of applications. One example of a system where higher precision was

used as an expedient solution to numerical instability is illustrated in the work

of He and Ding [2001], who showed how problems with the reproducibility

of climate-modeling applications could be eliminated by switching to using

128-bit floating-point arithmetic. A central theme throughout this review is

that the types and magnitudes of errors permissible in an application must al-

ways be considered in the context of the tradeoff between errors and resource

usage: a technique should permit only as many errors as an application and

context can tolerate. Techniques should weigh permitted errors against the

improvement in resource usage obtained from permitting errors. One way to

achieve this in numerical simulations is to use multiple levels of precision

across the phases of computations.

One cause of numerical instability in the presence of errors is that most

general-purpose computations have great arithmetic depth [von Neumann

and Kurzweil, 2012]. Small errors may therefore get amplified across the

steps of a computation.

Full text available at: http://dx.doi.org/10.1561/1000000049

6 Introduction

1.4 Why Some Applications Can Tolerate Errors

Despite the fact that many applications cannot tolerate any errors in their

computations, there are also many applications which can. Typically, the ap-

plications that can tolerate errors are those that either:

1. Operate on noisy inputs (e.g., readings from sensors).

2. Have computation outputs requiring limited precision, e.g., because

they are consumed primarily by human vision.

3. Employ iterative or self-policing algorithms. Examples of such algo-

rithms are iterative methods where the computation will still produce

the correct output in the presence of errors, provided that the compu-

tation makes progress in the right direction (on average) during each

iteration.

4. Do not have data-dependent control-flow.

1.5 Examples of Improving Efficiency by Permitting Errors

Because displays account for a large fraction of the power dissipation in pop-

ular computing platforms such as mobile phones and wearable devices, trad-

ing errors for reduced resource usage in displays is an interesting prospect.

Organic light-emitting diode (OLED) displays present an interesting oppor-

tunity for trading errors for efficiency: Unlike traditional LCD displays, their

power dissipation varies significantly as a function of the content displayed.

It is therefore possible to purposefully introduce errors into displayed images

to reduce the display’s power consumption. The earliest examples of such

approaches were originated by Dong et al. [2009a] and Dong et al. [2009b],

who developed several of the first techniques for trading display power for

visual fidelity in OLED displays. Recent research has developed more effi-

cient techniques as well as new approaches that analyze and transform both

the color and shape content of the rendered images to save power.

Figure 1.1 shows two variants of the same image, which differ in power

dissipation by over 40% when displayed on a representative commercial

OLED display panel. The image and corresponding shape and color trans-

formations to reduce power dissipation on displays that behave similar to

OLEDs were generated using the Crayon system [Stanley-Marbell et al.,

Full text available at: http://dx.doi.org/10.1561/1000000049

1.5. Examples of Improving Efficiency by Permitting Errors 7

Figure 1.1: The image on the right dissipates more than 40% lower power than the one on the

left when shown on OLED displays.

0%

20%

00%↓00%↓

Tolerable

Deviation

Image

A
Transition

Reduction

Image

B
OCR

Text

“EXIT”

“”

Transition

Reduction

OCR

Text

“centre”

“centre”

73%↓ 73%↓

10% “LTXIT”“centre” 66%↓ 61%↓

Figure 1.2: Encoding values so that they dissipate less power when transmitted can lead to sig-

nificant power reductions before they begin to affect optical character recognition algorithms.

This is despite the fact that the encoded images look very different to the human eye.

2016]. The difference between the original image and the modified one is

that areas of the gray regions in the latter are reduced by 25% and the col-

ors have been modified slightly. Chapter 4 explores techniques for exploiting

tolerance in outputs in more depth.

Not all systems have displays however. In the increasingly important do-

main of embedded sensor-driven systems, because the power dissipated in the

digital logic components has continued to drop over the years, a significant

fraction of the system’s energy usage can result from the activation of sen-

sors and the retrieval of data from them over their electrical communication

interfaces.

Figure 1.2 shows how techniques that reduce the energy cost of trans-

missions by lossy encoding of the data can enable significant reductions in

the energy required for transmitting the data. However, when the algorithms

consuming the encoded data can tolerate the types of errors introduced by

the encoding, they lead to minimal application-level errors, even though the

perceived visual distortion may seem significant to the human eye.

Full text available at: http://dx.doi.org/10.1561/1000000049

8 Introduction

Even though tolerating errors in the inputs and output communication of

algorithms can be exposed in the syntax of programming languages [Stanley-

Marbell and Marculescu, 2006], tolerating errors in the steps of algorithms

is much more involved when compared to tolerating errors in the data algo-

rithms process or errors in their outputs. Approaches to tackling this chal-

lenge range from annotating individual variables in algorithms as being ones

that can tolerate errors (or not) [Sampson et al., 2011], annotating variables

corresponding to the outputs of functions to specify which ones are permitted

to incur errors [Misailovic et al., 2014], and using program analysis tech-

niques to provide guarantees about the effects of errors as they propagate

through the algorithm [Carbin et al., 2013].

An alternative to providing specifications of the tolerable input or output

error is to specify how much error is acceptable in the relation between inputs

and outputs. Figure 1.3 illustrates the formal specification of the computation

task of partial sorting, along with an example of an input-output pair that con-

forms to this computation behavior. This problem of obtaining a partial sort

occurs in real applications: Partial sorting accounts for over 24% of the exe-

cution time of one popular discrete-event simulator [Jongerius et al., 2014].

One exciting open area of research is to synthesize algorithms (or hardware)

that conform to such computation specifications and that permit some degree

of error in the relation between their inputs and outputs.

1.6 Fundamental Physical Limits, Energy, and Noise

Computing systems are designed to avoid errors at all levels1, from copying

data from registers to their transmission to other systems or different proces-

sors. They prevent errors for all applications and, as a result, require error-

correcting coding techniques at all levels; this introduces overheads that are

unnecessary in some cases.

Because the traditional mechanisms for improving the density and power

consumption of computing systems are reaching fundamental physical lim-

its [Bennett and Landauer, 1985], there has been an increased interest in re-

cent years to develop techniques to explore trading correctness for some tan-

gible improvement in a system, such as improved speed or improved energy

efficiency. Figure 1.4(a) shows the reduction in the energy required per bit of

1Within the limit of economic and performance constraints

Full text available at: http://dx.doi.org/10.1561/1000000049

1.6. Fundamental Physical Limits, Energy, and Noise 9

(a)

(b)

Figure 1.3: Computation specification (a) for the computation that sorts a sequence of in-

tegers, expressed in the Sal low-level computation specification language Stanley-Marbell

[2010] and its output (b).

information processing, over several decades. Because the diminishing op-

portunities to reduce power consumption of computing systems is largely due

to power delivery and cooling limitations, these challenges are unlikely to be

easily resolved in the near future2, making the exploration of error-efficient

systems ever more important in the future.

The underlying physical phenomenon permitting such energy versus cor-

rectness tradeoffs is well understood: For a device technology to be useful

in constructing computational systems in which logic devices are linked to-

gether by non-ideal conductors, it must exhibit the property of gain (amplifi-

cation) [Keyes, 1985]. This amplification requires an input energy source and

the extent to which amplification occurs affects the likelihood of errors due

to noise. If some amount of noise is tolerable, its presence can be traded for

energy efficiency or performance.

2Supply voltage scaling across technology nodes has ceased, as Figure 1.4(b) shows

Full text available at: http://dx.doi.org/10.1561/1000000049

10 Introduction

���� ���� ���� ���� ����

����

���
���
���

����

�
���

��
��

��
� �

·�
·�
�
�

(a)

�� ��� ��� ����
��

��

��

��

���

������� �������� (��)

��
��

��
��

���
��

��
��

(�
)

(b)

Figure 1.4: (a) The energy per logic transition in traditional circuit techniques is approaching

the fundamental thermodynamic limit of kT ln 2 Joules per bit of information (i.e., an ordinate

value of 1 in (a) by ~2030). (b) One reason why energy usage in traditional CMOS logic is

no longer scaling down, is that it is no longer feasible to decrease supply voltages. In both

plots, the red points are published design data and the black points are the averages at a given

abscissa [Stanley-Marbell et al., 2011].

1.7 Hardware and Software Systems That Exploit Errors

Techniques to improve system dependability have traditionally taken the ap-

proach of hiding (masking) faults in the hardware data-path and control-flow

with spatial and temporal redundancy. Such an approach is desirable when

there must be no change of system behavior in the presence of faults, except,

perhaps, for a change in performance.

