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Abstract

This manuscript is the first in a two part survey and analysis of the state
of the art in secure processor systems, with a specific focus on remote
software attestation and software isolation. This manuscript first exam-
ines the relevant concepts in computer architecture and cryptography,
and then surveys attack vectors and existing processor systems claim-
ing security for remote computation and/or software isolation. This
work examines in detail the modern isolation container (enclave) prim-
itive as a means to minimize trusted software given practical trusted
hardware and reasonable performance overhead. Specifically, this work
examines in detail the programming model and software design con-
siderations of Intel’s Software Guard Extensions (SGX), as it is an
available and documented enclave-capable system.

Part II of this work is a deep dive into the implementation and se-
curity evaluation of two modern enclave-capable secure processor sys-
tems: SGX and MIT’s Sanctum. The complex but insufficient threat
model employed by SGX motivates Sanctum, which achieves stronger
security guarantees under software attacks with an equivalent pro-
gramming model.

This work advocates a principled, transparent, and well-scrutinized
approach to secure system design, and argues that practical guarantees
of privacy and integrity for remote computation are achievable at a
reasonable design cost and performance overhead.

V. Costan, I. Lebedev, and S. Devadas. Secure Processors Part I:
Background, Taxonomy for Secure Enclaves and Intel SGX Architecture.
Foundations and TrendsR© in Electronic Design Automation, vol. 11, no. 1-2,
pp. 1–248, 2017.
DOI: 10.1561/1000000051.
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1
Introduction

A user wishing to perform computation remotely faces a complex trade-
off: how much trust can be placed in the remote system? How much
of a performance overhead is considered acceptable for the given se-
curity properties? How strong an adversary can the remote system
defend against? An ideal system would offer overhead-free trustwor-
thy private remote computation with no assumptions of trust at all,
yet no such system exists.

At one extreme, expensive cryptographic techniques including gar-
bled circuits [Yao, 1986] and fully homomorphic encryption [Gentry,
2009] offer trust-free computation at prohibitive cost. A typical cloud
computing scenario lies much closer to the opposite extreme: weak se-
curity guarantees achievable with minimal overhead assuming nearly
unchecked trust in the remote system. This work aims to illustrate
that significant security properties can be achieved given very modest
trust in the remote system. A long lineage of secure processors explore
the space of trusted hardware enabling inexpensive remote computa-
tion robust against a variety of threat models.

A rigorous conversation about security requires a precisely stated
thread model: trusted hardware must be secure, meaning it must show

2
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1.1. Secure Remote Computation 3

resilience against a well-specified threat model. For example, few sys-
tems can offer meaningful guarantees against an adversary capable of
physically tampering with the system’s hardware. While the space of
projects fitting the description of “secure processor” is large indeed,
this work focuses on systems enabling secure remote computation, de-
fined in § 1.1. Specifically, this work aims to illuminate the program-
ming model, historical context, design decisions, and threat models
relevant to secure software enclaves − the latest and so far the most
capable paradigm for secure remote computation. We survey Intel’s
Software Guard Extensions (SGX) and MIT’s Sanctum systems to
exemplify enclave-capable systems.

This work is presented in two parts, the first covering the technical
background and taxonomy of computer architecture (§ 2) and security
concepts (§ 3) as relevant to an in-depth discussion of secure processors.
This same part presents a survey of prior work (§ 4) and an in-depth
discussion of the programming model presented by secure software en-
claves, as exemplified by Intel’s Software Guard Extensions (§ 5).

Part II [Costan et al., 2017] of this review is a deep dive into the
implementation and security properties of two modern enclave-capable
secure processor systems: SGX and MIT’s Sanctum. This work aims
to rigorously analyze the security properties and trade-offs employed
buy the secure properties to achieve their stated goals.

1.1 Secure Remote Computation

Secure remote computation (Figure 1.1) is the problem of executing
software on a remote computer owned and maintained by an un-
trusted party, with some integrity and confidentiality guarantees. In
the general setting, secure remote computation is an unsolved problem.
Fully Homomorphic Encryption [Gentry, 2009] addresses the problem
for a limited family of computations, but has an impractical perfor-
mance overhead [Naehrig et al., 2011].

