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Abstract

This survey explores the theory and practice of techniques to make computing

systems faster or more energy-efficient by allowing them to make controlled

errors. In the same way that systems which only use as much energy as nec-

essary are referred to as being energy-efficient, you can think of the class of

systems addressed by this survey as being error-efficient: They only prevent

as many errors as they need to. The definition of what constitutes an error

varies across the parts of a system. And the errors which are acceptable de-

pend on the application at hand.

In computing systems, making errors, when behaving correctly would be

too expensive, can conserve resources. The resources conserved may be time:

By making some errors, systems may be faster. The resource may also be

energy: A system may use less power from its batteries or from the electrical

grid by only avoiding certain errors while tolerating benign errors that are

associated with reduced power consumption. The resource in question may be

an even more abstract quantity such as consistency of ordering of the outputs

of a system.

This survey is for anyone interested in an end-to-end view of one set of

techniques that address the theory and practice of making computing systems

more efficient by trading errors for improved efficiency.

P. Stanley-Marbell and M. Rinard. Error-Efficient Computing Systems. Foundations and

Trends® in Electronic Design Automation, vol. 11, no. 4, pp. 362–461, 2017.

DOI: 10.1561/1000000049.
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1

Introduction

All software eventually works;

all hardware eventually fails.

— Clod Berrera.

This review explores the theory and practice of techniques to make computing

systems faster or more energy-efficient by allowing them to make controlled

errors. In the same way that systems which only use as much energy as nec-

essary are referred to as being energy-efficient, you can think of the class of

systems addressed by this review as being error-efficient: they only prevent

as many errors as they need to.

There are numerous related fields relevant to understanding, designing,

and evaluating systems which trade controlled errors for improved perfor-

mance or energy efficiency. These related fields range from sub-areas of com-

puter science, electrical engineering, and materials science, to applied math-

ematics and psychophysics (the study of perception). There are numerous

techniques proposed by researchers in these diverse areas, with a vibrant and

growing body of research results. This review focuses on two elements:

• Fundamental concepts that underpin any exploration of errors, time-

efficiency (i.e., performance), and energy efficiency. These concepts

2

Full text available at: http://dx.doi.org/10.1561/1000000049



1.1. The Cost of Correctness 3

have been developed over many decades in areas ranging from numer-

ical analysis to the physics of semiconductor device behavior.

• Practical hardware and software implementations of error-efficient

techniques to reduce energy usage in either practical engineering ap-

plications or experimental research platforms.

Throughout the review, we will focus specifically on the interplay between

errors and the effects of errors as processed by human perception.

1.1 The Cost of Correctness

In computing systems, making errors when behaving correctly would be too

expensive can conserve resources. The resources conserved in doing so may

be time: by making some errors, they may be faster. The resource may also be

energy: a system may use less power from its batteries or from the electrical

grid by only avoiding certain errors while tolerating benign errors that are

associated with reduced power consumption. The resource in question may be

an even more abstract quantity such as consistency of ordering of the outputs

of the system in question.

Which errors are acceptable depends on the application. The degree to

which resources such as time or energy can be conserved likewise depends

on the design of the computing system. And there are many different kinds of

deviations in behavior which can be classified as “errors”. This Chapter pro-

vides an overview of the landscape of the applications, computing systems,

and techniques that can be used to trade improved efficiency in exchange for

occasional errors.

1.2 Historical Context

All hardware eventually fails. Reducing the likelihood of failure and the ef-

fects of failure comes at the cost of time, energy, or space. Making computing

hardware more reliable was particularly important when the dominant appli-

cations of computing systems were in controlling weaponry and in financial

applications. Today however, a large fraction of computing systems generate

output solely for visual consumption.

Early computing systems based on vacuum tubes provided improvements

in switching speed over their predecessors which were based on mechanical

Full text available at: http://dx.doi.org/10.1561/1000000049



4 Introduction

relays. They however also failed frequently: Failure rates in early vacuum-

tube-based systems were as high as once every eight hours [von Neumann,

1956]. Because the possibility of intermittent and permanent failures has al-

ways been present in computing systems, the design of the basic elements

of computation has evolved over time to inherently attempt to counteract the

effects of failures.