Applications of computing systems such as signal processing (in desktops

and workstations), and sensor-driven applications (in embedded systems) of-

ten drive outputs that are only directly perceived by humans (e.g., the out-

puts of audio and video processing), or have inputs that are taken from noisy

analog sources (e.g., in sensor network applications). In such applications,

programs can often tolerate some amount of “going-wrong”. In particular,

small deviations in values may be tolerable, and this is already exploited by

some lossy compression algorithms for images (e.g., JPEG [Wallace, 1991]),

audio, and video.

In many emerging applications of the recent decade, however, computing

is moving from the sole purview of commercial business transaction manage-

ment to more personal and pervasive applications such as embedded sensing

and entertainment. In some of these new applications, such as embedded au-

Full text available at: http://dx.doi.org/10.1561/1000000049

1.7. Hardware and Software Systems That Exploit Errors 11

tomotive control, there are still stringent requirements on correctness of ma-

chine state and computation. However, in many new applications, the need to

maintain perfect error-free computation no longer exists.

As a result of these changes in applications of computing, a number of

parallel research efforts have begun in recent years to explore ways to reduce

the restrictions of perfect machine state. These efforts have ranged across:

• Reducing the number of bits used to represent data values and

datapaths, either in storing those values or in synthesizing reduced-

precision or reduced-accuracy logic in order to save energy (§ 1.7.1).

• Explicitly exploiting human perception to reduce resource usage

(§ 1.7.2).

• Circuits that perform logic operations on probability distributions

of values, rather than on unitary instance values (§ 1.7.3).

• Hardware and software architectures for counteracting the effects

of soft errors (§ 1.7.4).

• Architectures that assume applications can tolerate errors in com-

putation or timing, but have no contract with software on the permissi-

ble laxity (§ 1.7.5).

• Programming languages and runtime systems that incorporate an-

notation of imprecision in program state or operations, or exploit tol-

eration of errors by applications (§ 1.7.6).

• Investigation of application domains that can tolerate various

forms of computation errors or imprecision, in computation or state

(§ 1.7.7).

These existing efforts have, however, mostly focused either only on adapting

hardware independent of applications’ requirements, or vice versa.

1.7.1 Reducing representation precision in values and datapaths

The earliest efforts at harnessing potential tolerance of imprecision, at the

hardware level, involved reducing the number of bits used in both inte-

Full text available at: http://dx.doi.org/10.1561/1000000049

12 Introduction

ger [Stephenson et al., 2000] and floating-point [Tong et al., 2000] represen-

tations. These efforts were not based on explicit information exposed by, or

extracted from programs, but rather, on the assumption that signal-processing

applications inherently deal with values obtained from noisy real-world mea-

surements, and that real-number representations in computers are inherently

approximations. Techniques that reduce the bit-level precision of arithmetic,

and those that expose notions of incorrectness at the language level must con-

tend with issues of numerical analysis. Kulisch [2008] provides a thorough

background on the interaction between numerics of computation and the ar-

chitectures that facilitate computing. In reducing the number of bits however,

while the precision or dynamic range (or both) are reduced, computation pro-

ceeds deterministically and independent of the properties (value distributions)

due to the applications it executes.

An alternative approach to simply providing reduced precision indepen-

dent of application properties, is to synthesize logic circuits based on the

distributions of values and the tolerance to reduced accuracy of specific ap-

plications, as investigated by Lingamneni et al. [2013]

1.7.2 Explicitly exploiting human perception

When the results of computation are consumed by the human aural or visual

system, variations in accuracy, precision, or reliability may not always be per-

ceptible. Such variations can be exploited directly in the generation of audio

or display of results, for lower-energy, faster, or cheaper output devices (e.g.,

displays). For example, for displays, a few research efforts have investigated

exploiting the variability in human sensitivity across the color spectrum. This

phenomenon has been exploited to reduce power dissipation in OLED dis-

plays [Dong et al., 2009a, Zhao et al., 2013, Shin et al., 2011, Dong and

Zhong, 2011, Harter et al., 2004, Li et al., 2014, Tan et al., 2013] as well

as in those traditional LCDs that have coarse-grained controllable backlight-

ing [Chuang et al., 2009]. Even when the results are consumed by non-human

entities such as control systems, some amount of tolerance to imprecision, in-

accuracy, and unreliability may still exist.

The interfaces for surfacing perceptual signals, such as displays and au-

dio, contribute an increasing fraction of system energy usage in wearable

and mobile systems. Because the phenomena underlying their operation (e.g.,

Full text available at: http://dx.doi.org/10.1561/1000000049

1.7. Hardware and Software Systems That Exploit Errors 13

photon generation, mechanical displacement) are less amenable to improve-

ments in transistor properties than computation is, their relative importance

will likely grow in the future. Chapter 4 explores these concepts and imple-

mentations in more detail.

1.7.3 Probabilistic computation, probabilistic programming, and

computing on probability distributions

In the traditional uses of probability in programming languages, the compo-

nent which is probabilistic is the behavior of a computation, or a composition

of concurrent processes [Stark and Smolka, 2000]. These approaches range

from the introduction of randomness into algorithms [M. O. Rabin, 1976],

the analysis of the behavior of randomized algorithms [Pnueli, 1983], and

logics for probabilistic programs [Reif, 1980], to probabilistic parallel pro-

grams [Rao, 1994].

An alternative to the deterministic behavior of logic in hardware, whether

of standard or of reduced precision, is to either employ randomness in the

execution of hardware (to perform logic operations probabilistically [Palem,

2005, George et al., 2006]), or to consider the values of machine state due to

executing applications, not as fixed instance values, but rather as probability

distributions [Shanbhag et al., 2010, Vigoda et al., 2010, Vigoda, 2003]. The

latter approach yields architectures that can be considered as forms of analog

(as opposed to digital) computers.

1.7.4 Hardware and software architectures for counteracting the ef-

fects of soft errors

In the last decade, the observation that different applications (or classes

thereof) may have differing tolerance to faults has been investigated [Wong

and Horowitz, 2006], as have the possibility of applying different amounts of

traditional software-based fault-tolerance techniques to different portions of

an application [Reis et al., 2005a], as well as the influence of different hard-

ware structures on the masking versus manifestation of faults as errors. These

prior efforts, while recognizing the varying requirements for fault tolerance

in applications and in hardware, have not attempted to tradeoff correctness

for overheads.

There have been attempts to formalize the effects of soft-errors on the be-

havior of programs [Walker et al., 2006]. The model addressed in this recent

work is one in which the goal is to attempt to nullify the effect of soft-errors

Full text available at: http://dx.doi.org/10.1561/1000000049

14 Introduction

(faults), by redundant computation.

The observation that different portions of programs or of hardware may

require differing amounts of fault-protection has previously been applied to

reduce the implementation overheads of hardware systems. This observation

has been extended to phases of programs [Reis et al., 2005c] as well as to

the design of error-resilient processor architectures and silicon implementa-

tions [Leem et al., 2010, Bau et al., 2007, Borodin et al., 2009, Rhod et al.,

2007, Mehrara et al., 2007].

Several research efforts have explored adding architectural support for

low-overhead detection and correction of the effects of soft errors, such as

the software anomaly treatment (SWAT) system and its derivatives [Srini-

vasan et al., 2004], by determining the effect of soft errors in components of

processor microarchitectures on application behavior [Li et al., 2005, 2008].

Purely-software-based approaches can also be used to trade correctness for

speed or reduced resource usage. Two examples of such approaches include

loop perforation [Sidiroglou-Douskos et al., 2011], and relaxing locking re-

quirements in GPU kernels [Samadi et al., 2013].

1.7.5 “Better-than-worst-case” design and approximate hardware

architectures

In probabilistic computing architectures (§ 1.7.3), non-determinism is used

in a well-defined manner. This is in contrast to so-called better-than-worst-

case hardware architectures [Austin et al., 2005, Wagner and Bertacco, 2007,

Kahng et al., 2010], which aggressively bias system properties (e.g., power

supply voltage) into regimes which may furnish significant energy savings,

but increase the chance of failure. These architectures then use a variety of

methods (e.g., shadow latches in the Razor system [Austin et al., 2004]) for

ensuring infrequently-occurring erroneous state is not committed to final ar-

chitectural state, or that critical data is not adversely affected (e.g., by reduc-

ing DRAM refresh rates, but only for non-critical data, in the Flicker sys-

tem [Liu et al., 2009]).

