
Harnessing the Potential of
Deep-learning Algorithms

and Generative AI for SoC
and Chiplet Design and

Verification

Full text available at: https://nowpublishers.com/EDA

Other titles in Foundations and Trends® in Electronic Design Au-
tomation

Polynomial Formal Verification of Arithmetic Circuits
Alireza Mahzoon and Rolf Drechsler
ISBN: 978-1-63828-404-8

Cloud and Edge Computing for Connected and Automated Vehicles
Qi Zhu, Bo Yu, Ziran Wang, Jie Tang, Qi Alfred Chen, Zihao Li, Xi-
angguo Liu, Yunpeng Luo and Lingzi Tu
ISBN: 978-1-63828-302-7

From CNN to DNN Hardware Accelerators: A Survey on Design, Ex-
ploration, Simulation, and Frameworks
Leonardo Rezende Juracy, Rafael Garibotti and Fernando Gehm Moraes
ISBN: 978-1-63828-162-7

Self-Powered Wearable IoT Devices for Health and Activity Monitoring
Ganapati Bhat, Ujjwal Gupta, Yigit Tuncel, Fatih Karabacak, Sule
Ozev and Umit Y. Ogras
ISBN: 978-1-68083-748-3

On-Chip Dynamic Resource Management
Antonio Miele, Anil Kanduri, Kasra Moazzemi, Dávid Juhász, Amir R.
Rahmani, Nikil Dutt, Pasi Liljeberg and Axel Jantsch
ISBN: 978-1-68083-578-6

Smart Healthcare
Hongxu Yin, Ayten Ozge Akmandor, Arsalan Mosenia and Niraj K. Jha
ISBN: 978-1-68083-440-6

Full text available at: https://nowpublishers.com/EDA

Harnessing the Potential of
Deep-learning Algorithms and

Generative AI for SoC and Chiplet
Design and Verification

Edited by
Imed Ben Dhaou

Hannu Tenhunen

Ahmed Abdelgawad

Sree Ranjani Rajendran

Rajat Subhra Chakraborty

Boston — Delft

Full text available at: https://nowpublishers.com/EDA

Foundations and Trends® in Electronic Design Au-
tomation

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The content of the book was originally published in Foundations and Trends® in
Electronic Design Automation, vol. 14, no. 4.

ISBN: 978-1-63828-538-0
© 2025 Now Publishers Inc

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: https://nowpublishers.com/EDA

Foundations and Trends® in Electronic Design
Automation

Volume 14, Issue 4, 2025
Editorial Board

Editor-in-Chief
Axel Jantsch
TU Wien

Editors

Bashir Al-Hashimi
King’s College London

Jason Cong
University of California, Los Angeles

Andreas Gerstlauer
The University of Texas at Austin

Christoph Grimm
TU Kaiserslautern

Ahmed Jerraya
CEA-Leti

Wolfgang Müller
University of Paderborn

Partha Pande
Washington State University

Zebo Peng
Linköping University

Christian Pilato
Politecnico di Milano

Jaan Raik
Tallinn University of Technology

Alberto Sangiovanni-Vincentelli
University of California, Berkeley

Rishad Shafik
Newcastle University

Sandeep Shukla
Indian Institute of Technology, Kanpur

Norbert Wehn
University of Kaiserslautern

Full text available at: https://nowpublishers.com/EDA

Editorial Scope
Foundations and Trends® in Electronic Design Automation publishes survey
and tutorial articles in the following topics:

• System Level Design

• Behavioral Synthesis

• Logic Design

• Verification

• Test

• Physical Design

• Circuit Level Design

• Reconfigurable Systems

• Analog Design

• Embedded software and parallel programming

• Multicore, GPU, FPGA, and heterogeneous systems

• Distributed, networked embedded systems

• Real-time and cyberphysical systems

Information for Librarians

Foundations and Trends® in Electronic Design Automation, 2025, Vol-
ume 14, 4 issues. ISSN paper version 1551-3939. ISSN online version
1551-3947. Also available as a combined paper and online subscription.