One of the most fundamental techniques for dealing with the most ba-

sic source of failures (environmental noise) is to use digital logic, instead of

performing computation directly in the analog signal domain. There is a rich

body of work studying the tradeoffs between digital and analog computation,

as well as on techniques to reduce both manufacture-time defects and runtime

faults [Bushnell and Agrawal, 2000].

Redundancy, either in energy, space, or time, is a common approach used

in digital logic to overcome the effects of noise. Error-correcting codes [Ham-

ming, 1950] use redundancy in the representation of information to make it

possible to detect and correct errors; the particular kinds and numbers of er-

rors that can be detected and corrected depend on the amount of redundancy

employed.

At a coarser grain, redundancy is also employed across complete com-

puting systems, such as by replicating entire processors, complete servers,

or even by replicating clusters and data centers. The challenges involved in

such fault-tolerant computing systems are also the subject of a rich area of

study [Avižienis et al., 2004].

Unlike traditional applications of computing systems, many modern ap-

plications of computation are in situations where the inputs to the system are

from sources which are themselves noisy, unlike the inputs to a payroll appli-

cation. Examples are the computations on sensor values in the many variants

of health-tracking wearables. Similarly, the outputs of many applications are

primarily for consumption via the human visual channel; an example is the

rendering of images for a display. These applications could of course continue

to be implemented with the level of redundancy used to guard against errors

in traditional applications. Employing redundancy in space, time, and energy,

independent of the needs of individual applications would likely have contin-

ued to be the way all computing systems are built. However, as the amount of

energy used in a single logic operation reduced over time due to semiconduc-

Full text available at: http://dx.doi.org/10.1561/1000000049



1.3. Why Precision Matters in Many Numerical Computations 5

tor process technology improvements, the overhead of the redundancy has

become significant.

In those applications which do not require the same extremely low levels

of errors, it is therefore now interesting to design systems which can trade

errors for efficiency. And it is possible to go even further, to induce controlled

amounts of errors if doing so would enable simpler, faster, cheaper, or more

energy-efficient computing systems.

1.3 Why Precision Matters in Many Numerical Computations

There are many important computations whose implementations require care-

ful attention to numerical stability, however few implementors of large-scale

scientific computations have deep knowledge of numerical analysis. In the

absence of such expertise, an alternative is to employ greater numerical pre-

cision [Bailey, 2005]. Because there are few automated techniques for trans-

forming applications to improve their numerical stability [Panchekha et al.,

2015], high-precision computations will continue to be important for a large

class of applications. One example of a system where higher precision was

used as an expedient solution to numerical instability is illustrated in the work

of He and Ding [2001], who showed how problems with the reproducibility

of climate-modeling applications could be eliminated by switching to using

128-bit floating-point arithmetic. A central theme throughout this review is

that the types and magnitudes of errors permissible in an application must al-

ways be considered in the context of the tradeoff between errors and resource

usage: a technique should permit only as many errors as an application and

context can tolerate. Techniques should weigh permitted errors against the

improvement in resource usage obtained from permitting errors. One way to

achieve this in numerical simulations is to use multiple levels of precision

across the phases of computations.

One cause of numerical instability in the presence of errors is that most

general-purpose computations have great arithmetic depth [von Neumann

and Kurzweil, 2012]. Small errors may therefore get amplified across the

steps of a computation.

Full text available at: http://dx.doi.org/10.1561/1000000049



6 Introduction

1.4 Why Some Applications Can Tolerate Errors

Despite the fact that many applications cannot tolerate any errors in their

computations, there are also many applications which can. Typically, the ap-

plications that can tolerate errors are those that either:

1. Operate on noisy inputs (e.g., readings from sensors).

2. Have computation outputs requiring limited precision, e.g., because

they are consumed primarily by human vision.

3. Employ iterative or self-policing algorithms. Examples of such algo-

rithms are iterative methods where the computation will still produce

the correct output in the presence of errors, provided that the compu-

tation makes progress in the right direction (on average) during each

iteration.

4. Do not have data-dependent control-flow.

1.5 Examples of Improving Efficiency by Permitting Errors

Because displays account for a large fraction of the power dissipation in pop-

ular computing platforms such as mobile phones and wearable devices, trad-

ing errors for reduced resource usage in displays is an interesting prospect.