Taking the idea of better-than-worst-case design further, are a class of

architectures that argue that permitting occasional errors can reduce power

consumption. When these platforms rely on applications and system soft-

ware to deal appropriately with the errors that may result, we will refer to the

Full text available at: http://dx.doi.org/10.1561/1000000049

1.7. Hardware and Software Systems That Exploit Errors 15

platforms as approximate hardware. Examples of such approximate hardware

range from processor architectures (or parts of processors such as ALUs) [Es-

maeilzadeh et al., 2012b, Lingamneni et al., 2012], to complete accelera-

tors [Esmaeilzadeh et al., 2012a, George et al., 2006, Sartori and Kumar,

2013], and to portions of the memory hierarchy [Sampson et al., 2013, Liu

et al., 2009, Xu et al., 2004]. Techniques for approximation can be applied in-

dividually, or can be employed as part of a control system [Hoffmann, 2015]

to ensure that a target energy reduction or accuracy constraint is satisfied.

As one example of these architectures, Truffle [Esmaeilzadeh et al.,

2012a] defines an architecture in which individual operations (arithmetic in-

struction, memory accesses, etc.) may individually fail catastrophically with

some probability, the rate at which they do so exhibiting a tradeoff with the

amount of energy used. The manner in which this tradeoff is obtained is via

the ability to set processor state and logic into a voltage-over-scaled (unre-

liable but energy-saving) state, with cycle-level granularity. Truffle relies on

the programming language, compiler, and operating system to ensure that

only individual instructions that can tolerate being in error are executed in the

unreliable mode, and that unreliable state is appropriately quarantined from

reliable state, with flow of data between reliable and unreliable computation

obeying a well-defined set of constraints.

1.7.6 Programming languages and runtime systems

Program-level annotation provides an alternative to relegating to hardware

all decisions about what machine state’s accuracy can be traded for energy

efficiency or performance. Language-level specification of tolerable impreci-

sion has ranged from the specification of coarse regions of application code

that can, in some broad sense, tolerate errors [Reis et al., 2005c, Walker

et al., 2006, Baek and Chilimbi, 2010], memory locations that contain criti-

cal data [Pattabiraman et al., 2008], to the elision of loop iterations to trade-

off fidelity of computation results for energy efficiency or performance [Ri-

nard et al., 2010, Rinard, 2006]. Program-level annotations of required pre-

cision such as the annotations provided by the EnerJ Java extension [Samp-

son et al., 2011] as well as tools to infer guarantees on correctness based on

static program analysis [Carbin et al., 2013]. Detailed language-level facili-

ties for specifying imprecision at the level of data types [Stanley-Marbell and

Full text available at: http://dx.doi.org/10.1561/1000000049

16 Introduction

Marculescu, 2006] have also been developed, and extended to the declarative

specification of the computation performed by a given subroutine, incorpo-

rating properties of imprecision [Stanley-Marbell, 2010].

1.7.7 Applications of “good-enough” computation in algorithms

and software that are naturally resilient to errors

Given the aforementioned techniques for reduced precision arithmetic

(§ 1.7.1), probabilistic computation (§ 1.7.3), hardware architectures and soft-

ware techniques that take license with correctness (§ 1.7.4 and § 1.7.5), and

language-level facilities for specifying how much incorrectness applications

can tolerate (§ 1.7.6), a natural question is, which applications can best har-

ness the possibilities afforded by these hardware and software innovations?

Several proposals for potential application of such “good-enough” computa-

tion have been made in the research literature [Chakradhar and Raghunathan,

2010, Chippa et al., 2010, Breuer, 2010, 2005a, Meng et al., 2009, Chong and

Ortega, 2007, Li and Yeung, 2007, Mohapatra et al., 2009, Breuer, 2005b,

Salesin et al., 1989], however no consensus yet exists on a standard set of

applications for evaluating proposed hardware and software techniques. Sim-

ilarly, no commonly agreed-upon metrics exist for evaluating the degree to

which behavior of benchmarks may deviate from correctness. Recent work

has however taken an important step in this direction [Akturk et al., 2015].

One class of applications in which errors in computation are often tolera-

ble is signal processing applications. This observation motivated some of the

earliest work in trading correctness for performance and power from the work

of Shanbhag on ANT [Hegde and Shanbhag, 1999, Shanbhag, 2002, Varatkar

et al., 2009, Shanbhag et al., 2010], to silicon implementations of approxi-

mate signal processing from Amirtharajah and Chandrakasan [Amirtharajah

and Chandrakasan, 2004] and Guo [Guo et al., 2006].

In addition to errors in values and control flow of computations, errors

may occur in the timing of actions driven by computation, or in the latencies

expected from computation. The term imprecise computation was coined in

the nineties to denote real-time computing systems in which some deviation

from temporal correctness was tolerable [Budin et al., 2004, Hull and Liu,

1993, Liu et al., 1991, Shih and Liu, 1995, Aydın et al., Liu et al., 1994,

Kenny and Lin, 1991].

Full text available at: http://dx.doi.org/10.1561/1000000049

1.8. Outline of the Remainder of This Review 17

These efforts in computing systems and signal processing are of course

predated by a large body of work in numerical analysis, uncertainty quan-

tification (UQ) methods [Klir, 1994], tolerance graphs [Golumbic and Trenk,

2004], interval arithmetic [Hayes, 2003]), fuzzy logic and fuzzy set theory,

approximation and randomized algorithms and, of course, existing work on

in the broader field of fault-tolerant systems.

1.8 Outline of the Remainder of This Review

The present chapter provides a broad survey of the basic concepts explored in

further detail throughout the review. It addresses the question of why error-

efficient computing systems matter, and describes the context in which the

material of the review is situated. It surveys the general state of the art in this

area and positions the material of the review within it. Figure 1.5 summarizes

the research referenced in this chapter. Chapter 2 (Types of Errors and Ran-

domization) defines terminology, such as precision, accuracy, and reliability,

which recur throughout the review and in any discussion of errors and of error

efficiency. The definitions in Chapter 2 set the stage for the discussion of how

errors affect efficiency in computing systems, in Chapter 3 (Computation,

Energy, and Noise). Chapter 4 (Tolerating Errors in Outputs) addresses how

many systems tolerate errors in their outputs. For example, any visual output

that must be interpreted by a human may incur some amount of error before

being perceptible. Chapter 5 (Tolerating Errors in Inputs) discusses the com-

plementary problem of how many systems tolerate errors in their inputs. The

review concludes in Chapter 6.

Full text available at: http://dx.doi.org/10.1561/1000000049

18 Introduction

Varatkar '09

Golumbic et al. '04

Budin et al. '04

Stanley-Marbell '09

Chong et al. '07

Mehrara et al. '07

Rhod et al. '07

Guo et al. '06

Amirtharajah et al. '04

Choudhury et al. '07

Wagner et al. '07

Borodin et al. '09

Bau et al. '07

Leem et al. '10

Shanbhag et al. '10

Kahng et al. '10

Xu et al. '04 Breuer '10

Breuer '05

Chippa et al. '10

Hayes '03Chakradhar et al. '10

Shanbhag '02 Sampson et al. '11

Stanley-Marbell et al. '06

Pattabiraman et al. '08

Walker et al. '06

Reis et al. '05

George et al. '06

Austin et al. '04

Austin et al. '05

Esmaeilzadeh '12Palem '05

Rinard et al. '10Stephenson et al. '00

Baek et al. '10Bossen et al. '02

Esmaeilzadeh et al. '12Chardonnereau et al. '02

Sampson et al. '13Saggese et al. '05

Liu et al. '09Sundaramoorthy et al. '00

Vigoda et al. '10Weaver et al. '01

Sidiroglou-Douskos et al. '11Ray et al. '01

Miskov-Zivanov et al. '06

Samadi et al. '13Reis et al. '05

Liu et al. '94 Kulisch '08Oh et al. '02

Klir '94 Stark et al. '00 Hoffmann '15Koren et al. '07

Shih et al. '95 Cover et al. '06 Fairchild '13

Kenny et al. '91 Tong et al. '00 Hou '06 Weisheimer et al. '14.

