
Secure Processors Part I:
Background, Taxonomy for
Secure Enclaves and Intel

SGX Architecture

Victor Costan, Ilia Lebedev and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu and devadas@mit.edu
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1000000051

Foundations and Trends R© in
Electronic Design Automation
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

V. Costan, I. Lebedev, and S. Devadas. Secure Processors Part I:
Background, Taxonomy for Secure Enclaves and Intel SGX Architecture.
Foundations and TrendsR© in Electronic Design Automation, vol. 11, no. 1-2,
pp. 1–248, 2017.

This Foundations and TrendsR© issue was typeset in LATEX using a class file de-
signed by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-300-3
c© 2017 V. Costan, I. Lebedev, and S. Devadas
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copying,
such as that for general distribution, for advertising or promotional purposes, for creat-
ing new collective works, or for resale. In the rest of the world: Permission to photocopy
must be obtained from the copyright owner. Please apply to now Publishers Inc., PO
Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000051

Foundations and Trends R© in
Electronic Design Automation

Volume 11, Issue 1-2, 2017
Editorial Board

Editor-in-Chief

Radu Marculescu
Carnegie Mellon University
United States

Editors

Robert K. Brayton
UC Berkeley
Raul Camposano
Nimbic
K.T. Tim Cheng
UC Santa Barbara
Jason Cong
UCLA
Masahiro Fujita
University of Tokyo
Georges Gielen
KU Leuven
Tom Henzinger
Institute of Science and Technology
Austria
Andrew Kahng
UC San Diego

Andreas Kuehlmann
Coverity
Sharad Malik
Princeton University
Ralph Otten
TU Eindhoven
Joel Phillips
Cadence Berkeley Labs
Jonathan Rose
University of Toronto
Rob Rutenbar
University of Illinois
at Urbana-Champaign
Alberto Sangiovanni-Vincentelli
UC Berkeley
Leon Stok
IBM Research

Full text available at: http://dx.doi.org/10.1561/1000000051

Editorial Scope

Topics

Foundations and Trends R© in Electronic Design Automation publishes
survey and tutorial articles in the following topics:

• System level design

• Behavioral synthesis

• Logic design

• Verification

• Test

• Physical design

• Circuit level design

• Reconfigurable systems

• Analog design

• Embedded software and
parallel programming

• Multicore, GPU, FPGA, and
heterogeneous systems

• Distributed, networked
embedded systems

• Real-time and cyberphysical
systems

Information for Librarians

Foundations and Trends R© in Electronic Design Automation, 2017, Volume 11,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000051

Foundations and TrendsR© in Electronic Design
Automation

Vol. 11, No. 1-2 (2017) 1–248
c© 2017 V. Costan, I. Lebedev, and S. Devadas
DOI: 10.1561/1000000051

Secure Processors Part I:
Background, Taxonomy for Secure Enclaves and

Intel SGX Architecture

Victor Costan, Ilia Lebedev and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu and devadas@mit.edu
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Full text available at: http://dx.doi.org/10.1561/1000000051

Contents

1 Introduction 2
1.1 Secure Remote Computation 3
1.2 SGX Lightning Tour . 7
1.3 Outline . 9

2 A Primer on Computer System Architecture 10
2.1 Overview . 11
2.2 Computational Model . 13
2.3 Software Privilege Levels 18
2.4 Address Spaces . 19
2.5 Address Translation . 22
2.6 Execution Contexts . 29
2.7 Segment Registers . 31
2.8 Privilege Level Switching 34
2.9 An Overview of a Modern Computer System 38
2.10 Out-of-Order and Speculative Execution 44
2.11 Memory Cache Subsystem 49
2.12 Interrupts . 62
2.13 Platform Initialization (Booting) 64
2.14 CPU Microcode . 69

ii

Full text available at: http://dx.doi.org/10.1561/1000000051

iii

3 A Primer on Security for Trusted Processors 79
3.1 Cryptographic Primitives 80
3.2 Cryptographic Constructs 94
3.3 Software Attestation Overview 101
3.4 Physical Attacks . 106
3.5 Privileged Software Attacks 111
3.6 Software Attacks on Peripherals 112
3.7 Address Translation Attacks 117
3.8 Cache Timing Attacks . 122

4 A Survey of Secure Processors 128
4.1 The IBM 4765 Secure Coprocessor 128
4.2 ARM TrustZone . 132
4.3 The XOM Architecture 135
4.4 The Trusted Platform Module (TPM) 136
4.5 Intel’s Trusted Execution Technology (TXT) 139
4.6 The Aegis Secure Processor 140
4.7 The Bastion Architecture 142
4.8 Intel SGX . 143
4.9 Sanctum . 144
4.10 Ascend and Phantom . 145

5 The Software Isolation Container (As Exemplified by Intel’s
SGX) 147
5.1 SGX Physical Memory Organization 149
5.2 The Memory Layout of an SGX Enclave 153
5.3 The Life Cycle of an SGX Enclave 161
5.4 The Life Cycle of an SGX Thread 165
5.5 EPC Page Eviction . 175
5.6 SGX Enclave Measurement 188
5.7 SGX Enclave Versioning Support 195
5.8 SGX Software Attestation 208
5.9 SGX Enclave Launch Control 220

6 Conclusion 230

Full text available at: http://dx.doi.org/10.1561/1000000051

iv

Acknowledgments 232

References 233

Full text available at: http://dx.doi.org/10.1561/1000000051

Abstract

This manuscript is the first in a two part survey and analysis of the state
of the art in secure processor systems, with a specific focus on remote
software attestation and software isolation. This manuscript first exam-
ines the relevant concepts in computer architecture and cryptography,
and then surveys attack vectors and existing processor systems claim-
ing security for remote computation and/or software isolation. This
work examines in detail the modern isolation container (enclave) prim-
itive as a means to minimize trusted software given practical trusted
hardware and reasonable performance overhead. Specifically, this work
examines in detail the programming model and software design con-
siderations of Intel’s Software Guard Extensions (SGX), as it is an
available and documented enclave-capable system.

Part II of this work is a deep dive into the implementation and se-
curity evaluation of two modern enclave-capable secure processor sys-
tems: SGX and MIT’s Sanctum. The complex but insufficient threat
model employed by SGX motivates Sanctum, which achieves stronger
security guarantees under software attacks with an equivalent pro-
gramming model.

This work advocates a principled, transparent, and well-scrutinized
approach to secure system design, and argues that practical guarantees
of privacy and integrity for remote computation are achievable at a
reasonable design cost and performance overhead.