Organic light-emitting diode (OLED) displays present an interesting oppor-

tunity for trading errors for efficiency: Unlike traditional LCD displays, their

power dissipation varies significantly as a function of the content displayed.

It is therefore possible to purposefully introduce errors into displayed images

to reduce the display’s power consumption. The earliest examples of such

approaches were originated by Dong et al. [2009a] and Dong et al. [2009b],

who developed several of the first techniques for trading display power for

visual fidelity in OLED displays. Recent research has developed more effi-

cient techniques as well as new approaches that analyze and transform both

the color and shape content of the rendered images to save power.

Figure 1.1 shows two variants of the same image, which differ in power

dissipation by over 40% when displayed on a representative commercial

OLED display panel. The image and corresponding shape and color trans-

formations to reduce power dissipation on displays that behave similar to

OLEDs were generated using the Crayon system [Stanley-Marbell et al.,

Full text available at: http://dx.doi.org/10.1561/1000000049



1.5. Examples of Improving Efficiency by Permitting Errors 7

Figure 1.1: The image on the right dissipates more than 40% lower power than the one on the

left when shown on OLED displays.

0%

20%

00%↓00%↓

Tolerable

Deviation 

Image 

A
Transition

Reduction

Image

B
OCR

Text

“EXIT”

“”

Transition 

Reduction

OCR
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“centre”

“centre”

73%↓ 73%↓

10% “LTXIT”“centre” 66%↓ 61%↓

Figure 1.2: Encoding values so that they dissipate less power when transmitted can lead to sig-

nificant power reductions before they begin to affect optical character recognition algorithms.

This is despite the fact that the encoded images look very different to the human eye.

2016]. The difference between the original image and the modified one is

that areas of the gray regions in the latter are reduced by 25% and the col-

ors have been modified slightly. Chapter 4 explores techniques for exploiting

tolerance in outputs in more depth.

Not all systems have displays however. In the increasingly important do-

main of embedded sensor-driven systems, because the power dissipated in the

digital logic components has continued to drop over the years, a significant

fraction of the system’s energy usage can result from the activation of sen-

sors and the retrieval of data from them over their electrical communication

interfaces.

Figure 1.2 shows how techniques that reduce the energy cost of trans-

missions by lossy encoding of the data can enable significant reductions in

the energy required for transmitting the data. However, when the algorithms

consuming the encoded data can tolerate the types of errors introduced by

the encoding, they lead to minimal application-level errors, even though the

perceived visual distortion may seem significant to the human eye.

Full text available at: http://dx.doi.org/10.1561/1000000049



8 Introduction

Even though tolerating errors in the inputs and output communication of

algorithms can be exposed in the syntax of programming languages [Stanley-

Marbell and Marculescu, 2006], tolerating errors in the steps of algorithms

is much more involved when compared to tolerating errors in the data algo-

rithms process or errors in their outputs. Approaches to tackling this chal-

lenge range from annotating individual variables in algorithms as being ones

that can tolerate errors (or not) [Sampson et al., 2011], annotating variables

corresponding to the outputs of functions to specify which ones are permitted

to incur errors [Misailovic et al., 2014], and using program analysis tech-

niques to provide guarantees about the effects of errors as they propagate

through the algorithm [Carbin et al., 2013].

An alternative to providing specifications of the tolerable input or output

error is to specify how much error is acceptable in the relation between inputs

and outputs. Figure 1.3 illustrates the formal specification of the computation

task of partial sorting, along with an example of an input-output pair that con-

forms to this computation behavior. This problem of obtaining a partial sort

occurs in real applications: Partial sorting accounts for over 24% of the exe-

cution time of one popular discrete-event simulator [Jongerius et al., 2014].

One exciting open area of research is to synthesize algorithms (or hardware)

that conform to such computation specifications and that permit some degree

of error in the relation between their inputs and outputs.

1.6 Fundamental Physical Limits, Energy, and Noise

Computing systems are designed to avoid errors at all levels1, from copying

data from registers to their transmission to other systems or different proces-

sors. They prevent errors for all applications and, as a result, require error-

correcting coding techniques at all levels; this introduces overheads that are

unnecessary in some cases.