Liu et al. '91 Bushnell et al. '00 Shin et al. '11

Salesin et al. '89 Avižienis et al. '04 Zhao et al. '13

Reif '80 Cover et al. '91 Austin et al. '04 Lingamneni et al. '13

Hull et al. '93Shannon '59 Chandy et al. '85 Wong et al. '06.Panchekha et al. '15.

Pnueli '83von Neumann '56 Siewiorek et al. '92 Austin et al. '05Carbin et al. '13a

Rabin '76 Avizeinis '85 Verghese '92Eriksen et al. '55 Bailey '05 Misailovic et al. '14

Shannon et al. '63 Borgerson et al. '75Miller '56 Cleveland '84 Wallace '91 He et al. '01. Dong et al. '09bHamming '50

���� ���� ���� ���� ���� ���� ���� ����

Figure 1.5: Timeline of referenced work in this chapter, listed by author.

Full text available at: http://dx.doi.org/10.1561/1000000049

References

Ismail Akturk, Karen Khatamifard, and Ulya R Karpuzcu. On quantification of accu-

racy loss in approximate computing. In Workshop on Duplicating, Deconstructing

and Debunking (WDDD), pages 15–, 2015.

Armin Alaghi and John P. Hayes. Survey of stochastic computing. ACM Trans.

Embed. Comput. Syst., 12(2s):92:1–92:19, May 2013.

Andres Albanese, Johannes Blömer, Jeff Edmonds, Michael Luby, and Madhu Su-

dan. Priority encoding transmission. Information Theory, IEEE Transactions on,

42(6):1737–1744, 1996.

R. Amirtharajah and A. P. Chandrakasan. A micropower programmable DSP using

approximate signal processing based on distributed arithmetic. IEEE Journal of

Solid-State Circuits, 39(2):337–347, 2004.

Analog Devices. ADXL362 Micropower, 3-Axis, ±2 g / ±4 g / ±8 g Digital Output

MEMS Accelerometer, Data Sheet, 2014.

Bhojan Anand, Karthik Thirugnanam, Jeena Sebastian, Pravein G. Kannan, Akhi-

hebbal L. Ananda, Mun Choon Chan, and Rajesh Krishna Balan. Adaptive display

power management for mobile games. In Proceedings of the 9th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages

57–70, New York, NY, USA, 2011. ACM.

Todd Austin, David Blaauw, Trevor Mudge, and Krisztián Flautner. Making typical

silicon matter with razor. Computer, 37:57–65, March 2004.

84

Full text available at: http://dx.doi.org/10.1561/1000000049

References 85

Todd Austin, Valeria Bertacco, David Blaauw, and Trevor Mudge. Opportunities

and challenges for better than worst-case design. In Proceedings of the 2005 Asia

and South Pacific Design Automation Conference, ASP-DAC ’05, pages 2–7, New

York, NY, USA, 2005. ACM.

A. Avizeinis. The N-Version Approach to Fault-Tolerant Software. IEEE Transac-

tions of Software Engineering, SE-11(12):1491–1501, December 1985.

A. Avižienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-

omy of dependable and secure computing. IEEE transactions on dependable and

secure computing, pages 11–33, 2004.

H. Aydın, R. Melhem, and D. Mossé. Incorporating Error Recovery into the Im-

precise Computation Model. In The Sixth International Conference on Real-Time

Computing Systems and Applications (RTCSA ’99).

Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting energy-

conscious programming using controlled approximation. In Proceedings of the

2010 ACM SIGPLAN conference on Programming language design and imple-

mentation, PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

Yu Bai and Mingjie Lin. Energy-efficient discrete signal processing with field pro-

grammable analog arrays (fpaas). In Proceedings of the 2015 ACM/SIGDA In-

ternational Symposium on Field-Programmable Gate Arrays, FPGA ’15, pages

84–93, New York, NY, USA, 2015. ACM.

David H Bailey. High-precision floating-point arithmetic in scientific computation.

Computing in science & engineering, 7(3):54–61, 2005.

J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha, and A.R. Adl-Tabatabai. Er-

ror resilient system architecture (ERSA) for probabilistic applications. In IEEE

Workshop on Silicon Errors in Logic-System Effects, SELSE, 2007.

Robert C. Baumann. Radiation-Induced Soft Errors in Advanced Semiconductor

Technologies. 5(3):305–316, September 2005.

Charles H Bennett and Rolf Landauer. The fundamental physical limits of computa-

tion. Scientific American, 253(1):48–56, 1985.

Florian Benz, Andreas Hildebrandt, and Sebastian Hack. A dynamic program anal-

ysis to find floating-point accuracy problems. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’12, pages 453–462. ACM, 2012.

Toby Berger. Rate-distortion theory. Encyclopedia of Telecommunications, 1971.

B. R. Borgerson and R. F. Freitas. A reliability model for gracefully degrading and

standby-sparing systems. IEEE Transactions on Computers, c-24:517–525, May

1975.

Full text available at: http://dx.doi.org/10.1561/1000000049

86 References

Shekhar Borkar, Tanay Karnik, and Vivek De. Design and reliability challenges in

nanometer technologies. In Proceedings of the 41st annual conference on Design

automation, pages 75–75. ACM Press, 2004.

D. Borodin, B. H. H. B. Juurlink, S. Hamdioui, and S. Vassiliadis. Instruction-Level

Fault Tolerance Configurability. Journal of Signal Processing Systems, 57(1):

89–105, 2009.

Bosch Sensortec. BMX055 Small, Versatile 9-axis Sensor Module, Data Sheet,

November 2014.

Douglas C. Bossen, Joel M. Tendler, and Kevin Reick. Power4 system design for

high reliability. IEEE Micro, 22(2):16–24, 2002.

Melvin Breuer. Multi-media applications and imprecise computation. In Proceed-

ings of the 8th Euromicro Conference on Digital System Design, pages 2–7, Wash-

ington, DC, USA, 2005a. IEEE Computer Society.

Melvin Breuer. Hardware that produces bounded rather than exact results. In Pro-

ceedings of the 47th Design Automation Conference, DAC ’10, pages 871–876,

New York, NY, USA, 2010. ACM.

Melvin A. Breuer. Multi-media applications and imprecise computation. In Digital

Systems Design, Euromicro Symposium on, pages 2–7, Los Alamitos, CA, USA,

2005b. IEEE Computer Society.

L. Budin, D. Jakobović, and M. Golub. Genetic algorithms in real-time imprecise

computing. Journal of Computing and Information Technology, 8(3):249, 2004.

M. L. Bushnell and V. D. Agrawal. Essentials of electronic testing for digital, mem-

ory, and mixed-signal VLSI circuits. Springer Netherlands, 2000.

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando

Fox. Microreboot — a technique for cheap recovery. In Proceedings of the 6th

Conference on Symposium on Operating Systems Design & Implementation - Vol-

ume 6, OSDI’04, pages 31–44. USENIX Association, 2004.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative re-

liability for programs that execute on unreliable hardware. In Proceedings of the

2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications, OOPSLA ’13, pages 33–52, New York, NY,

USA, 2013. ACM.

Srimat T. Chakradhar and Anand Raghunathan. Best-effort computing: re-thinking

parallel software and hardware. In Proceedings of the 47th Design Automation

Conference, DAC ’10, pages 865–870, New York, NY, USA, 2010. ACM.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global

states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

Full text available at: http://dx.doi.org/10.1561/1000000049

References 87

Naehyuck Chang, Inseok Choi, and Hojun Shim. Dls: dynamic backlight luminance

scaling of liquid crystal display. Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, 12(8):837–846, Aug 2004.

Chardonnereau, Damien and Keulen, Raijmond and Nicolaidis, Michael and Dupont,

Eric and Torki, Kholdoun and Faure, Fabien and Velazco, Raoul. 32-Bit RISC

Processor Implementing Transient Fault-Tolerant Mechanisms and its Radiation

Test Campaign Results. In Single-Event Effects Symp., NASA, April 2002.

Xiang Chen, Yiran Chen, Zhan Ma, and Felix C. A. Fernandes. How is energy con-

sumed in smartphone display applications? In Proceedings of the 14th Workshop

on Mobile Computing Systems and Applications, HotMobile ’13, pages 3:1–3:6,

New York, NY, USA, 2013. ACM.

Xiang Chen, Kent W. Nixon, Hucheng Zhou, Yunxin Liu, and Yiran Chen. Finger-

shadow: An oled power optimization based on smartphone touch interactions. In

6th Workshop on Power-Aware Computing and Systems (HotPower 14), Broom-

field, CO, 2014. USENIX Association.