Intel’s Software Guard Extensions (SGX) is the latest iteration in
a long line of trusted computing (Figure 1.2) designs, which aim to
solve the secure remote computation problem by leveraging trusted

Full text available at: http://dx.doi.org/10.1561/1000000051
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Data Owner’s
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Remote Computer

Container

Data Owner Software
Provider

Infrastructure
Owner
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Private Data
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Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Figure 1.1: Secure remote computation. A user relies on a remote computer, owned
by an untrusted party, to perform some computation on her data. The user has some
assurance of the computation’s integrity and confidentiality.

hardware in the remote computer. The trusted hardware establishes a
secure container, and the remote computation service user uploads the
desired computation and data into the secure container. The trusted
hardware protects the confidentiality and integrity of data while the
computation is being performed on it.

SGX, Sanctum, and similar work rely on software attestation, like
their predecessors, the TPM [TCG, 2003] and TXT [Grawrock, 2009].
Attestation (Figure 1.3) proves to a user that she is communicat-
ing with a specific piece of software running in a secure container
hosted by the trusted hardware. The proof is a cryptographic signa-
ture that certifies the hash of the secure container’s contents. It fol-
lows that the remote computer’s owner can load any software in a
secure container, but the remote computation service user is able to
refuse to send private data to a secure container with a hash that
does not match an expected value.

The remote computation service user verifies the attestation key
used to produce the signature against an endorsement certificate cre-
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Figure 1.2: Trusted computing. The user trusts the manufacturer of a piece of
hardware in the remote computer, and entrusts her data to a secure container hosted
by the secure hardware.

Trusted Platform

Secure Container

Data Owner’s Computer

Initial State
Public Code + Data

Key exchange: B, gA

Shared key: K = gAB

Key exchange: A, gA

gA

gB, SignAK(gA, gB, M)
M = Hash(Initial State)

Shared key: K = gAB 
EncK(secret code/data)

Secret Code + Data

Computation Results
EncK(results)

Computation Results

AK: Attestation Key

Endorsement Certificate

Figure 1.3: Software attestation proves to a remote computer that it is communi-
cating with a specific secure container hosted by a trusted platform. The proof is an
attestation signature produced by the platform’s secret attestation key. The signa-
ture covers the container’s initial state, a challenge nonce produced by the remote
computer, and a message produced by the container.
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6 Introduction

ated by the trusted hardware’s manufacturer. The certificate states
that the attestation key is only known to the trusted hardware, and
only used for the purpose of attestation.

SGX stands out from its predecessors by the amount of code cov-
ered by the attestation, which is in the Trusted Computing Base (TCB)
for the system using hardware protection. The attestations produced
by the original TPM design covered the whole of the software run-
ning on a computer, and TXT attestations covered the code inside
a VMX [Uhlig et al., 2005] virtual machine. In SGX, an enclave (se-
cure container) only contains the private data in a computation, and
the code that operates on it.

For example, a cloud service that performs image processing on
confidential medical images could be implemented by having users up-
load encrypted images. The users would send the encryption keys to
software running inside an enclave. The enclave would contain the code
for decrypting images, the image processing algorithm, and the code
for encrypting the results. The code that receives the uploaded en-
crypted images and stores them would be left outside the enclave.
This example is illustrated in Figure 1.4.

attestation

memcopy

memcopy

decrypt

encrypt

analyze
medical
image

enclave

untrusted
software

app

network
stack

remote party

Figure 1.4: An example software application that uses SGX to implement a private
function analyzing a medical image.

An SGX-enabled processor protects the integrity and confidential-
ity of the computation inside an enclave by isolating the enclave’s code
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1.2. SGX Lightning Tour 7

and data from other software, including the operating system and hy-
pervisor, and hardware devices attached to the system bus. At the
same time, the SGX model remains compatible with the traditional
software layering in the Intel architecture, where the OS kernel and
hypervisor manage the computer’s resources.

This work discusses the original version of SGX, also referred to
as SGX 1. While SGX 2 brings very useful improvements for enclave
authors, it is a small incremental improvement, from a design and im-
plementation standpoint. After understanding the principles behind
SGX 1 and its security properties, the reader should be well equipped
to face Intel’s reference documentation and learn about the changes
brought by SGX 2 and more recent work.

1.2 SGX Lightning Tour

While this manuscript seeks to educate the reader of the challenges,
history, and state of the art in secure processors for remote compu-
tation, this discussion is grounded in the example of Intel’s Software
Guard Extensions (SGX), as it is an available, documented, and mod-
ern system that aims to offer useful security guarantees to remotely
executed programs. This section presents a brief overview of the SGX
platform, directing the reader to other sections of the manuscript for
a deeper look at each aspect of SGX.

SGX sets aside a memory region, called the Processor Reserved
Memory (PRM, § 5.1). The CPU protects the PRM from all non-
enclave memory accesses, including kernel, hypervisor and manage-
ment engine (SMM, § 2.3) accesses, and DMA accesses (§ 2.9.1)
from peripherals.