Because the traditional mechanisms for improving the density and power

consumption of computing systems are reaching fundamental physical lim-

its [Bennett and Landauer, 1985], there has been an increased interest in re-

cent years to develop techniques to explore trading correctness for some tan-

gible improvement in a system, such as improved speed or improved energy

efficiency. Figure 1.4(a) shows the reduction in the energy required per bit of

1Within the limit of economic and performance constraints

Full text available at: http://dx.doi.org/10.1561/1000000049



1.6. Fundamental Physical Limits, Energy, and Noise 9

(a)

(b)

Figure 1.3: Computation specification (a) for the computation that sorts a sequence of in-

tegers, expressed in the Sal low-level computation specification language Stanley-Marbell

[2010] and its output (b).

information processing, over several decades. Because the diminishing op-

portunities to reduce power consumption of computing systems is largely due

to power delivery and cooling limitations, these challenges are unlikely to be

easily resolved in the near future2, making the exploration of error-efficient

systems ever more important in the future.

The underlying physical phenomenon permitting such energy versus cor-

rectness tradeoffs is well understood: For a device technology to be useful

in constructing computational systems in which logic devices are linked to-

gether by non-ideal conductors, it must exhibit the property of gain (amplifi-

cation) [Keyes, 1985]. This amplification requires an input energy source and

the extent to which amplification occurs affects the likelihood of errors due

to noise. If some amount of noise is tolerable, its presence can be traded for

energy efficiency or performance.

2Supply voltage scaling across technology nodes has ceased, as Figure 1.4(b) shows

Full text available at: http://dx.doi.org/10.1561/1000000049
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Figure 1.4: (a) The energy per logic transition in traditional circuit techniques is approaching

the fundamental thermodynamic limit of kT ln 2 Joules per bit of information (i.e., an ordinate

value of 1 in (a) by ~2030). (b) One reason why energy usage in traditional CMOS logic is

no longer scaling down, is that it is no longer feasible to decrease supply voltages. In both

plots, the red points are published design data and the black points are the averages at a given

abscissa [Stanley-Marbell et al., 2011].

1.7 Hardware and Software Systems That Exploit Errors

Techniques to improve system dependability have traditionally taken the ap-

proach of hiding (masking) faults in the hardware data-path and control-flow

with spatial and temporal redundancy. Such an approach is desirable when

there must be no change of system behavior in the presence of faults, except,

perhaps, for a change in performance.

Applications of computing systems such as signal processing (in desktops

and workstations), and sensor-driven applications (in embedded systems) of-

ten drive outputs that are only directly perceived by humans (e.g., the out-

puts of audio and video processing), or have inputs that are taken from noisy

analog sources (e.g., in sensor network applications). In such applications,

programs can often tolerate some amount of “going-wrong”. In particular,

small deviations in values may be tolerable, and this is already exploited by

some lossy compression algorithms for images (e.g., JPEG [Wallace, 1991]),

audio, and video.

In many emerging applications of the recent decade, however, computing

is moving from the sole purview of commercial business transaction manage-

ment to more personal and pervasive applications such as embedded sensing

and entertainment. In some of these new applications, such as embedded au-
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1.7. Hardware and Software Systems That Exploit Errors 11

tomotive control, there are still stringent requirements on correctness of ma-

chine state and computation. However, in many new applications, the need to

maintain perfect error-free computation no longer exists.

As a result of these changes in applications of computing, a number of

parallel research efforts have begun in recent years to explore ways to reduce

the restrictions of perfect machine state. These efforts have ranged across:

• Reducing the number of bits used to represent data values and

datapaths, either in storing those values or in synthesizing reduced-

precision or reduced-accuracy logic in order to save energy (§ 1.7.1).

• Explicitly exploiting human perception to reduce resource usage

(§ 1.7.2).

• Circuits that perform logic operations on probability distributions

of values, rather than on unitary instance values (§ 1.7.3).

• Hardware and software architectures for counteracting the effects

of soft errors (§ 1.7.4).

• Architectures that assume applications can tolerate errors in com-

putation or timing, but have no contract with software on the permissi-

ble laxity (§ 1.7.5).

• Programming languages and runtime systems that incorporate an-

notation of imprecision in program state or operations, or exploit tol-

eration of errors by applications (§ 1.7.6).