Wei-Chung Cheng, Yu Hou, and Massoud Pedram. Power minimization in a backlit

tft-lcd display by concurrent brightness and contrast scaling. In Proceedings of

the Conference on Design, Automation and Test in Europe - Volume 1, DATE ’04,

pages 10252–, Washington, DC, USA, 2004. IEEE Computer Society.

Wei-Chung Cheng, Chih-Fu Hsu, and Chain-Fu Chao. Temporal vision-guided en-

ergy minimization for portable displays. In Low Power Electronics and Design,

2006. ISLPED’06. Proceedings of the 2006 International Symposium on, pages

89–94, Oct 2006.

Vinay K. Chippa, Debabrata Mohapatra, Anand Raghunathan, Kaushik Roy, and

Srimat T. Chakradhar. Scalable effort hardware design: exploiting algorithmic

resilience for energy efficiency. In Proceedings of the 47th Design Automation

Conference, DAC ’10, pages 555–560, New York, NY, USA, 2010. ACM.

Ching-Te Chiu, Wen-Chih Huang, Chih-Hsing Lin, Wei-Chih Lai, and Ying-Fang

Tsao. Embedded transition inversion coding with low switching activity for serial

links. IEEE TVLSI, 21(10):1797–1810, October 2013.

Inseok Choi, Hojun Shim, and Naehyuck Chang. Low-power color tft lcd display for

hand-held embedded systems. In Proceedings of the 2002 International Sympo-

sium on Low Power Electronics and Design, ISLPED ’02, pages 112–117, New

York, NY, USA, 2002. ACM.

I. S. Chong and A. Ortega. Power Efficient Motion Estimation using Multiple Impre-

cise Metric Computations. In 2007 IEEE International Conference on Multimedia

and Expo, pages 2046–2049, 2007.

Full text available at: http://dx.doi.org/10.1561/1000000049

88 References

Johnson Chuang, Daniel Weiskopf, and Torsten Möller. Energy aware color sets.

Computer Graphics Forum, 28(2):203–211, 2009.

Cristian Constantinescu. Neutron ser characterization of microprocessors. In DSN

’05: Proceedings of the 2005 International Conference on Dependable Systems

and Networks (DSN’05), pages 754–759, Washington, DC, USA, 2005. IEEE

Computer Society.

Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley se-

ries in telecommunications. John Wiley & Sons, New York-Chichester-Brisbane-

Toronto-Singapore, 1991.

Pierre-Evariste Dagand, Andrew Baumann, and Timothy Roscoe. Filet-o-fish: Prac-

tical and dependable domain-specific languages for os development. In Proceed-

ings of the Fifth Workshop on Programming Languages and Operating Systems,

PLOS ’09, pages 5:1–5:5. ACM, 2009.

Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R

LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.

IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

Mian Dong and Lin Zhong. Chameleon: A color-adaptive web browser for mo-

bile oled displays. In Proceedings of the 9th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’11, pages 85–98, New York, NY,

USA, 2011. ACM.

Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power-saving color transfor-

mation of mobile graphical user interfaces on oled-based displays. In Proceedings

of the 2009 ACM/IEEE International Symposium on Low Power Electronics and

Design, ISLPED ’09, pages 339–342, New York, NY, USA, 2009a. ACM.

Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power modeling of graphi-

cal user interfaces on oled displays. In Proceedings of the 46th Annual Design

Automation Conference, DAC ’09, pages 652–657, New York, NY, USA, 2009b.

ACM.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture

support for disciplined approximate programming. In Proceedings of the Seven-

teenth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XVII, pages 301–312, New York, NY,

USA, 2012a. ACM.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceler-

ation for general-purpose approximate programs. In Proceedings of the 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-45,

pages 449–460, Washington, DC, USA, 2012b. IEEE Computer Society. .

Full text available at: http://dx.doi.org/10.1561/1000000049

References 89

Freescale Semiconductor. Kinetis KL03 32 KB Flash 48 MHz Cortex-M0+ Based

Microcontroller, Data Sheet, August 2014a.

Freescale Semiconductor. MMA8451Q 3-Axis, 14-bit/8-bit Digital Accelerometer,

Data Sheet, November 2014b.

J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic arithmetic and

energy efficient embedded signal processing. In Proceedings of the 2006 Interna-

tional Conference on Compilers, Architecture and Synthesis for Embedded Sys-

tems, CASES ’06, pages 158–168, New York, NY, USA, 2006. ACM.

Daniel T Gillespie. A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of computational physics, 22(4):

403–434, 1976.

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The

journal of physical chemistry, 81(25):2340–2361, 1977.

M. C. Golumbic and A. N. Trenk. Tolerance graphs. Cambridge Univ Pr, 2004.

Noah D. Goodman. The principles and practice of probabilistic programming. In

Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL ’13, pages 399–402, New York, NY,

USA, 2013. ACM.

Noah D. Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and

Joshua B Tenenbaum. Church: a language for generative models. arXiv preprint

arXiv:1206.3255, 2012.

Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio Russo, Johannes

Borgstrom, and John Guiver. Tabular: A schema-driven probabilistic program-

ming language. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’14, pages 321–334, New York,

NY, USA, 2014a. ACM. .

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Raja-

mani. Probabilistic programming. In Proceedings of the on Future of Software

Engineering, FOSE 2014, pages 167–181, New York, NY, USA, 2014b. ACM. .

L. Guo, M. Scott, and R. Amirtharajah. An energy scalable computational array for

sensor signal processing. In IEEE Custom Integrated Circuits Conference, 2006.

CICC’06, pages 317–320, 2006.

Richard W Hamming. Error detecting and error correcting codes. Bell System tech-

nical journal, 29(2):147–160, 1950.

Tim Harter, Sander Vroegindeweij, Erik Geelhoed, Meera Manahan, and

Parthasarathy Ranganathan. Energy-aware user interfaces: An evaluation of user

acceptance. In Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, CHI ’04, pages 199–206, New York, NY, USA, 2004. ACM.

Full text available at: http://dx.doi.org/10.1561/1000000049

90 References

B. Hayes. A lucid interval. American Scientist, 91(6):484–488, 2003.

Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical

reproducibility and stability in parallel applications. J. Supercomput., 18(3):259–

277, March 2001.

Rajamohana Hegde and Naresh R. Shanbhag. Energy-efficient signal processing via

algorithmic noise-tolerance. In Proceedings of the 1999 International Symposium

on Low Power Electronics and Design, ISLPED ’99, pages 30–35, New York, NY,

USA, 1999. ACM. .

William Heidergott. SEU Tolerant Device, Circuit and Processor Design. In DAC

’05: Proceedings of the 42nd annual conference on Design automation, pages

5–10, New York, NY, USA, 2005. ACM Press.

C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July 1961.

Henry Hoffmann. Jouleguard: Energy guarantees for approximate applications. In

Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,

pages 198–214, New York, NY, USA, 2015. ACM.

Robert W. Horst, Richard L. Harris, and Robert L. Jardine. Multiple instruction issue

in the NonStop cyclone processor. In ISCA ’90: Proceedings of the 17th annual

international symposium on Computer Architecture, pages 216–226, New York,

NY, USA, 1990. ACM Press.

D. Hull and J. Liu. ICS: A system for imprecise computations. In Proc. AIAA

Computing in Aerospace, volume 9, 1993.

Ali Iranli and Massoud Pedram. Dtm: Dynamic tone mapping for backlight scaling.

In Proceedings of the 42nd Annual Design Automation Conference, DAC ’05,

pages 612–617, New York, NY, USA, 2005. ACM.

Francois Jacquet. Design of SRAMs in Scaled CMOS Technologies. Seminar, Cen-

ter for Silicon System Implementation (CSSI), Carnegie Mellon University, 2006.

R. Jongerius, P. Stanley-Marbell, and H. Corporaal. Quantifying the Common Com-

putational Problems in Contemporary Applications (Extended version), 2014.

IBM Research Report RZ3885.

Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tolerating hardware

device failures in software. In Proceedings of the ACM SIGOPS 22Nd Symposium

on Operating Systems Principles, SOSP ’09, pages 59–72. ACM, 2009.

Andrew B. Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori. Recovery-

driven design: a power minimization methodology for error-tolerant processor

modules. In DAC ’10: Proceedings of the 47th Design Automation Conference,

pages 825–830, New York, NY, USA, 2010. ACM.