V. Costan, I. Lebedev, and S. Devadas. Secure Processors Part I:
Background, Taxonomy for Secure Enclaves and Intel SGX Architecture.
Foundations and TrendsR© in Electronic Design Automation, vol. 11, no. 1-2,
pp. 1–248, 2017.
DOI: 10.1561/1000000051.

Full text available at: http://dx.doi.org/10.1561/1000000051

1
Introduction

A user wishing to perform computation remotely faces a complex trade-
off: how much trust can be placed in the remote system? How much
of a performance overhead is considered acceptable for the given se-
curity properties? How strong an adversary can the remote system
defend against? An ideal system would offer overhead-free trustwor-
thy private remote computation with no assumptions of trust at all,
yet no such system exists.

At one extreme, expensive cryptographic techniques including gar-
bled circuits [Yao, 1986] and fully homomorphic encryption [Gentry,
2009] offer trust-free computation at prohibitive cost. A typical cloud
computing scenario lies much closer to the opposite extreme: weak se-
curity guarantees achievable with minimal overhead assuming nearly
unchecked trust in the remote system. This work aims to illustrate
that significant security properties can be achieved given very modest
trust in the remote system. A long lineage of secure processors explore
the space of trusted hardware enabling inexpensive remote computa-
tion robust against a variety of threat models.

A rigorous conversation about security requires a precisely stated
thread model: trusted hardware must be secure, meaning it must show

2

Full text available at: http://dx.doi.org/10.1561/1000000051

1.1. Secure Remote Computation 3

resilience against a well-specified threat model. For example, few sys-
tems can offer meaningful guarantees against an adversary capable of
physically tampering with the system’s hardware. While the space of
projects fitting the description of “secure processor” is large indeed,
this work focuses on systems enabling secure remote computation, de-
fined in § 1.1. Specifically, this work aims to illuminate the program-
ming model, historical context, design decisions, and threat models
relevant to secure software enclaves − the latest and so far the most
capable paradigm for secure remote computation. We survey Intel’s
Software Guard Extensions (SGX) and MIT’s Sanctum systems to
exemplify enclave-capable systems.

This work is presented in two parts, the first covering the technical
background and taxonomy of computer architecture (§ 2) and security
concepts (§ 3) as relevant to an in-depth discussion of secure processors.
This same part presents a survey of prior work (§ 4) and an in-depth
discussion of the programming model presented by secure software en-
claves, as exemplified by Intel’s Software Guard Extensions (§ 5).

Part II [Costan et al., 2017] of this review is a deep dive into the
implementation and security properties of two modern enclave-capable
secure processor systems: SGX and MIT’s Sanctum. This work aims
to rigorously analyze the security properties and trade-offs employed
buy the secure properties to achieve their stated goals.

1.1 Secure Remote Computation

Secure remote computation (Figure 1.1) is the problem of executing
software on a remote computer owned and maintained by an un-
trusted party, with some integrity and confidentiality guarantees. In
the general setting, secure remote computation is an unsolved problem.
Fully Homomorphic Encryption [Gentry, 2009] addresses the problem
for a limited family of computations, but has an impractical perfor-
mance overhead [Naehrig et al., 2011].

Intel’s Software Guard Extensions (SGX) is the latest iteration in
a long line of trusted computing (Figure 1.2) designs, which aim to
solve the secure remote computation problem by leveraging trusted

Full text available at: http://dx.doi.org/10.1561/1000000051

4 Introduction

Data Owner’s
Computer

Remote Computer

Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Figure 1.1: Secure remote computation. A user relies on a remote computer, owned
by an untrusted party, to perform some computation on her data. The user has some
assurance of the computation’s integrity and confidentiality.

hardware in the remote computer. The trusted hardware establishes a
secure container, and the remote computation service user uploads the
desired computation and data into the secure container. The trusted
hardware protects the confidentiality and integrity of data while the
computation is being performed on it.

SGX, Sanctum, and similar work rely on software attestation, like
their predecessors, the TPM [TCG, 2003] and TXT [Grawrock, 2009].
Attestation (Figure 1.3) proves to a user that she is communicat-
ing with a specific piece of software running in a secure container
hosted by the trusted hardware. The proof is a cryptographic signa-
ture that certifies the hash of the secure container’s contents. It fol-
lows that the remote computer’s owner can load any software in a
secure container, but the remote computation service user is able to
refuse to send private data to a secure container with a hash that
does not match an expected value.

The remote computation service user verifies the attestation key
used to produce the signature against an endorsement certificate cre-

Full text available at: http://dx.doi.org/10.1561/1000000051

1.1. Secure Remote Computation 5

Trusted Hardware

Data Owner’s
Computer

Remote Computer

Secure Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Public Loader

Manufacturer

Builds

Trusts

Figure 1.2: Trusted computing. The user trusts the manufacturer of a piece of
hardware in the remote computer, and entrusts her data to a secure container hosted
by the secure hardware.

Trusted Platform

Secure Container

Data Owner’s Computer

Initial State
Public Code + Data

Key exchange: B, gA

Shared key: K = gAB

Key exchange: A, gA

gA

gB, SignAK(gA, gB, M)
M = Hash(Initial State)

Shared key: K = gAB
EncK(secret code/data)

Secret Code + Data

Computation Results
EncK(results)

Computation Results

AK: Attestation Key

Endorsement Certificate

Figure 1.3: Software attestation proves to a remote computer that it is communi-
cating with a specific secure container hosted by a trusted platform. The proof is an
attestation signature produced by the platform’s secret attestation key. The signa-
ture covers the container’s initial state, a challenge nonce produced by the remote
computer, and a message produced by the container.

Full text available at: http://dx.doi.org/10.1561/1000000051

6 Introduction

ated by the trusted hardware’s manufacturer. The certificate states
that the attestation key is only known to the trusted hardware, and
only used for the purpose of attestation.

SGX stands out from its predecessors by the amount of code cov-
ered by the attestation, which is in the Trusted Computing Base (TCB)
for the system using hardware protection. The attestations produced
by the original TPM design covered the whole of the software run-
ning on a computer, and TXT attestations covered the code inside
a VMX [Uhlig et al., 2005] virtual machine. In SGX, an enclave (se-
cure container) only contains the private data in a computation, and
the code that operates on it.

For example, a cloud service that performs image processing on
confidential medical images could be implemented by having users up-
load encrypted images. The users would send the encryption keys to
software running inside an enclave. The enclave would contain the code
for decrypting images, the image processing algorithm, and the code
for encrypting the results. The code that receives the uploaded en-
crypted images and stores them would be left outside the enclave.
This example is illustrated in Figure 1.4.

attestation

memcopy

memcopy

decrypt

encrypt

analyze
medical
image

enclave

untrusted
software

app

network
stack

remote party

Figure 1.4: An example software application that uses SGX to implement a private
function analyzing a medical image.