• Investigation of application domains that can tolerate various

forms of computation errors or imprecision, in computation or state

(§ 1.7.7).

These existing efforts have, however, mostly focused either only on adapting

hardware independent of applications’ requirements, or vice versa.

1.7.1 Reducing representation precision in values and datapaths

The earliest efforts at harnessing potential tolerance of imprecision, at the

hardware level, involved reducing the number of bits used in both inte-

Full text available at: http://dx.doi.org/10.1561/1000000049



12 Introduction

ger [Stephenson et al., 2000] and floating-point [Tong et al., 2000] represen-

tations. These efforts were not based on explicit information exposed by, or

extracted from programs, but rather, on the assumption that signal-processing

applications inherently deal with values obtained from noisy real-world mea-

surements, and that real-number representations in computers are inherently

approximations. Techniques that reduce the bit-level precision of arithmetic,

and those that expose notions of incorrectness at the language level must con-

tend with issues of numerical analysis. Kulisch [2008] provides a thorough

background on the interaction between numerics of computation and the ar-

chitectures that facilitate computing. In reducing the number of bits however,

while the precision or dynamic range (or both) are reduced, computation pro-

ceeds deterministically and independent of the properties (value distributions)

due to the applications it executes.

An alternative approach to simply providing reduced precision indepen-

dent of application properties, is to synthesize logic circuits based on the

distributions of values and the tolerance to reduced accuracy of specific ap-

plications, as investigated by Lingamneni et al. [2013]

1.7.2 Explicitly exploiting human perception

When the results of computation are consumed by the human aural or visual

system, variations in accuracy, precision, or reliability may not always be per-

ceptible. Such variations can be exploited directly in the generation of audio

or display of results, for lower-energy, faster, or cheaper output devices (e.g.,

displays). For example, for displays, a few research efforts have investigated

exploiting the variability in human sensitivity across the color spectrum. This

phenomenon has been exploited to reduce power dissipation in OLED dis-

plays [Dong et al., 2009a, Zhao et al., 2013, Shin et al., 2011, Dong and

Zhong, 2011, Harter et al., 2004, Li et al., 2014, Tan et al., 2013] as well

as in those traditional LCDs that have coarse-grained controllable backlight-

ing [Chuang et al., 2009]. Even when the results are consumed by non-human

entities such as control systems, some amount of tolerance to imprecision, in-

accuracy, and unreliability may still exist.

The interfaces for surfacing perceptual signals, such as displays and au-

dio, contribute an increasing fraction of system energy usage in wearable

and mobile systems. Because the phenomena underlying their operation (e.g.,

Full text available at: http://dx.doi.org/10.1561/1000000049



1.7. Hardware and Software Systems That Exploit Errors 13

photon generation, mechanical displacement) are less amenable to improve-

ments in transistor properties than computation is, their relative importance

will likely grow in the future. Chapter 4 explores these concepts and imple-

mentations in more detail.

1.7.3 Probabilistic computation, probabilistic programming, and

computing on probability distributions

In the traditional uses of probability in programming languages, the compo-

nent which is probabilistic is the behavior of a computation, or a composition

of concurrent processes [Stark and Smolka, 2000]. These approaches range

from the introduction of randomness into algorithms [M. O. Rabin, 1976],

the analysis of the behavior of randomized algorithms [Pnueli, 1983], and

logics for probabilistic programs [Reif, 1980], to probabilistic parallel pro-

grams [Rao, 1994].

An alternative to the deterministic behavior of logic in hardware, whether

of standard or of reduced precision, is to either employ randomness in the

execution of hardware (to perform logic operations probabilistically [Palem,

2005, George et al., 2006]), or to consider the values of machine state due to

executing applications, not as fixed instance values, but rather as probability

distributions [Shanbhag et al., 2010, Vigoda et al., 2010, Vigoda, 2003]. The

latter approach yields architectures that can be considered as forms of analog

(as opposed to digital) computers.

1.7.4 Hardware and software architectures for counteracting the ef-

fects of soft errors

In the last decade, the observation that different applications (or classes

thereof) may have differing tolerance to faults has been investigated [Wong

and Horowitz, 2006], as have the possibility of applying different amounts of

traditional software-based fault-tolerance techniques to different portions of

an application [Reis et al., 2005a], as well as the influence of different hard-

ware structures on the masking versus manifestation of faults as errors. These

prior efforts, while recognizing the varying requirements for fault tolerance

in applications and in hardware, have not attempted to tradeoff correctness

for overheads.