Full text available at: http://dx.doi.org/10.1561/1000000049

References 91

Kevin B. Kenny and Kwei-Jay Lin. Building flexible real-time systems using the

flex language. Computer, 24(5):70–78, 1991.

Robert W Keyes. What makes a good computer device? Science, 230(4722):138–

144, 1985.

G.J. Klir. The many faces of uncertainty. Machine Intelligence and Pattern Recog-

nition, 17:3–3, 1994.

I. Koren and C. M. Krishna. Fault Tolerant Systems. Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA, 2007.

U. Kulisch. Computer arithmetic and validity: theory, implementation, and applica-

tions. de Gruyter, 2008.

Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity recognition

using cell phone accelerometers. SIGKDD Explor. Newsl., 12(2):74–82, March

2011.

Edwin H Land. Color vision and the natural image. part i. Proceedings of the

National Academy of Sciences, 45(1):115–129, 1959a.

Edwin H Land. Color vision and the natural image part ii. Proceedings of the

National Academy of Sciences, 45(4):636–644, 1959b.

Edwin H Land. Experiments in color vision. Scientific American, 200(5):84, 1959c.

Edwin H Land. The retinex theory of color vision. Scientific American, 237(6):108,

1977.

Edwin H Land. Recent advances in retinex theory and some implications for cortical

computations: color vision and the natural image. Proceedings of the National

Academy of Sciences, 80(16):5163–5169, 1983.

Edwin H Land. An alternative technique for the computation of the designator in the

retinex theory of color vision. Proceedings of the national academy of sciences,

83(10):3078–3080, 1986.

L. Leem, H. Cho, J. Bau, Q.A. Jacobson, and S. Mitra. ERSA: Error Resilient System

Architecture for Probabilistic Applications. In Proc. Design Automation and Test

in Europe, 2010.

Ding Li, Angelica Huyen Tran, and William G. J. Halfond. Making web appli-

cations more energy efficient for oled smartphones. In Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, pages 527–538,

New York, NY, USA, 2014. ACM.

Ding Li, Angelica Huyen Tran, and William G. J. Halfond. Nyx: A display energy

optimizer for mobile web apps. In Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2015, pages 958–961, New

York, NY, USA, 2015. ACM.

Full text available at: http://dx.doi.org/10.1561/1000000049

92 References

Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V Adve,

Vikram S Adve, and Yuanyuan Zhou. Understanding the propagation of hard er-

rors to software and implications for resilient system design. In ACM SIGARCH

Computer Architecture News, volume 36, pages 265–276. ACM, 2008.

Xiaodong Li, Sarita V Adve, Pradip Bose, Jude Rivers, et al. Softarch: an

architecture-level tool for modeling and analyzing soft errors. In International

Conference on Dependable Systems and Networks (DSN 2005), pages 496–505.

IEEE, 2005.

Xuanhua Li and Donald Yeung. Application-level correctness and its impact on

fault tolerance. In Proceedings of the 13th International Symposium on High

Performance Computer Architecture, pages 181–192, 2007.

Michael D. Linderman, Matthew Ho, David L. Dill, Teresa H. Meng, and Garry P.

Nolan. Towards program optimization through automated analysis of numerical

precision. In Proceedings of the 8th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO ’10, pages 230–237. ACM, 2010.

Avinash Lingamneni, Kirthi Krishna Muntimadugu, Christian Enz, Richard M. Karp,

Krishna V. Palem, and Christian Piguet. Algorithmic methodologies for ultra-

efficient inexact architectures for sustaining technology scaling. In Proceedings

of the 9th Conference on Computing Frontiers, CF ’12, pages 3–12, New York,

NY, USA, 2012. ACM. .

Avinash Lingamneni, Christian Enz, Krishna Palem, and Christian Piguet. Synthe-

sizing parsimonious inexact circuits through probabilistic design techniques. ACM

Transactions on Embedded Computing Systems (TECS), 12(2s):93, 2013.

J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao. Algorithms

for scheduling imprecise computations. Computer, 24(5):58–68, 1991.

J. W. S. Liu, Wei-Kuan Shih, Kwei-Jay Lin, R. Bettati, and Jen-Yao Chung. Impre-

cise Computations. Proceedings of the IEEE, 82(1):83–94, January 1994.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flicker: Saving Refresh-

Power in Mobile Devices through Critical Data Partitioning. Technical Report

MSR-TR-2009-138, Microsoft Research, October 2009.

M. O. Rabin. Probabilistic Algorithms. In Algorithms and Complexity, pages 21 –

40, New York, NY, USA, 1976. Academic Press.

S. Mandal and R. Sarpeshkar. Circuit models of stochastic genetic networks. In

Biomedical Circuits and Systems Conference, 2009. BioCAS 2009. IEEE, pages

109–112, Nov 2009.

H. Bo Marr and Jennifer Hasler. Compiling probabilistic, bio-inspired circuits on a

field programmable analog array. Frontiers in Neuroscience, 8(86), 2014.

Full text available at: http://dx.doi.org/10.1561/1000000049

References 93

T. C. May and M. H. Woods. Alpha-particle-induced soft errors in dynamic memo-

ries. IEEE Trans. Elect. Dev., 26:2, 1979.

M. Mehrara, M. Attariyan, S. Shyam, K. Constantinides, V. Bertacco, and T. Austin.

Low-cost protection for SER upsets and silicon defects. In Design, Automation &

Test in Europe Conference & Exhibition, 2007. DATE’07, pages 1–6, 2007.

Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan. Best-effort parallel

execution framework for recognition and mining applications. In Parallel and

Distributed Processing Symposium, International, pages 1–12, Los Alamitos, CA,

USA, 2009. IEEE Computer Society.

Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Marlet, and Gilles

Muller. Devil: An idl for hardware programming. In Proceedings of the 4th Con-

ference on Symposium on Operating System Design & Implementation - Volume

4, OSDI’00, pages 2–2. USENIX Association, 2000.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard.

Chisel: reliability-and accuracy-aware optimization of approximate computational

kernels. In Proceedings of the 2014 ACM International Conference on Object Ori-

ented Programming Systems Languages & Applications, pages 309–328. ACM,

2014.

Natasa Miskov-Zivanov and Diana Marculescu. Mars-c: modeling and reduction of

soft errors in combinational circuits. In DAC ’06: Proceedings of the 43rd annual

conference on Design automation, pages 767–772, New York, NY, USA, 2006.

ACM Press.

Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to

estimate app energy consumption. In Proceedings of the 18th Annual Interna-

tional Conference on Mobile Computing and Networking, Mobicom ’12, pages

317–328, New York, NY, USA, 2012. ACM.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized al-

gorithms and probabilistic analysis. Cambridge University Press, 2005.

Debabrata Mohapatra, Georgios Karakonstantis, and Kaushik Roy. Significance

driven computation: a voltage-scalable, variation-aware, quality-tuning motion es-

timator. In ISLPED ’09: Proceedings of the 14th ACM/IEEE international sympo-

sium on Low power electronics and design, pages 195–200, New York, NY, USA,

2009. ACM.

Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman &

Hall/CRC, 2010.

Michael Nicolaidis and Damien Chardonnereau. Soft-Error Testing: Key Points.

Computer, 38(2):44 (sidebar), 2005.

Full text available at: http://dx.doi.org/10.1561/1000000049

94 References

NXP Semiconductors. UM10204, I2C-bus specification and user manual, April

2014.

Nahmsuk Oh, Subhasish Mitra, and Edward J. McCluskey. ED4I: Error detection by

diverse data and duplicated instructions. IEEE Trans. Computers, 51(2):180–199,

2002a.

Nahmsuk Oh, Philip Shirvani, and Edward J. McCluskey. Error detection by dupli-

cated instructions in super-scalar processors. IEEE Transactions on Reliability,

51(1):63–75, March 2002b.

Krishna V. Palem. Energy aware computing through probabilistic switching: A study

of limits. IEEE Trans. Comput., 54:1123–1137, September 2005.

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. Au-

tomatically improving accuracy for floating point expressions. In Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2015, pages 1–11, New York, NY, USA, 2015. ACM.

Sudeep Pasricha, Manev Luthra, Shivajit Mohapatra, Nikil Dutt, and Nalini Venkata-

subramanian. Dynamic backlight adaptation for low-power handheld devices.