An SGX-enabled processor protects the integrity and confidential-
ity of the computation inside an enclave by isolating the enclave’s code

Full text available at: http://dx.doi.org/10.1561/1000000051

1.2. SGX Lightning Tour 7

and data from other software, including the operating system and hy-
pervisor, and hardware devices attached to the system bus. At the
same time, the SGX model remains compatible with the traditional
software layering in the Intel architecture, where the OS kernel and
hypervisor manage the computer’s resources.

This work discusses the original version of SGX, also referred to
as SGX 1. While SGX 2 brings very useful improvements for enclave
authors, it is a small incremental improvement, from a design and im-
plementation standpoint. After understanding the principles behind
SGX 1 and its security properties, the reader should be well equipped
to face Intel’s reference documentation and learn about the changes
brought by SGX 2 and more recent work.

1.2 SGX Lightning Tour

While this manuscript seeks to educate the reader of the challenges,
history, and state of the art in secure processors for remote compu-
tation, this discussion is grounded in the example of Intel’s Software
Guard Extensions (SGX), as it is an available, documented, and mod-
ern system that aims to offer useful security guarantees to remotely
executed programs. This section presents a brief overview of the SGX
platform, directing the reader to other sections of the manuscript for
a deeper look at each aspect of SGX.

SGX sets aside a memory region, called the Processor Reserved
Memory (PRM, § 5.1). The CPU protects the PRM from all non-
enclave memory accesses, including kernel, hypervisor and manage-
ment engine (SMM, § 2.3) accesses, and DMA accesses (§ 2.9.1)
from peripherals.

The PRM holds the Enclave Page Cache (EPC, § 5.1.1), which
consists of 4 KB pages that store enclave code and data. The system
software, which is untrusted, is in charge of assigning EPC pages to
enclaves. The CPU tracks each EPC page’s state in the Enclave Page
Cache Metadata (EPCM, § 5.1.2), to ensure that each EPC page is
assigned exclusively, belonging to exactly one enclave.

Full text available at: http://dx.doi.org/10.1561/1000000051

8 Introduction

The initial code and data in an enclave is loaded by untrusted sys-
tem software. During loading (§ 5.3), system software asks the CPU to
copy data from unprotected memory (outside PRM) into EPC pages,
and assigns the pages to the enclave being setup (§ 5.1.2). It follows
that the initial enclave state is known to the system software.

After the enclave’s pages are loaded into EPC, the system soft-
ware asks the CPU to mark the enclave as initialized (§ 5.3), at which
point application software may execute code inside the enclave. Af-
ter an enclave is initialized, the loading mechanism briefly described
above is no longer available to system software.

While an enclave is loaded, its contents and configuration are cryp-
tographically hashed by the CPU. When the enclave is initialized, this
hash is finalized, and becomes the enclave’s measurement hash (§ 5.6).

A remote party can communicate with the enclave to perform soft-
ware attestation (§ 5.8) to convince itself that it is communicating
with an enclave that has a specific measurement hash, and is run-
ning in a secure environment.

Execution flow can only enter an enclave via special CPU instruc-
tions (§ 5.4), similar to the mode switching mechanism for transitioning
between user and kernel modes of execution in a typical system. An
enclave must execute in protected mode, at ring 3, and uses virtual
address translation as set up by the OS kernel and hypervisor.

To avoid leaking private information, a CPU executing enclave code
does not directly service any interrupt, fault (e.g., a page fault) or VM
exit. Instead, the CPU first performs an Asynchronous Enclave Exit
(§ 5.4.3) to switch from enclave code to ring 3 code, and then services
the interrupt, fault, or VM exit given scrubbed fault information. The
CPU performs an AEX by saving the CPU state into a predefined
area inside the enclave and transferring control to a predefined address
outside of the enclave, replacing CPU registers with synthetic values.

The allocation of EPC pages to enclaves is delegated to the OS ker-
nel (or hypervisor). The OS communicates its allocation decisions to the
SGX platform via special ring 0 CPU instructions (§ 5.3). The OS can
also evict EPC pages into untrusted DRAM and later load them back,
again using dedicated CPU instructions. SGX uses a cryptographic

Full text available at: http://dx.doi.org/10.1561/1000000051

1.3. Outline 9

mechanism to enforce the confidentiality, integrity and freshness of the
evicted EPC pages while they are stored in untrusted memory.

1.3 Outline

Reasoning about the security properties of Intel’s SGX requires a sig-
nificant amount of background information that is currently scattered
across many sources. For this reason, a significant portion of this work
is dedicated to summarizing this prerequisite knowledge.

§ 2 summarizes the relevant subset of modern computer architecture
and the micro-architectural properties of recent Intel processors. § 3
outlines the landscape of trusted hardware systems, including crypto-
graphic tools and relevant classes of attacks. Lastly, § 4 briefly describes
other trusted hardware systems as context in which SGX was created.

Following this background information, § 5 provides a (sometimes
painstakingly) detailed description of SGX’s programming model,
largely drawing from Intel’s Software Development Manual.

A deep analysis of Intel’s enclave infrastructure is deferred to part
II of this publication (§ II.2), and will analyze other public sources of
information, such as Intel’s patents relevant to SGX, in order to fill
in some of the missing detail in the SGX specification. This discus-
sion is organized into an overview of Intel’s implementation of SGX
(§ II.2.1), a discussion and analysis of the mechanism by which SGX
offers memory access protection to an enclave (§ II.2.2, § II.2.3), and
examines SGX as a system for remote attestation (§ II.2.5, § II.2.6).
Finally, part II presents a security analysis of SGX overall, and dis-
cusses the classes of attacks against which SGX does not offer guaran-
tees(§ II.2.7). The main focus of part II is a detailed review of SGX’s
security properties to motivate and give context to the MIT Sanc-
tum project (§ II.3) − a flexible, secure, and open source implementa-
tion of enclave-capable hardware that offers strong security guarantees
against an insidious software adversary.

Full text available at: http://dx.doi.org/10.1561/1000000051

References

FIPS 140-2 Consolidated Validation Certificate No. 0003. 2011.
IBM 4765 Cryptographic Coprocessor Security Module - Security Policy. Dec

2012.
7-Zip LZMA benchmark: Intel Haswell. http://www.7-cpu.com/cpu/

Haswell.html, 2014. [Online; accessed 10-Februrary-2015].
Linux kernel: CVE security vulnerabilities, versions and detailed re-

ports. http://www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor_id=33, 2014a. [Online; accessed 27-April-2015].