There have been attempts to formalize the effects of soft-errors on the be-

havior of programs [Walker et al., 2006]. The model addressed in this recent

work is one in which the goal is to attempt to nullify the effect of soft-errors
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(faults), by redundant computation.

The observation that different portions of programs or of hardware may

require differing amounts of fault-protection has previously been applied to

reduce the implementation overheads of hardware systems. This observation

has been extended to phases of programs [Reis et al., 2005c] as well as to

the design of error-resilient processor architectures and silicon implementa-

tions [Leem et al., 2010, Bau et al., 2007, Borodin et al., 2009, Rhod et al.,

2007, Mehrara et al., 2007].

Several research efforts have explored adding architectural support for

low-overhead detection and correction of the effects of soft errors, such as

the software anomaly treatment (SWAT) system and its derivatives [Srini-

vasan et al., 2004], by determining the effect of soft errors in components of

processor microarchitectures on application behavior [Li et al., 2005, 2008].

Purely-software-based approaches can also be used to trade correctness for

speed or reduced resource usage. Two examples of such approaches include

loop perforation [Sidiroglou-Douskos et al., 2011], and relaxing locking re-

quirements in GPU kernels [Samadi et al., 2013].

1.7.5 “Better-than-worst-case” design and approximate hardware

architectures

In probabilistic computing architectures (§ 1.7.3), non-determinism is used

in a well-defined manner. This is in contrast to so-called better-than-worst-

case hardware architectures [Austin et al., 2005, Wagner and Bertacco, 2007,

Kahng et al., 2010], which aggressively bias system properties (e.g., power

supply voltage) into regimes which may furnish significant energy savings,

but increase the chance of failure. These architectures then use a variety of

methods (e.g., shadow latches in the Razor system [Austin et al., 2004]) for

ensuring infrequently-occurring erroneous state is not committed to final ar-

chitectural state, or that critical data is not adversely affected (e.g., by reduc-

ing DRAM refresh rates, but only for non-critical data, in the Flicker sys-

tem [Liu et al., 2009]).

Taking the idea of better-than-worst-case design further, are a class of

architectures that argue that permitting occasional errors can reduce power

consumption. When these platforms rely on applications and system soft-

ware to deal appropriately with the errors that may result, we will refer to the
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platforms as approximate hardware. Examples of such approximate hardware

range from processor architectures (or parts of processors such as ALUs) [Es-

maeilzadeh et al., 2012b, Lingamneni et al., 2012], to complete accelera-

tors [Esmaeilzadeh et al., 2012a, George et al., 2006, Sartori and Kumar,

2013], and to portions of the memory hierarchy [Sampson et al., 2013, Liu

et al., 2009, Xu et al., 2004]. Techniques for approximation can be applied in-

dividually, or can be employed as part of a control system [Hoffmann, 2015]

to ensure that a target energy reduction or accuracy constraint is satisfied.

As one example of these architectures, Truffle [Esmaeilzadeh et al.,

2012a] defines an architecture in which individual operations (arithmetic in-

struction, memory accesses, etc.) may individually fail catastrophically with

some probability, the rate at which they do so exhibiting a tradeoff with the

amount of energy used. The manner in which this tradeoff is obtained is via

the ability to set processor state and logic into a voltage-over-scaled (unre-

liable but energy-saving) state, with cycle-level granularity. Truffle relies on

the programming language, compiler, and operating system to ensure that

only individual instructions that can tolerate being in error are executed in the

unreliable mode, and that unreliable state is appropriately quarantined from

reliable state, with flow of data between reliable and unreliable computation

obeying a well-defined set of constraints.

