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Abstract

Internet-of-Things and machine learning promise a new era for health-
care. The emergence of transformative technologies, such as Implantable
and Wearable Medical Devices (IWMDs), has enabled collection and
analysis of physiological signals from anyone anywhere anytime. Machine
learning allows us to unearth patterns in these signals and make health-
care predictions in both daily and clinical situations. This broadens the
reach of healthcare from conventional clinical contexts to pervasive ev-
eryday scenarios, from passive data collection to active decision-making.

Despite the existence of a rich literature on IWMD-based and clin-
ical healthcare systems, the fundamental challenges associated with
design and implementation of smart healthcare systems have not been
well-addressed. The main objectives of this article are to define a stan-
dard framework for smart healthcare aimed at both daily and clinical
settings, investigate state-of-the-art smart healthcare systems and their
constituent components, discuss various considerations and challenges
that should be taken into account while designing smart healthcare sys-
tems, explain how existing studies have tackled these design challenges,
and finally suggest some avenues for future research based on a set of
open issues and challenges.

H. Yin, A. O. Akmandor, A. Mosenia and N. K. Jha. Smart Healthcare. Foundations
and TrendsR© in Electronic Design Automation, vol. 12, no. 4, pp. 401–466, 2018.
DOI: 10.1561/1000000054.
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1
Introduction

A rapidly aging population and the dramatic increase in the cost of
in-hospital healthcare have led to the recognition of the importance of
efficient healthcare systems (Nia et al., 2015) and fostered several novel
research directions at the intersection of healthcare, data analytics,
wireless communication, embedded systems, and information security.
Implantable and Wearable Medical Devices (IWMDs), which facilitate
non-invasive prevention, early diagnosis, and continuous treatment
of medical conditions, are envisioned as key components of modern
healthcare (Ghayvat et al., 2015; Mukhopadhyay, 2015; Mosenia et al.,
2017b). The computational power, energy capacity, and networking
capabilities of IWMDs have improved significantly in the last decade
while their sizes have decreased drastically. These technological advances
have brought daily healthcare systems from a distant vision to the verge
of reality. Furthermore, the emergence of Internet-of-Things (IoT) and
the introduction of new computing/networking paradigms (such as
Cloud computing and Fog computing), which make possible systems
consisting of several heterogeneous sensing and computing devices, have
revolutionized traditional healthcare and provided an opportunity to

2
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3

replace in-hospital medical systems with Internet-connected IWMD-
based systems, thus bringing us to the dawn of a new era of smart
healthcare.

Smart healthcare does not have a unique definition. However, our
broad interpretation of smart healthcare is that besides clinical usage,
it also utilizes IWMDs to gather, store, and process various types of
physiological data during daily activities. Smart healthcare systems may
rely on wireless connectivity to take advantage of external resources,
e.g., computational/storage resources available on nearby devices or the
Cloud, or inform a clinician about the patient’s medical condition. Hence,
smart healthcare offers a proactive approach to early detection and
even prevention of medical conditions. It even enables physicians and
clinicians to assist patients in their home environment where they can be
continuously monitored with the help of numerous Internet-connected
healthcare systems. This reduces the need for institutionalization and
hospitalization, and is especially beneficial to the disabled and elderly.
It also has the potential to reduce healthcare costs significantly and
enhance the quality of life of patients.

Since the introduction of the first IWMD (an implantable pacemaker)
in 1958, several types of IWMDs have been developed and introduced in
the market, ranging from sweat-analyzing devices (Gao et al., 2016) to
Internet-connected multi-sensor continuous long-term health monitoring
systems (Nia et al., 2015; Pantelopoulos and Bourbakis, 2010). However,
despite a rich body of literature on IWMD-based and clinical healthcare
systems (see (Pantelopoulos and Bourbakis, 2010), (Mosenia et al.,
2017b), and (Musen et al., 2014) for a comprehensive survey), the
fundamental challenges associated with design and implementation of
smart healthcare systems have not yet been well-addressed. The main
goals of this article are to define the scope of smart healthcare and
investigate state-of-the art smart healthcare systems, their constituent
components, their design considerations, and how existing studies have
tackled these challenges. In particular, we do the following.

• We present a novel framework for smart healthcare, which aims
to support both in-patient and out-patient health monitoring and
discuss and compare clinical and daily healthcare.

Full text available at: http://dx.doi.org/10.1561/1000000054



4 Introduction

• We describe several emerging smart healthcare systems, including
IBM Watson (High, 2012), Open mHealth (Estrin and Sim, 2010),
Health Decision Support System (HDSS) (Yin and Jha, 2017),
Stress Detection and Alleviation system (SoDA) (Akmandor and
Jha, 2017), and an energy-efficient system for continuous health
monitoring of a patient’s medical condition over the long term
(Nia et al., 2015).

• We discuss several considerations and challenges that should be
taken into account while designing smart healthcare systems.

• We describe five research trends for addressing these design consid-
erations, including compact deep neural networks and compressive
sensing to drastically reduce computation energy and storage, and
MedMon, OpSecure, and SecureVibe to enhance security of health-
care systems.

• Finally, we discuss several future research directions, including
the need to obtain medical datasets and machine learning models
for them, standardization and infrastructure, and the promising
role that Fog computing can play in smart healthcare.

The rest of the article is organized as follows. In Chapter 2, we present
a smart healthcare framework that enables exploitation of the rapid
clinical-to-daily healthcare expansion. In Chapter 3, we analyze five
emerging systems that act as enablers of smart healthcare. In Chapter 4,
we discuss associated design considerations and challenges in these
systems, including efficiency, security, accuracy, cost, responsiveness,
maintainability, scalability, reliability, and fault tolerance. In Chapter 5,
we describe five emerging research trends that address some of these
challenges. In Chapter 6, we discuss open issues and future research
directions. Finally, we conclude in Chapter 7.

Full text available at: http://dx.doi.org/10.1561/1000000054
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