XEN: CVE security vulnerabilities, versions and detailed reports. http://
www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276,
2014b. [Online; accessed 27-April-2015].

IPC2 hardware specification. http://fit-pc.com/download/intense-pc2/
documents/ipc2-hw-specification.pdf, Sep 2014. [Online; accessed 2-
Dec-2015].

Gradually sunsetting SHA-1. http://googleonlinesecurity.blogspot.
com/2014/09/gradually-sunsetting-sha-1.html, 2014. [Online; ac-
cessed 4-May-2015].

NIST’S policy on hash functions. http://csrc.nist.gov/groups/ST/hash/
policy.html, 2014. [Online; accessed 4-May-2015].

BIOS freedom status. https://puri.sm/posts/bios-freedom-status/,
Nov 2014. [Online; accessed 2-Dec-2015].

Xen project software overview. http://wiki.xen.org/wiki/Xen_Project_
Software_Overview, 2015. [Online; accessed 27-April-2015].

233

Full text available at: http://dx.doi.org/10.1561/1000000051

http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Haswell.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/groups/ST/hash/policy.html
https://puri.sm/posts/bios-freedom-status/
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview

234 References

SHA-1 deprecation countdown. https://blogs.windows.com/msedgedev/
2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.
97, 2016. [Online; accessed 18-June-2017].

Seth Abraham. Time to revisit REP;MOVS - comment. https://software.
intel.com/en-us/forums/topic/275765, Aug 2006. [Online; accessed 23-
January-2015].

Tiago Alves and Don Felton. TrustZone: Integrated hardware and software
security. Information Quarterly, 3(4):18–24, 2004.

Ittai Anati, Shay Gueron, Simon P. Johnson, and Vincent R. Scarlata. In-
novative technology for CPU based attestation and sealing. In Proceedings
of the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP, volume 13, 2013.

Ross Anderson. Security engineering: A guide to building dependable dis-
tributed systems. Wiley, 2001.

Sebastian Anthony. Who actually develops Linux? the answer
might surprise you. http://www.extremetech.com/computing/
175919-who-actually-develops-linux, 2014. [Online; accessed 27-
April-2015].

AMBA R© AXI Protocol. ARM Limited, Mar 2004. Reference no. IHI 0022B,
IHI 0024B, AR500-DA-10004.

ARM Security Technology Building a Secure System using TrustZone R© Tech-
nology. ARM Limited, Apr 2009. Reference no. PRD29-GENC-009492C.

Sebastian Banescu. Cache timing attacks. 2011. [Online; accessed 26-January-
2014].

Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Recommendation for key management – part 1: General (revision 3). Fed-
eral Information Processing Standards (FIPS) Special Publications (SP),
800-57, Jul 2012.

Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Secure hash standard (SHS). Federal Information Processing Standards
(FIPS) Publications (PUBS), 180-4, Aug 2015.

Friedrich Beck. Integrated Circuit Failure Analysis: a Guide to Preparation
Techniques. John Wiley & Sons, 1998.

Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS# 1. In Advances in Cryptology –
CRYPTO’98, pages 1–12. Springer, 1998.

Full text available at: http://dx.doi.org/10.1561/1000000051

https://blogs.windows.com/msedgedev/2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.97
https://blogs.windows.com/msedgedev/2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.97
https://blogs.windows.com/msedgedev/2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.97
https://software.intel.com/en-us/forums/topic/275765
https://software.intel.com/en-us/forums/topic/275765
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://www.extremetech.com/computing/175919-who-actually-develops-linux

References 235

D. D. Boggs and S. D. Rodgers. Microprocessor with novel instruction for
signaling event occurrence and for providing event handling information in
response thereto, 1997. US Patent 5,625,788.

Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
AES. In Cryptographic Hardware and Embedded Systems-CHES 2006, pages
201–215. Springer, 2006.

Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing.
IACR Cryptology ePrint Archive, 2009.

Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practi-
cal. In Computer Security–ESORICS 2011, pages 355–371. Springer, 2011.

David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog. BIOS
chronomancy: Fixing the core root of trust for measurement. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & Communications
Security, pages 25–36. ACM, 2013.

David Champagne and Ruby B. Lee. Scalable architectural support for trusted
software. In High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pages 1–12. IEEE, 2010.

Daming D. Chen and Gail-Joon Ahn. Security analysis of x86 processor
microcode. 2014. [Online; accessed 7-January-2015].

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M. Frans Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses
and open problems. In Proceedings of the Second Asia-Pacific Workshop
on Systems, page 5. ACM, 2011.

Lily Chen. Recommendation for key derivation using pseudorandom func-
tions. Federal Information Processing Standards (FIPS) Special Publica-
tions (SP), 800-108, Oct 2009.

Coreboot. Developer manual, Sep 2014. [Online; accessed 4-March-2015].
M. P. Cornaby and B. Chaffin. Microinstruction pointer stack including spec-

ulative pointers for out-of-order execution, 2007. US Patent 7,231,511.
Intel Corporation. Intel R© Xeon R© Processor E5 v3 Family Uncore Perfor-

mance Monitoring Reference Manual, Sep 2014. Reference no. 331051-001.
Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hard-

ware extensions for strong software isolation. Cryptology ePrint Archive,
Report 2015/564, 2015.

Full text available at: http://dx.doi.org/10.1561/1000000051

236 References

Victor Costan, Ilia Lebedev, and Srinivas Devadas. Secure processors part II:
Intel SGX security analysis and MIT sanctum architecture. In FnTEDA,
2017.

J. Daemen and V. Rijmen. AES proposal: Rijndael, AES algorithm submis-
sion, Sep 1999.

S. M. Datta and M. J. Kumar. Technique for providing secure firmware, 2013.
US Patent 8,429,418.

S. M. Datta, V. J. Zimmer, and M. A. Rothman. System and method for
trusted early boot flow, 2010. US Patent 7,752,428.

Pete Dice. Booting an Intel architecture system, part i: Early initialization.
Dr. Dobb’s, Dec 2011. [Online; accessed 2-Dec-2015].

Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654, 1976.

Loïc Duflot, Daniel Etiemble, and Olivier Grumelard. Using CPU sys-
tem management mode to circumvent operating system security functions.
CanSecWest/core06, 2006.

Morris Dworkin. Recommendation for block cipher modes of operation: Meth-
ods and techniques. Federal Information Processing Standards (FIPS) Spe-
cial Publications (SP), 800-38A, Dec 2001.

Morris Dworkin. Recommendation for block cipher modes of operation: The
CMAC mode for authentication. Federal Information Processing Standards
(FIPS) Special Publications (SP), 800-38B, May 2005.