1.7.6 Programming languages and runtime systems

Program-level annotation provides an alternative to relegating to hardware

all decisions about what machine state’s accuracy can be traded for energy

efficiency or performance. Language-level specification of tolerable impreci-

sion has ranged from the specification of coarse regions of application code

that can, in some broad sense, tolerate errors [Reis et al., 2005c, Walker

et al., 2006, Baek and Chilimbi, 2010], memory locations that contain criti-

cal data [Pattabiraman et al., 2008], to the elision of loop iterations to trade-

off fidelity of computation results for energy efficiency or performance [Ri-

nard et al., 2010, Rinard, 2006]. Program-level annotations of required pre-

cision such as the annotations provided by the EnerJ Java extension [Samp-

son et al., 2011] as well as tools to infer guarantees on correctness based on

static program analysis [Carbin et al., 2013]. Detailed language-level facili-

ties for specifying imprecision at the level of data types [Stanley-Marbell and
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Marculescu, 2006] have also been developed, and extended to the declarative

specification of the computation performed by a given subroutine, incorpo-

rating properties of imprecision [Stanley-Marbell, 2010].

1.7.7 Applications of “good-enough” computation in algorithms

and software that are naturally resilient to errors

Given the aforementioned techniques for reduced precision arithmetic

(§ 1.7.1), probabilistic computation (§ 1.7.3), hardware architectures and soft-

ware techniques that take license with correctness (§ 1.7.4 and § 1.7.5), and

language-level facilities for specifying how much incorrectness applications

can tolerate (§ 1.7.6), a natural question is, which applications can best har-

ness the possibilities afforded by these hardware and software innovations?

Several proposals for potential application of such “good-enough” computa-

tion have been made in the research literature [Chakradhar and Raghunathan,

2010, Chippa et al., 2010, Breuer, 2010, 2005a, Meng et al., 2009, Chong and

Ortega, 2007, Li and Yeung, 2007, Mohapatra et al., 2009, Breuer, 2005b,

Salesin et al., 1989], however no consensus yet exists on a standard set of

applications for evaluating proposed hardware and software techniques. Sim-

ilarly, no commonly agreed-upon metrics exist for evaluating the degree to

which behavior of benchmarks may deviate from correctness. Recent work

has however taken an important step in this direction [Akturk et al., 2015].

One class of applications in which errors in computation are often tolera-

ble is signal processing applications. This observation motivated some of the

earliest work in trading correctness for performance and power from the work

of Shanbhag on ANT [Hegde and Shanbhag, 1999, Shanbhag, 2002, Varatkar

et al., 2009, Shanbhag et al., 2010], to silicon implementations of approxi-

mate signal processing from Amirtharajah and Chandrakasan [Amirtharajah

and Chandrakasan, 2004] and Guo [Guo et al., 2006].

In addition to errors in values and control flow of computations, errors

may occur in the timing of actions driven by computation, or in the latencies

expected from computation. The term imprecise computation was coined in

the nineties to denote real-time computing systems in which some deviation

from temporal correctness was tolerable [Budin et al., 2004, Hull and Liu,

1993, Liu et al., 1991, Shih and Liu, 1995, Aydın et al., Liu et al., 1994,

Kenny and Lin, 1991].
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These efforts in computing systems and signal processing are of course

predated by a large body of work in numerical analysis, uncertainty quan-

tification (UQ) methods [Klir, 1994], tolerance graphs [Golumbic and Trenk,

2004], interval arithmetic [Hayes, 2003]), fuzzy logic and fuzzy set theory,

approximation and randomized algorithms and, of course, existing work on

in the broader field of fault-tolerant systems.

1.8 Outline of the Remainder of This Review

The present chapter provides a broad survey of the basic concepts explored in

further detail throughout the review. It addresses the question of why error-

efficient computing systems matter, and describes the context in which the

material of the review is situated. It surveys the general state of the art in this

area and positions the material of the review within it. Figure 1.5 summarizes

the research referenced in this chapter. Chapter 2 (Types of Errors and Ran-

domization) defines terminology, such as precision, accuracy, and reliability,

which recur throughout the review and in any discussion of errors and of error

efficiency. The definitions in Chapter 2 set the stage for the discussion of how

errors affect efficiency in computing systems, in Chapter 3 (Computation,

Energy, and Noise). Chapter 4 (Tolerating Errors in Outputs) addresses how

many systems tolerate errors in their outputs. For example, any visual output

that must be interpreted by a human may incur some amount of error before

being perceptible. Chapter 5 (Tolerating Errors in Inputs) discusses the com-

plementary problem of how many systems tolerate errors in their inputs. The

review concludes in Chapter 6.
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