IEEE design & test of computers, (5):398–405, 2004.

Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn. Samurai: protecting

critical data in unsafe languages. In Proceedings of the 3rd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2008, Eurosys ’08, pages 219–232,

New York, NY, USA, 2008. ACM.

Amir Pnueli. On the extremely fair treatment of probabilistic algorithms. In STOC

’83: Proceedings of the fifteenth annual ACM symposium on Theory of computing,

pages 278–290, New York, NY, USA, 1983. ACM Press.

Parthasarathy Ranganathan, Erik Geelhoed, Meera Manahan, and Ken Nicholas.

Energy-aware user interfaces and energy-adaptive displays. Computer, 39(3):31–

38, March 2006.

Josyula R. Rao. Reasoning about probabilistic parallel programs. ACM Trans. Pro-

gram. Lang. Syst., 16(3):798–842, 1994.

Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual use of superscalar datap-

ath for transient-fault detection and recovery. In Proceedings of the 34th annual

ACM/IEEE international symposium on Microarchitecture, pages 214–224. IEEE

Computer Society, 2001.

John H. Reif. Logics for probabilistic programming (extended abstract). In STOC

’80: Proceedings of the twelfth annual ACM symposium on Theory of computing,

pages 8–13, New York, NY, USA, 1980. ACM Press.

Full text available at: http://dx.doi.org/10.1561/1000000049

References 95

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I.

August. Swift: Software implemented fault tolerance. In CGO ’05: Proceedings

of the international symposium on Code generation and optimization, pages 243–

254, Washington, DC, USA, 2005a. IEEE Computer Society.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August,

and Shubhendu S. Mukherjee. Design and evaluation of hybrid fault-detection

systems. In ISCA ’05: Proceedings of the 32nd Annual International Symposium

on Computer Architecture, pages 148–159, Washington, DC, USA, 2005b. IEEE

Computer Society.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August,

and Shubhendu S. Mukherjee. Software-controlled fault tolerance. ACM Trans.

Archit. Code Optim., 2:366–396, December 2005c.

EL Rhod, CA Lisbôa, and L. Carro. A low-SER efficient core processor architecture

for future technologies. In Design, Automation & Test in Europe Conference &

Exhibition, 2007. DATE’07, pages 1–6, 2007.

S. V. Rice, H. Bunke, and T. A. Nartker. Classes of cost functions for string edit

distance. Algorithmica, 18(2):271–280, 1997.

Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that

discard tasks. In Proceedings of the 20th annual international conference on

Supercomputing, ICS ’06, pages 324–334, New York, NY, USA, 2006. ACM.

Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou. Patterns

and statistical analysis for understanding reduced resource computing. In Pro-

ceedings of the ACM international conference on Object oriented programming

systems languages and applications, OOPSLA ’10, pages 806–821, New York,

NY, USA, 2010. ACM.

Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghunath,

Michael Stumm, and Mona Vij. User-guided device driver synthesis. In Pro-

ceedings of the 11th USENIX Conference on Operating Systems Design and Im-

plementation, OSDI’14, pages 661–676. USENIX Association, 2014.

Giacinto Paolo Saggese and Anoop Vetteth. Microprocessor sensitivity to failures:

Control vs execution and combinational vs sequential logic. In DSN ’05: Proceed-

ings of the 2005 International Conference on Dependable Systems and Networks

(DSN’05), pages 760–769, Washington, DC, USA, 2005. IEEE Computer Society.

D. Salesin, J Stolfi, and L. Guibas. Epsilon geometry: building robust algorithms

from imprecise computations. In SCG ’89: Proceedings of the fifth annual sym-

posium on Computational geometry, pages 208–217, New York, NY, USA, 1989.

ACM.

Full text available at: http://dx.doi.org/10.1561/1000000049

96 References

Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and Scott

Mahlke. Sage: Self-tuning approximation for graphics engines. In Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-46, pages 13–24, New York, NY, USA, 2013. ACM.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general

low-power computation. In Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’11, pages 164–

174, New York, NY, USA, 2011. ACM.

Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate storage

in solid-state memories. In Proceedings of the 46th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO-46, pages 25–36, New York,

NY, USA, 2013. ACM.

John Sartori and Rakesh Kumar. Exploiting timing error resilience in processor

architecture. ACM Trans. Embed. Comput. Syst., 12(2s):89:1–89:25, May 2013.

Matthew Schuchhardt, Susmit Jha, Raid Ayoub, Michael Kishinevsky, and Gokhan

Memik. Optimizing mobile display brightness by leveraging human visual per-

ception. In Proceedings of the 2015 International Conference on Compilers, Ar-

chitecture and Synthesis for Embedded Systems, CASES ’15, pages 11–20, Pis-

cataway, NJ, USA, 2015. IEEE Press.

Naresh R. Shanbhag. Reliable and energy-efficient digital signal processing. In

Proceedings of the 39th Annual Design Automation Conference, DAC ’02, pages

830–835, New York, NY, USA, 2002. ACM.

Naresh R. Shanbhag, Rami A. Abdallah, Rakesh Kumar, and Douglas L. Jones.

Stochastic Computation. In Proceedings of the 47th Design Automation Con-

ference, pages 859–864. ACM, 2010.

Claude E. Shannon. Coding theorems for a discrete source with a fidelity criterion.

IRE National Convention Record, 7(4):142–163, 1959.

Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communica-

tion. University of Illinois Press, Urbana, Illinois, 1963.

W. K. Shih and J. W. S. Liu. Algorithms for scheduling imprecise computations with

timing constraints to minimize maximum error. IEEE Transactions on Computers,

44(3):466–471, 1995.

Donghwa Shin, Younghyun Kim, Naehyuck Chang, and Massoud Pedram. Dynamic

voltage scaling of oled displays. In Proceedings of the 48th Design Automation

Conference, DAC ’11, pages 53–58, New York, NY, USA, 2011. ACM.

Full text available at: http://dx.doi.org/10.1561/1000000049

References 97

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.

Managing performance vs. accuracy trade-offs with loop perforation. In Proceed-

ings of the 19th ACM SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, ESEC/FSE ’11, pages 124–134, New

York, NY, USA, 2011. ACM.

D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems, Design and Evalua-

tion. Digital Press, 2nd edition, 1992.

T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W. Krumm, C. A. Kry-

gowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A. Navarro,

E. M. Schwarz, K. Shum, and C. F. Webb. IBM’s S/390 G5 Microprocessor de-

sign. IEEE Micro, 19:12–23, March 1999.

R. Smith. An Overview of the Tesseract OCR Engine. ICDAR, 7(1):629–633, 2007.

Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. The case for

lifetime reliability-aware microprocessors. In ACM SIGARCH Computer Archi-

tecture News, volume 32, page 276. IEEE Computer Society, 2004.

ST Microelectronics. L3G4200D MEMS Motion Sensor: Ultra-stable Three-axis

Digital Output Gyroscope, Data Sheet, December 2010.

ST Microelectronics. LPS25H MEMS Pressure Sensor: 260–1260 hPa Absolute Dig-

ital Output Barometer, Data Sheet, January 2014.

Phillip Stanley-Marbell. Sal/svm: an assembly language and virtual machine for

computing with non-enumerated sets. In Virtual Machines and Intermediate Lan-

guages, VMIL ’10, pages 1:1–1:10, New York, NY, USA, 2010. ACM.

Phillip Stanley-Marbell and Diana Marculescu. A Programming Model and Lan-

guage Implementation for Concurrent Failure-Prone Hardware. In Proceedings

of the 2nd Workshop on Programming Models for Ubiquitous Parallelism, PMUP

’06, September 2006.

Phillip Stanley-Marbell and Martin Rinard. Lax: Driver interfaces for approximate

sensor device access. In 15th Workshop on Hot Topics in Operating Systems (Ho-

tOS XV), Kartause Ittingen, Switzerland, May 2015a. USENIX Association.

Phillip Stanley-Marbell and Martin Rinard. Value-deviation-bounded serial data en-

coding for energy-efficient approximate communication. Technical Report MIT-

CSAIL-TR-2015-022, MIT Computer Science and Artificial Intelligence Labora-

tory (CSAIL), June 2015b.

Phillip Stanley-Marbell, Victoria Caparros, and Ronald Luijten. Pinned to the walls:

Impact of packaging and application properties on the memory and power walls.