Morris Dworkin. Recommendation for block cipher modes of operation: Ga-
lois/counter mode (GCM) and GMAC. Federal Information Processing
Standards (FIPS) Special Publications (SP), 800-38D, Nov 2007.

D. Eastlake and P. Jones. RFC 3174: US Secure Hash Algorithm 1 (SHA1).
Internet RFCs, 2001.

Shawn Embleton, Sherri Sparks, and Cliff C. Zou. SMM rootkit: a new breed
of OS independent malware. Security and Communication Networks, 2010.

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-
neering: Design Principles and Practical Applications. John Wiley & Sons,
2011.

Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. A secure
processor architecture for encrypted computation on untrusted programs.
In Proceedings of the Seventh ACM Workshop on Scalable Trusted Comput-
ing, pages 3–8. ACM, 2012.

Full text available at: http://dx.doi.org/10.1561/1000000051

References 237

Agner Fog. Instruction tables - lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs. Dec 2014.
[Online; accessed 23-January-2015].

Andrew Furtak, Yuriy Bulygin, Oleksandr Bazhaniuk, John Loucaides,
Alexander Matrosov, and Mikhail Gorobets. BIOS and secure boot at-
tacks uncovered. The 10th ekoparty Security Conference, 2014. [Online;
accessed 22-October-2015].

William Futral and James Greene. Intel R© Trusted Execution Technology for
Server Platforms. Apress Open, 2013.

Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Sili-
con physical random functions. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pages 148–160. ACM, 2002.

Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten Van Dijk, and Srini-
vas Devadas. Caches and hash trees for efficient memory integrity ver-
ification. In Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, pages 295–306. IEEE, 2003.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via
low-bandwidth acoustic cryptanalysis. Cryptology ePrint Archive, Report
2013/857, 2013.

Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my
laptop: Physical side-channel key-extraction attacks on pcs. Cryptology
ePrint Archive, Report 2014/626, 2014.

Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Stealing
keys from PCs using a radio: Cheap electromagnetic attacks on windowed
exponentiation. Cryptology ePrint Archive, Report 2015/170, 2015.

Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

R. T. George, J. W. Brandt, K. S. Venkatraman, and S. P. Kim. Dynamically
partitioning pipeline resources, 2009. US Patent 7,552,255.

A. Glew, G. Hinton, and H. Akkary. Method and apparatus for perform-
ing page table walks in a microprocessor capable of processing speculative
instructions, 1997. US Patent 5,680,565.

A. F. Glew, H. Akkary, R. P. Colwell, G. J. Hinton, D. B. Papworth, and
M. A. Fetterman. Method and apparatus for implementing a non-blocking
translation lookaside buffer, 1996. US Patent 5,564,111.

Oded Goldreich. Towards a theory of software protection and simulation by
oblivious RAMs. In Proceedings of the 19th annual ACM symposium on
Theory of Computing, pages 182–194. ACM, 1987.

Full text available at: http://dx.doi.org/10.1561/1000000051

238 References

J. R. Goodman and H. H. J. Hum. MESIF: A two-hop cache coherency
protocol for point-to-point interconnects. 2009.

Joe Grand. Advanced hardware hacking techniques, Jul 2004.
David Grawrock. Dynamics of a Trusted Platform: A building block approach.

Intel Press, 2009.
Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A

remote software-induced fault attack in JavaScript. CoRR, abs/1507.06955,
2015. URL http://arxiv.org/abs/1507.06955.

Shay Gueron. A memory encryption engine suitable for general purpose pro-
cessors. Cryptology ePrint Archive, Report 2016/204, 2016.

Ben Hawkes. Security analysis of x86 processor microcode. 2012. [Online;
accessed 7-January-2015].

John L. Hennessy and David A. Patterson. Computer Architecture - a Quanti-
tative Approach (5 ed.). Mogran Kaufmann, 2012. ISBN 978-0-12-383872-8.

Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart
card implementation resistant to power analysis attacks. In Applied cryp-
tography and Network security, pages 239–252. Springer, 2006.

G. Hildesheim, I. Anati, H. Shafi, S. Raikin, G. Gerzon, U. R. Savagaonkar,
C. V. Rozas, F. X. McKeen, M. A. Goldsmith, and D. Prashant. Apparatus
and method for page walk extension for enhanced security checks, 2014. US
Patent App. 13/730,563.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using innovative instructions to create trustworthy soft-
ware solutions. In Proceedings of the 2nd International Workshop on Hard-
ware and Architectural Support for Security and Privacy, HASP, volume 13,
2013.

Gael Hofemeier. Intel manageability firmware recovery agent. Mar 2013.
[Online; accessed 2-Dec-2015].

George Hotz. PS3 glitch hack. 2010. [Online; accessed 7-January-2015].
Andrew Huang. Hacking the Xbox: an Introduction to Reverse Engineering.

No Starch Press, 2003.
C. J. Hughes, Y. K. Chen, M. Bomb, J. W. Brandt, M. J. Buxton, M. J.

Charney, S. Chennupaty, J. Corbal, M. G. Dixon, M. B. Girkar, Jonathan C.
Hall, Hideki (Saito) Ido, Peter Lachner, Gilbert Neiger, Chris J. Newburn,
Rajesh S. Parthasarathy, Bret L. Toll, Robert Valentine, and Jeffrey G.
Wiedemeier. Gathering and scattering multiple data elements, 2013. US
Patent 8,447,962.

Full text available at: http://dx.doi.org/10.1561/1000000051

http://arxiv.org/abs/1507.06955

References 239

IEEE Standard for Ethernet. IEEE Computer Society, Dec 2012. IEEE Std.
802.3-2012.

Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Seriously, get off my cloud! cross-VM RSA key recovery
in a public cloud. Cryptology ePrint Archive, Report 2015/898, 2015.

Intel R© Processor Serial Number. Intel Corporation, Mar 1999. Order no.
245125-001.

An Introduction to the Intel R© QuickPath Interconnect. Intel Corporation,
Mar 2010a. Reference no. 323535-001.

Minimal Intel R© Architecture Boot Loader–Bare Bones Functionality Required
for Booting an Intel R© Architecture Platform. Intel Corporation, Jan 2010b.
Reference no. 323246.

Intel R© Core 2 Duo and Intel R© Core 2 Solo Processor for Intel R© Centrino R©
Duo Processor Technology Intel R© Celeron R© Processor 500 Series - Speci-
fication Update. Intel Corporation, Dec 2010c. Reference no. 314079-026.

Intel R© architecture Platform Basics. Intel Corporation, Sep 2010d. Reference
no. 324377.

Intel R© Trusted Execution Technology (Intel R© TXT) LAB Handout. Intel
Corporation, 2010e. [Online; accessed 2-July-2015].