The PRM holds the Enclave Page Cache (EPC, § 5.1.1), which
consists of 4 KB pages that store enclave code and data. The system
software, which is untrusted, is in charge of assigning EPC pages to
enclaves. The CPU tracks each EPC page’s state in the Enclave Page
Cache Metadata (EPCM, § 5.1.2), to ensure that each EPC page is
assigned exclusively, belonging to exactly one enclave.

Full text available at: http://dx.doi.org/10.1561/1000000051



8 Introduction

The initial code and data in an enclave is loaded by untrusted sys-
tem software. During loading (§ 5.3), system software asks the CPU to
copy data from unprotected memory (outside PRM) into EPC pages,
and assigns the pages to the enclave being setup (§ 5.1.2). It follows
that the initial enclave state is known to the system software.

After the enclave’s pages are loaded into EPC, the system soft-
ware asks the CPU to mark the enclave as initialized (§ 5.3), at which
point application software may execute code inside the enclave. Af-
ter an enclave is initialized, the loading mechanism briefly described
above is no longer available to system software.

While an enclave is loaded, its contents and configuration are cryp-
tographically hashed by the CPU. When the enclave is initialized, this
hash is finalized, and becomes the enclave’s measurement hash (§ 5.6).

A remote party can communicate with the enclave to perform soft-
ware attestation (§ 5.8) to convince itself that it is communicating
with an enclave that has a specific measurement hash, and is run-
ning in a secure environment.

Execution flow can only enter an enclave via special CPU instruc-
tions (§ 5.4), similar to the mode switching mechanism for transitioning
between user and kernel modes of execution in a typical system. An
enclave must execute in protected mode, at ring 3, and uses virtual
address translation as set up by the OS kernel and hypervisor.

To avoid leaking private information, a CPU executing enclave code
does not directly service any interrupt, fault (e.g., a page fault) or VM
exit. Instead, the CPU first performs an Asynchronous Enclave Exit
(§ 5.4.3) to switch from enclave code to ring 3 code, and then services
the interrupt, fault, or VM exit given scrubbed fault information. The
CPU performs an AEX by saving the CPU state into a predefined
area inside the enclave and transferring control to a predefined address
outside of the enclave, replacing CPU registers with synthetic values.

The allocation of EPC pages to enclaves is delegated to the OS ker-
nel (or hypervisor). The OS communicates its allocation decisions to the
SGX platform via special ring 0 CPU instructions (§ 5.3). The OS can
also evict EPC pages into untrusted DRAM and later load them back,
again using dedicated CPU instructions. SGX uses a cryptographic

Full text available at: http://dx.doi.org/10.1561/1000000051



1.3. Outline 9

mechanism to enforce the confidentiality, integrity and freshness of the
evicted EPC pages while they are stored in untrusted memory.

1.3 Outline

Reasoning about the security properties of Intel’s SGX requires a sig-
nificant amount of background information that is currently scattered
across many sources. For this reason, a significant portion of this work
is dedicated to summarizing this prerequisite knowledge.

§ 2 summarizes the relevant subset of modern computer architecture
and the micro-architectural properties of recent Intel processors. § 3
outlines the landscape of trusted hardware systems, including crypto-
graphic tools and relevant classes of attacks. Lastly, § 4 briefly describes
other trusted hardware systems as context in which SGX was created.

Following this background information, § 5 provides a (sometimes
painstakingly) detailed description of SGX’s programming model,
largely drawing from Intel’s Software Development Manual.

A deep analysis of Intel’s enclave infrastructure is deferred to part
II of this publication (§ II.2), and will analyze other public sources of
information, such as Intel’s patents relevant to SGX, in order to fill
in some of the missing detail in the SGX specification. This discus-
sion is organized into an overview of Intel’s implementation of SGX
(§ II.2.1), a discussion and analysis of the mechanism by which SGX
offers memory access protection to an enclave (§ II.2.2, § II.2.3), and
examines SGX as a system for remote attestation (§ II.2.5, § II.2.6).
Finally, part II presents a security analysis of SGX overall, and dis-
cusses the classes of attacks against which SGX does not offer guaran-
tees(§ II.2.7). The main focus of part II is a detailed review of SGX’s
security properties to motivate and give context to the MIT Sanc-
tum project (§ II.3) − a flexible, secure, and open source implementa-
tion of enclave-capable hardware that offers strong security guarantees
against an insidious software adversary.

Full text available at: http://dx.doi.org/10.1561/1000000051
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