In Proceedings of the 17th IEEE/ACM International Symposium on Low-power

Electronics and Design, ISLPED ’11, pages 51–56, 2011.

Full text available at: http://dx.doi.org/10.1561/1000000049

98 References

Phillip Stanley-Marbell, Virginia Estellers, and Martin Rinard. Crayon: Saving

power through shape and color approximation on next-generation displays. In

Proceedings of the Eleventh European Conference on Computer Systems, EuroSys

’16, pages 11:1–11:17, New York, NY, USA, 2016. ACM. .

Eugene W. Stark and Scott A. Smolka. A Complete Axiom System for Finite-State

Probabilistic Processes. Proof, Language and interaction — Essays in honour of

Robin Milner, pages 571–595, 2000.

Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth analysis with

application to silicon compilation. In Proceedings of the ACM SIGPLAN 2000

conference on Programming language design and implementation, PLDI ’00,

pages 108–120, New York, NY, USA, 2000. ACM.

Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam. Hail: A language

for easy and correct device access. In Proceedings of the 5th ACM International

Conference on Embedded Software, EMSOFT ’05, pages 1–9. ACM, 2005.

Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. Slipstream processors:

improving both performance and fault tolerance. In Proceedings of the ninth in-

ternational conference on Architectural support for programming languages and

operating systems, pages 257–268. ACM Press, 2000.

Timmy Sundström, Boris Murmann, and Christer Svensson. Power dissipation

bounds for high-speed nyquist analog-to-digital converters. Circuits and Systems

I: Regular Papers, IEEE Transactions on, 56(3):509–518, 2009.

A. Taber and E. Normand. IEEE Trans. Nucl. Sci., 40:120, 1993.

Kiat Wee Tan, Tadashi Okoshi, Archan Misra, and Rajesh Krishna Balan. Focus: A

usable & effective approach to oled display power management. In Proceedings

of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, UbiComp ’13, pages 573–582, New York, NY, USA, 2013. ACM.

Texas Instruments. CC256x Bluetooth® and Dual-Mode Controller, Data Sheet,

January 2014a.

Texas Instruments. HDC1000 Low Power, High Accuracy Digital Humidity Sensor

with Temperature Sensor, Data Sheet, Nov 2014b.

Texas Instruments. TMP006/B Infrared Thermopile Sensor in Chip-Scale Package,

Data Sheet, November 2014c.

Texas Instruments. TPS8267x 600-mA, High-Efficiency MicroSIP™ Step-Down

Converter, Data Sheet, October 2014d.

Texas Instruments. TPS82740x 360nA IQ MicroSIP™ Step Down Converter Module

for Low Power Applications, Data Sheet, June 2014e.

Full text available at: http://dx.doi.org/10.1561/1000000049

References 99

T. N. Theis and P. M. Solomon. In quest of the “next switch”: Prospects for greatly

reduced power dissipation in a successor to the silicon field-effect transistor. Pro-

ceedings of the IEEE, 98(12):2005 –2014, Dec 2010.

Jonathan Ying Fai Tong, David Nagle, and Rob. A. Rutenbar. Reducing power by

optimizing the necessary precision/range of floating-point arithmetic. IEEE Trans.

Very Large Scale Integr. Syst., 8:273–285, June 2000.

G. V. Varatkar, S. Narayanan, N. R. Shanbhag, and D. L. Jones. Stochastic networked

computation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

PP(99):1–1, October 2009.

Benjamin Vigoda. Analog logic: Continuous-Time analog circuits for statistical sig-

nal processing. PhD thesis, Massachusetts Institute of Technology, 2003.

Benjamin Vigoda, David Reynolds, Jeffrey Bernstein, Theophane Weber, and Bill

Bradley. Low power logic for statistical inference. In Proceedings of the

16th ACM/IEEE international symposium on Low power electronics and design,

ISLPED ’10, pages 349–354, New York, NY, USA, 2010. ACM.

John von Neumann. Probabilistic logics and the synthesis of reliable organisms from

unreliable components. Automata Studies, pages 43–98, 1956.

John von Neumann and Ray Kurzweil. The computer and the brain. Yale University

Press, 2012.

I. Wagner and V. Bertacco. Engineering trust with semantic guardians. In 2007

Design, Automation & Test in Europe Conference & Exhibition, page 140. IEEE,

2007.

David Walker, Lester Mackey, Jay Ligatti, George A. Reis, and David I. August.

Static typing for a faulty lambda calculus. In Proceedings of the eleventh ACM

SIGPLAN international conference on Functional programming, ICFP ’06, pages

38–49, New York, NY, USA, 2006. ACM.

Gregory K Wallace. The jpeg still picture compression standard. Communications

of the ACM, 34(4):30–44, 1991.

Ji Wang, Xiao Lin, and Chris North. GreenVis : Energy-Saving Color Schemes for

Sequential Data Visualization on OLED Displays. 2012.

Chris Weaver and Todd M. Austin. A fault tolerant approach to microprocessor

design. In Proceedings of the 2001 International Conference on Dependable Sys-

tems and Networks (formerly: FTCS), pages 411–420. IEEE Computer Society,

2001.

Herbert S Wilf and Albert Nijenhuis. Combinatorial algorithms: an update. SIAM,

1989.

Full text available at: http://dx.doi.org/10.1561/1000000049

100 References

Niklaus Wirth. What can we do about the unnecessary diversity of notation for

syntactic definitions? Commun. ACM, 20(11):822–823, November 1977.

Shirley Wong, Simon Lucas, Alex Panaretos, Luis Velazquez, Robert Young, and

Anthony Tang. Robust word recognition dataset. In ICDAR, 2003.

Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic inference

applications. In In Proceedings of the Workshop on System Effects of Logic Soft

Errors, 2006.

Gunther Wyszecki and WS Stiles. Color Science: Concepts and Methods, Quantita-

tive Data and Formulae. Wiley-Interscience, New York, 2000.

YZ Xu, H. Puchner, A. Chatila, O. Pohland, B. Bruggeman, B. Jin, D. Radaelli,

and S. Daniel. Process impact on SRAM Alpha-particle SEU performance. In

2004 IEEE International Reliability Physics Symposium Proceedings, 2004. 42nd

Annual, pages 294–299, 2004.

Mengying Zhao, Yiran Chen, Xiang Chen, and Chun Jason Xue. Online oled

dynamic voltage scaling for video streaming applications on mobile devices.

SIGBED Rev., 10(2):18–18, July 2013.

Neil Zhao. Full-Featured Pedometer Design Realized with 3-Axis Digital Ac-

celerometer. Analog Dialogue, 44(06), June 2010.

James F. Ziegler and William A. Lanford. Effect of cosmic rays on computer mem-

ories. Science, 206(4420):776–788, 1979.

James F. Ziegler and William A. Lanford. The effect of sea level cosmic rays on

electronic devices. Journal of applied physics, 52(6):4305–4312, 1981.

James F. Ziegler, Huntington W. Curtis, Hans P. Muhlfeld, Charles J. Montrose,

B. Chin, Michael Nicewicz, C. A. Russell, Wen Y. Wang, Leo B. Freeman,

P. Hosier, et al. Ibm experiments in soft fails in computer electronics (1978–

1994). IBM journal of research and development, 40(1):3–18, 1996.

Full text available at: http://dx.doi.org/10.1561/1000000049

	Introduction
	The Cost of Correctness
	Historical Context
	Why Precision Matters in Many Numerical Computations
	Why Some Applications Can Tolerate Errors
	Examples of Improving Efficiency by Permitting Errors
	Fundamental Physical Limits, Energy, and Noise
	Hardware and Software Systems That Exploit Errors
	Outline of the Remainder of This Review

	Types of Errors and Randomization
	Precision, Repeatability, Accuracy, and Reliability
	Accuracy of Models versus Precision of Computations
	Randomized Algorithms
	Stochastic Digital and Analog Computing
	Probabilistic Programming

	Computation, Energy, and Noise
	Devices Use Energy to Guard against Faults
	Types and Sources of Noise and Faults
	Traditional Fault-Tolerant Systems

	Tolerating Errors in Outputs
	Human Perception of Color
	Quantifying Errors in Images
	Display Technology
	Exploiting Perception for Display Energy Efficiency
	Exploiting Perceptual Flexibility in End-To-End Systems

	Tolerating Errors in Inputs
	Lax
	VDBS Encoding
	End-to-end Evaluation

	Conclusion
	References