Intel R© Xeon R© Processor 7500 Series Uncore Programming Guide. Intel Cor-
poration, Mar 2010f. Reference no. 323535-001.

Intel R© 7 Series Family - Intel R© Management Engine Firmware 8.1 - 1.5MB
Firmware Bring Up Guide. Intel Corporation, Jul 2012a. Revision
8.1.0.1248 - PV Release.

Intel R© Xeon R© Processor E5-2600 Product Family Uncore Performance Mon-
itoring Guide. Intel Corporation, Mar 2012b. Reference no. 327043-001.

Software Guard Extensions Programming Reference. Intel Corporation, 2013.
Reference no. 329298-001US.

Intel R© Xeon R© Processor 7500 Series Datasheet - Volume Two. Intel Corpo-
ration, Mar 2014a. Reference no. 329595-002.

Intel R© Xeon R© Processor E7 v2 2800/4800/8800 Product Family Datasheet -
Volume Two. Intel Corporation, Mar 2014b. Reference no. 329595-002.

Intel R© 64 and IA-32 Architectures Optimization Reference Manual. Intel
Corporation, Sep 2014c. Reference no. 248966-030.

Software Guard Extensions Programming Reference. Intel Corporation, 2014d.
Reference no. 329298-002US.

Full text available at: http://dx.doi.org/10.1561/1000000051

240 References

Intel R© 100 Series Chipset Family Platform Controller Hub (PCH) Datasheet
- Volume One. Intel Corporation, Aug 2015a. Reference no. 332690-001EN.

Mobile 4th Generation Intel R© Core R© Processor Family I/O Datasheet. Intel
Corporation, Feb 2015b. Reference no. 329003-003.

Intel R© Xeon R© Processor E5-1600, E5-2400, and E5-2600 v3 Product Family
Datasheet - Volume Two. Intel Corporation, Jan 2015c. Reference no.
330784-002.

Intel R© Xeon R© Processor 5500 Series - Specification Update. Intel Corpora-
tion, 2 2015d. Reference no. 321324-018US.

Intel R© Xeon R© Processor E5 Product Family - Specification Update. Intel
Corporation, Jan 2015e. Reference no. 326150-018.

Intel R© Software Guard Extensions (Intel R© SGX). Intel Corporation, Jun
2015f. Reference no. 332680-002.

Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Intel Cor-
poration, Sep 2015g. Reference no. 325462-056US.

Intel R© C610 Series Chipset and Intel R© X99 Chipset Platform Controller Hub
(PCH) Datasheet. Intel Corporation, Oct 2015h. Reference no. 330788-003.

Bruce Jacob and Trevor Mudge. Virtual memory: Issues of implementation.
Computer, 31(6):33–43, 1998.

Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mc-
keen. Intel R© software guard extensions: EPID provisioning and attesta-
tion services. https://software.intel.com/en-us/blogs/2016/03/09/
intel-sgx-epid-provisioning-and-attestation-services, Mar 2016.
[Online; accessed 21-Mar-2016].

Simon P. Johnson, Uday R. Savagaonkar, Vincent R. Scarlata, Francis X.
McKeen, and Carlos V. Rozas. Technique for supporting multiple secure
enclaves, Dec 2010. US Patent 8,972,746.

Jakob Jonsson and Burt Kaliski. RFC 3447: Public-Key Cryptography Stan-
dards (PKCS) #1: RSA Cryptography Specifications Version 2.1. Internet
RFCs, Feb 2003.

Burt Kaliski. RFC 2313: PKCS #1: RSA Encryption Version 1.5. Internet
RFCs, Mar 1998.

Burt Kaliski and Jessica Staddon. RFC 2437: PKCS #1: RSA Encryption
Version 2.0. Internet RFCs, Oct 1998.

Corey Kallenberg, Xeno Kovah, John Butterworth, and Sam Cornwell. Ex-
treme privilege escalation on windows 8/UEFI systems, 2014.

Full text available at: http://dx.doi.org/10.1561/1000000051

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

References 241

Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. In Cryptographic Hardware and Embedded Systems-CHES 2009,
pages 1–17. Springer, 2009.

Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC Press, 2014.

Richard E. Kessler and Mark D. Hill. Page placement algorithms for large
real-indexed caches. ACM Transactions on Computer Systems (TOCS), 10
(4):338–359, 1992.

Taesoo Kim and Nickolai Zeldovich. Practical and effective sandboxing for
non-root users. In USENIX Annual Technical Conference, pages 139–144,
2013.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in mem-
ory without accessing them: An experimental study of DRAM disturbance
errors. In Proceeding of the 41st annual International Symposium on Com-
puter Architecuture, pages 361–372. IEEE Press, 2014.

L. A. Knauth and P. J. Irelan. Apparatus and method for providing eventing
ip and source data address in a statistical sampling infrastructure, 2014.
US Patent App. 13/976,613.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48
(177):203–209, 1987.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology (CRYPTO), pages 388–397. Springer, 1999.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology – CRYPTOâĂŹ96,
pages 104–113. Springer, 1996.

Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-hashing for
message authentication. 1997.

Markus G. Kuhn. Electromagnetic eavesdropping risks of flat-panel displays.
In Privacy Enhancing Technologies, pages 88–107. Springer, 2005.

Tsvika Kurts, Guillermo Savransky, Jason Ratner, Eilon Hazan, Daniel Skaba,
Sharon Elmosnino, and Geeyarpuram N. Santhanakrishnan. Generic debug
eXternal connection (gdxc) for high integration integrated circuits, 2011.
US Patent 8,074,131.

David Levinthal. Performance analysis guide for Intel R© Core i7 processor
and Intel R© Xeon 5500 processors. https://software.intel.com/sites/
products/collateral/hpc/vtune/performance_analysis_guide.pdf,
2010. [Online; accessed 26-January-2015].

Full text available at: http://dx.doi.org/10.1561/1000000051

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

242 References

David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan
Boneh, John Mitchell, and Mark Horowitz. Architectural support for copy
and tamper resistant software. ACM SIGPLAN Notices, 35(11):168–177,
2000.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and
P. Sadayappan. Gaining insights into multicore cache partitioning: Bridging
the gap between simulation and real systems. In 14th International IEEE
Symposium on High Performance Computer Architecture (HPCA), pages
367–378. IEEE, 2008.

Barbara Liskov and Stephen Zilles. Programming with abstract data types.
In ACM Sigplan Notices, volume 9, pages 50–59. ACM, 1974.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
level cache side-channel attacks are practical. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 143–158. IEEE, 2015.

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste
Asanovic, John Kubiatowicz, and Dawn Song. Phantom: Practical obliv-
ious computation in a secure processor. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 311–
324. ACM, 2013.

