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ABSTRACT

In recent years, significant effort has been put into devel-
oping formal verification approaches by both academic and
industrial research. In practice, these techniques often give
satisfying results for some types of circuits, while they fail
for others. A major challenge in this domain is that the
verification techniques suffer from unpredictability in their
performance. The only way to overcome this challenge is
the calculation of bounds for the space and time complexi-
ties. If a verification method has polynomial space and time
complexities, scalability can be guaranteed.

In this monograph, we propose Polynomial Formal Verifica-
tion (PFV) of arithmetic circuits. We discuss the importance
and advantages of PFV. Subsequently, we prove that PFV
of different types of arithmetic circuits, including adders,
multipliers, and Arithmetic Logic Units (ALUs) is possible.
Furthermore, we calculate the exact upper-bound space and
time complexities of verifying these circuits.
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1
Introduction

With the invention of the transistor in 1947, the cornerstone for the dig-
ital revolution was laid. As a fundamental building block, the transistor
triggered the development of digital circuits. The mass production of
digital circuits revolutionized the field of electronics, finally leading to
computers, embedded systems, and the Internet. Hence, the impact of
digital hardware on society, as well as the economy, was and is tremen-
dous. Over the last decades, the enormous growth in the complexity
of integrated circuits has continued as expected. Digital circuits nowa-
days are much more complex, sometimes even consisting of billions of
transistors. Back in 2000, an Intel Pentium 4 processor had 42 million
transistors, and it was working with a 1.4 GHz frequency. Thirteen years
later, Intel released its Core-i Series processors. They consist of more
than 5 billion transistors (i.e. 120× Pentium 4 transistors) and work
with clock speeds of up to 4.4 GHz. Moreover, modern digital circuits
are usually designed based on sophisticated algorithms, leading to fast
and efficient but complex architectures. The complexity is even higher
when it comes to the arithmetic circuits, since 1) they are usually very
large, and 2) they are designed based on several optimized algorithms
for each stage. As an example, a multiplier consists of three stages and

2
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3

each stage can be created based on different algorithms, leading to an
area-efficient and fast circuit.

As modern electronic devices are getting more and more complex,
the fundamental issue of functional correctness becomes more impor-
tant than ever. This is evidenced by many publicly known examples
of electronic failures with disastrous consequences. This includes e.g.,
the Intel Pentium bug in 1994 (Blum and Wasserman, 1996), the New
York blackout in 2003, and a design flaw in Intel’s Sandy Bridge chipset
in 2011. Such costly mistakes can only be prevented by verifying the
circuits before they get to production (Drechsler, 2004; Drechsler, 2017).
Exhaustive simulation (i.e., checking the outputs for each provided
test-vector) is not a feasible approach to ensure correctness since it is
impossible to cover the whole input space in the case of large digital
circuits. As a result, significant effort has been put into developing
formal verification techniques by both academic and industrial research.
Essentially, formal verification aims to formally prove that an imple-
mentation is correct with respect to its specification. Formal verification
methods take advantage of rigorous mathematical reasoning to ensure
that a design meets its specification. Nowadays, formal verification is
an essential task in industry since it is the only way to ensure the 100%
correctness of an implementation. They are extensively used to prove
the correctness of arithmetic circuits such as adders, multipliers, and
Arithmetic Logic Units (ALUs).

Several bit-level and word-level formal verification algorithms have
been proposed in recent years to prove the correctness of digital circuits
(see, for example, Russinoff et al., 2022; Kaivola and O’Leary, 2022). In
practice, they might give satisfying results for some types of circuits, but
they might also fail due to non-efficient run-time and memory usage if
the size of the circuits increases. As a result, these verification algorithms
suffer from unpredictability in their performance. The time and
space complexities of many formal methods are unknown when it comes
to verifying various types of designs. It cannot be predicted before
actually invoking the verification tool whether (a) it will successfully
terminate or (b) run for an indefinite amount of time. It is a serious
challenge in the verification phase and can dramatically affect the time
schedule for the implementation and fabrication of a digital circuit. This
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4 Introduction

obstacle can only be overcome by calculating the verification complexity
of different types of circuits. We are particularly interested in verification
techniques whose space and time complexities are polynomially bounded.

Polynomial Formal Verification (PFV) was first introduced in Drech-
sler (2021) for adders. Shortly, researchers put a lot of effort into proving
the polynomial bounds for the existing methods and proposed new PFV
approaches (Drechsler and Mahzoon, 2022). In general, calculating the
space and time complexities and proving the polynomial bounds provide
us with three main advantages:

• We can predict before running a verification engine whether it
returns the results in a limited period. As a result, we can avoid the
verification methods with exponential space and time complexities.

• We can ensure the scalability of a verification method when it
comes to proving the correctness of a specific type of circuit. Thus,
the verification run-time and memory usage increase polynomially
with respect to the size of the circuit. It is particularly important
when there is a resource constraint for the verification process.

• We can compare the upper-bound space and time complexities of
two verification methods when they are applied to a specific type
of circuit. Consequently, we can realize which method performs
better in terms of run-time and memory usage.

In this monograph, we prove that PFV of arithmetic circuits includ-
ing adders, multipliers, and ALUs is possible. Furthermore, we calculate
the exact upper-bound complexity of verifying different types of adders
and multipliers, as well as an ALU.

We first provide an overview of formal verification techniques and
clarify the importance of PFV in Section 2. Then, we calculate the
upper-bound complexity of verifying various adder architectures using
Binary Decision Diagrams (BDDs) in Section 3. Subsequently, we prove
that PFV of complex multipliers is possible using Symbolic Computer
Algebra (SCA) and BBDs in Section 4. Section 5 provides the proof for
the PFV of ALUs. Finally, Section 6 concludes the work.
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