James Manger. A chosen ciphertext attack on RSA optimal asymmetric en-
cryption padding (OAEP) as standardized in PKCS# 1 v2.0. In Advances
in Cryptology – CRYPTO 2001, pages 230–238. Springer, 2001.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. Reverse engineering Intel last-level cache
complex addressing using performance counters. In Proceedings of the 18th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2015.

Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,
Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB reduction and
attestation. In Security and Privacy (SP), 2010 IEEE Symposium on, pages
143–158. IEEE, 2010.

David McGrew and John Viega. The galois/counter mode of operation
(GCM). 2004. [Online; accessed 28-December-2015].

Full text available at: http://dx.doi.org/10.1561/1000000051

References 243

Francis X. McKeen, Carlos V. Rozas, Uday R. Savagaonkar, Simon P. John-
son, Vincent Scarlata, Michael A. Goldsmith, Ernie Brickell, Jiang Tao Li,
Howard C. Herbert, Prashant Dewan, Stephen J. Tolopka, Gilbert Neiger,
David Durham, Gary Graunke, Bernard Lint, Don A. Van Dyke, Joseph
Cihula, Stalinselvaraj Jeyasingh, Stephen R. Van Doren, Dion Rodgers,
John Garney, and Asher Altman. Method and apparatus to provide secure
application execution, Dec 2009. US Patent 9,087,200.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instruc-
tions and software model for isolated execution. HASP, 13:10, 2013.

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomor-
phic encryption be practical? In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, pages 113–124. ACM, 2011.

National Institute of Standards and Technology (NIST). The advanced en-
cryption standard (AES). Federal Information Processing Standards (FIPS)
Publications (PUBS), 197, Nov 2001.

National Institute of Standards and Technology (NIST). The digital signa-
ture standard (DSS). Federal Information Processing Standards (FIPS)
Processing Standards Publications (PUBS), 186-4, Jul 2013.

National Security Agency (NSA) Central Security Service (CSS). Cryptog-
raphy today on suite B phase-out. https://www.nsa.gov/ia/programs/
suiteb_cryptography/, Aug 2015. [Online; accessed 28-December-2015].

M. S. Natu, S. Datta, J. Wiedemeier, J. R. Vash, S. Kottapalli, S. P. Bobholz,
and A. Baum. Supporting advanced RAS features in a secured computing
system, 2012. US Patent 8,301,907.

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox – practical cache attacks in JavaScript.
arXiv preprint arXiv:1502.07373, 2015.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of AES. In Topics in Cryptology–CT-RSA 2006, pages
1–20. Springer, 2006.

Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-TSO (extended version). University of Cambridge, Computer Labora-
tory, Technical Report, (UCAM-CL-TR-745), 2009.

Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang.
ACCessory: password inference using accelerometers on smartphones. In
Proceedings of the Twelfth Workshop on Mobile Computing Systems & Ap-
plications, page 9. ACM, 2012.

Full text available at: http://dx.doi.org/10.1561/1000000051

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/

244 References

D. B. Papworth, G. J. Hinton, M. A. Fetterman, R. P. Colwell, and A. F. Glew.
Exception handling in a processor that performs speculative out-of-order
instruction execution, 1999. US Patent 5,987,600.

David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: the hardware/software interface. Morgan Kaufmann, 2013. ISBN
978-0-12-374750-1.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. Reverse en-
gineering Intel DRAM addressing and exploitation. ArXiv e-prints, Nov
2015.

Stefan M. Petters and Georg Farber. Making worst case execution time anal-
ysis for hard real-time tasks on state of the art processors feasible. In Sixth
International Conference on Real-Time Computing Systems and Applica-
tions, pages 442–449. IEEE, 1999.

S. A. Qureshi and M. O. Nicholes. System and method for using a firmware
interface table to dynamically load an ACPI SSDT, 2006. US Patent
6,990,576.

S. Raikin and R. Valentine. Gather cache architecture, 2014. US Patent
8,688,962.

S. Raikin, O. Hamama, R. S. Chappell, C. B. Rust, H. S. Luu, L. A. Ong, and
G. Hildesheim. Apparatus and method for a multiple page size translation
lookaside buffer (TLB), 2014. US Patent App. 13/730,411.

Stefan Reinauer. x86 Intel: Add firmware interface table support. http:
//review.coreboot.org/#/c/2642/, 2013. [Online; accessed 2-July-2015].

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
you, get off of my cloud: Exploring information leakage in third-party com-
pute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 199–212. ACM, 2009.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21
(2):120–126, 1978.

S. D. Rodgers, K. K. Tiruvallur, M. W. Rhodehamel, K. G. Konigsfeld, A. F.
Glew, H. Akkary, M. A. Karnik, and J. A. Brayton. Method and apparatus
for performing operations based upon the addresses of microinstructions,
1997. US Patent 5,636,374.

S. D. Rodgers, R. Vidwans, J. Huang, M. A. Fetterman, and K. Huck. Method
and apparatus for generating event handler vectors based on both operating
mode and event type, 1999. US Patent 5,889,982.

Full text available at: http://dx.doi.org/10.1561/1000000051

http://review.coreboot.org/#/c/2642/
http://review.coreboot.org/#/c/2642/

References 245

M. Rosenblum and T. Garfinkel. Virtual machine monitors: current technol-
ogy and future trends. Computer, 38(5):39–47, May 2005.

Xiaoyu Ruan. Platform Embedded Security Technology Revealed. Apress, 2014.
ISBN 978-1-4302-6571-9.

Joanna Rutkowska. Intel x86 considered harmful. https://blog.
invisiblethings.org/papers/2015/x86_harmful.pdf, Oct 2015. [On-
line; accessed 2-Nov-2015].

Joanna Rutkowska and Rafał Wojtczuk. Preventing and detecting Xen hy-
pervisor subversions. Blackhat Briefings USA, 2008.

Jerome H. Saltzer and M. Frans Kaashoek. Principles of Computer System
Design: An Introduction. Morgan Kaufmann, 2009.

Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. http://googleprojectzero.blogspot.com/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html, Mar 2015. [Online;
accessed 9-March-2015].

V. Shanbhogue and S. J. Robinson. Enabling virtualization of a processor
resource, 2014. US Patent 8,806,104.

Stephen Shankland. Itanium: A cautionary tale. Dec 2005. [Online; accessed
11-February-2015].

Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):
473–530, 1982.

Sean W. Smith and Steve Weingart. Building a high-performance, pro-
grammable secure coprocessor. Computer Networks, 31(8):831–860, 1999.

Sean W. Smith, Ron Perez, Steve Weingart, and Vernon Austel. Validating a
high-performance, programmable secure coprocessor. In 22nd National In-
formation Systems Security Conference. IBM Thomas J. Watson Research
Division, 1999.

Marc Stevens, Pierre Karpman, and Thomas Peyrin. Free-start collision on
full SHA-1. Cryptology ePrint Archive, Report 2015/967, 2015.

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srini-
vas Devadas. AEGIS: architecture for tamper-evident and tamper-resistant
processing. In Proceedings of the 17th annual international conference on
Supercomputing, pages 160–171. ACM, 2003.

G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas.
Design and Implementation of the AEGIS Single-Chip Secure Processor
Using Physical Random Functions. In Proceedings of the 32nd ISCA’05.
ACM, June 2005.

Full text available at: http://dx.doi.org/10.1561/1000000051

https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

246 References

George Taylor, Peter Davies, and Michael Farmwald. The TLB slice - a
low-cost high-speed address translation mechanism. SIGARCH Computer
Architecture News, 18(2SI):355–363, 1990.

Trusted Computing Group TCG. Tpm main specification. http://www.
trustedcomputinggroup.org/resources/tpm_main_specification,
2003.

Alexander Tereshkin and Rafal Wojtczuk. Introducing ring-3 rootkits. Mas-
ter’s thesis, 2009.

Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and dif-
ferential CMOS logic with signal independent power consumption to with-
stand differential power analysis on smart cards. In Proceedings of the
28th European Solid-State Circuits Conference (ESSCIRC), pages 403–406.
IEEE, 2002.

Unified Extensible Firmware Interface Specification, Version 2.5. UEFI Fo-
rum, 2015. [Online; accessed 1-Jul-2015].

Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Mar-
tins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung,
and Larry Smith. Intel virtualization technology. Computer, 38(5):48–56,
2005.

Wim Van Eck. Electromagnetic radiation from video display units: an eaves-
dropping risk? Computers & Security, 4(4):269–286, 1985.

Amit Vasudevan, Jonathan M. McCune, Ning Qu, Leendert Van Doorn, and
Adrian Perrig. Requirements for an integrity-protected hypervisor on the
x86 hardware virtualized architecture. In Trust and Trustworthy Comput-
ing, pages 141–165. Springer, 2010.

Sathish Venkataramani. Advanced Board Bring Up - Power Sequencing Guide
for Embedded Intel Architecture. Intel Corporation, Apr 2011. Reference
no. 325268.

Vassilios Ververis. Security evaluation of Intel’s active management technol-
ogy. 2010.

Filip Wecherowski. A real SMM rootkit: Reversing and hooking BIOS SMI
handlers. Phrack Magazine, 13(66), 2009.

Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM memory via Intel
CPU cache poisoning. Invisible Things Lab, 2009a.

Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel trusted execution
technology. Black Hat DC, 2009b.

Full text available at: http://dx.doi.org/10.1561/1000000051

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

References 247

Rafal Wojtczuk and Joanna Rutkowska. Attacking intel TXT via SINIT code
execution hijacking, 2011.

Rafal Wojtczuk and Alexander Tereshkin. Attacking Intel R© BIOS. Invisible
Things Lab, 2010.

Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. Another way
to circumvent Intel R© trusted execution technology. Invisible Things Lab,
2009.

Y. Wu and M. Breternitz. Genetic algorithm for microcode compression, 2008.
US Patent 7,451,121.

Y. Wu, S. Kim, M. Breternitz, and H. Hum. Compressing and accessing a
microcode ROM, 2012. US Patent 8,099,587.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating systems. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (Oakland).
IEEE – Institute of Electrical and Electronics Engineers, May 2015.

A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, pages 162–167,
1986.

Yuval Yarom and Katrina E. Falkner. Flush+Reload: a high resolution, low
noise, L3 cache side-channel attack. IACR Cryptology ePrint Archive, 2013:
448, 2013.

Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. Mapping
the Intel last-level cache. Cryptology ePrint Archive, Report 2015/905,
2015.

Bennet Yee. Using secure coprocessors. PhD thesis, Carnegie Mellon Univer-
sity, 1994.

Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika Kurts. A
fully integrated multi-CPU, GPU and memory controller 32nm processor.
In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2011 IEEE International, pages 264–266. IEEE, 2011.

Xiantao Zhang and Yaozu Dong. Optimizing Xen VMM based on Intel R©
virtualization technology. In Internet Computing in Science and Engineer-
ing, 2008. ICICSE’08. International Conference on, pages 367–374. IEEE,
2008.

Li Zhuang, Feng Zhou, and J. Doug Tygar. Keyboard acoustic emanations re-
visited. ACM Transactions on Information and System Security (TISSEC),
13(1):3, 2009.

Full text available at: http://dx.doi.org/10.1561/1000000051

248 References

V. J. Zimmer and S. H. Robinson. Methods and systems for microcode patch-
ing, 2012. US Patent 8,296,528.

V. J. Zimmer and J. Yao. Method and apparatus for sequential hypervisor
invocation, 2012. US Patent 8,321,931.

Full text available at: http://dx.doi.org/10.1561/1000000051

	Introduction
	Secure Remote Computation
	SGX Lightning Tour
	Outline

	A Primer on Computer System Architecture
	Overview
	Computational Model
	Software Privilege Levels
	Address Spaces
	Address Translation
	Execution Contexts
	Segment Registers
	Privilege Level Switching
	An Overview of a Modern Computer System
	Out-of-Order and Speculative Execution
	Memory Cache Subsystem
	Interrupts
	Platform Initialization (Booting)
	CPU Microcode

	A Primer on Security for Trusted Processors
	Cryptographic Primitives
	Cryptographic Constructs
	Software Attestation Overview
	Physical Attacks
	Privileged Software Attacks
	Software Attacks on Peripherals
	Address Translation Attacks
	Cache Timing Attacks

	A Survey of Secure Processors
	The IBM 4765 Secure Coprocessor
	ARM TrustZone
	The XOM Architecture
	The Trusted Platform Module (TPM)
	Intel's Trusted Execution Technology (TXT)
	The Aegis Secure Processor
	The Bastion Architecture
	Intel SGX
	Sanctum
	Ascend and Phantom

	The Software Isolation Container (As Exemplified by Intel's SGX)
	SGX Physical Memory Organization
	The Memory Layout of an SGX Enclave
	The Life Cycle of an SGX Enclave
	The Life Cycle of an SGX Thread
	EPC Page Eviction
	SGX Enclave Measurement
	SGX Enclave Versioning Support
	SGX Software Attestation
	SGX Enclave Launch Control

	Conclusion
	Acknowledgments
	References