Full text available at: https://nowpublishers.com/EDA

Contents

Editorial 1

Deep Learning and Generative AI for Monolithic and Chiplet SoC
Design and Verification: A Survey 4

Imed Ben Dhaou, Syhem Larguech, Sree Ranjani Rajendran,
Rajat Subhra Chakraborty, Hannu Tenhunen and Ahmed
Abdelgawad

Large Language Models for EDA: From Assistants to Agents 54
Zhuolun He, Yuan Pu, Haoyuan Wu, Yuhan Qin, Tairu Qiu and
Bei Yu

Evaluating Large Language Models for Automatic Register
Transfer Logic Generation for Combinational Circuits via
High-Level Synthesis 74

Sneha Swaroopa, Rijoy Mukherjee, Anushka Debnath and Rajat
Subhra Chakraborty

Biographies 97

Full text available at: https://nowpublishers.com/EDA

Editorial

The rapid advancements in semiconductor technology have significantly
increased integration density, with modern System-on-Chip (SoC) de-
signs for high-performance computing now exceeding 10 billion tran-
sistors. However, as we enter the nanometer regime, the traditional
CMOS transistor scaling law has reached its physical limits. This has
necessitated the adoption of More-than-Moore (MtM) technology, which
integrates novel design methodologies and heterogeneous computing
architectures.

Electronic Design Automation (EDA), design reuse, and IP-based
methodologies have been instrumental in bridging the productivity
gap, reducing time-to-market, and meeting increasingly stringent per-
formance and security requirements. As electronic systems grow in
complexity, new design and verification methodologies are emerging to
address these challenges effectively.

In the pre-Internet of Things (IoT) era, the security of SoC de-
signs was often an afterthought. However, the widespread adoption
of IoT devices has made security a critical concern at every level of
deployment. Current EDA tools, while optimizing for performance,
inadvertently introduce vulnerabilities that expose circuits to threats
such as side-channel attacks, reverse engineering, and hardware Tro-
jans. This increasing focus on security necessitates the development of
security-aware EDA tools capable of addressing threats such as fault
injection, information leakage, and timing and power-based attacks.

1

Full text available at: https://nowpublishers.com/EDA

2

Chiplet technology has evolved from tiled silicon architectures, where
processors are divided into clusters to enhance signal propagation, to
more advanced configurations where multiple processing elements, in-
cluding RISC-V cores and application-specific co-processors, are inte-
grated into chiplets. These chiplets leverage various interconnection
methods, including 3D stacking and wafer-scale integration, utilizing
flexible communication networks such as packet-switched and circuit-
switched architectures. However, this shift to chiplet-based architectures
presents new challenges in performance estimation and system validation
due to the complexity of interconnects and heterogeneous integration.

Deep learning algorithms and Large Language Models (LLMs) have
emerged as promising solutions to address the growing challenges in
SoC and chiplet design and verification. The application of AI-driven
methodologies is revolutionizing RTL generation, hardware security,
and design automation, leading to enhanced power-performance-area
(PPA) metrics and improved verification efficiency.

This special issue features three works that explore the transforma-
tive role of AI in EDA and SoC design:

1. Deep Learning and Generative AI for Monolithic and
Chiplet SoC Design and Verification: A Survey delves
into the impact of deep learning and generative AI, particularly
LLMs like GPT, on SoC and chiplet architectures. It highlights
AI applications in RTL code generation, hardware verification,
and security enhancement, including the mitigation of hardware
Trojans. The work also discusses AI-driven optimizations in power,
performance, and area (PPA) metrics and the integration of AI
in commercial and open-source EDA tools.

2. Large Language Models for EDA: From Assistants to
Agents focuses on the application of LLMs in Electronic Design
Automation (EDA), examining their roles as intelligent assistants
and autonomous agents. It discusses how LLMs improve produc-
tivity by automating question-answering, script generation, and
various design processes. It reviews cutting-edge research and prac-
tical implementations demonstrating how LLMs streamline EDA
workflows, reduce manual effort, and enhance design accuracy.

Full text available at: https://nowpublishers.com/EDA

3

3. Evaluating Large Language Models for Automatic Regis-
ter Transfer Logic Generation for Combinational Circuits
via High-Level Synthesis evaluates the use of LLMs in automat-
ing RTL generation in Verilog through a two-stage High-Level
Synthesis (HLS) pipeline. The authors propose an approach where
LLMs generate annotated C++ code optimized for HLS, which
is subsequently converted to Verilog RTL using tools like Vitis
HLS. Benchmarking against the VerilogEval dataset, the study
demonstrates that this two-step approach significantly improves
functional correctness, achieving a pass@1 score of 0.86, outper-
forming direct LLM-based Verilog generation methods.

These works collectively underscore the transformative potential
of AI and LLMs in revolutionizing SoC design and EDA workflows.
By enhancing automation, improving security, and PPA optimizing,
AI-driven methodologies pave the way for the next generation of high-
performance and secure semiconductor designs. This special issue aims
to provide valuable insights for researchers and industry professionals,
inspiring further advancements in AI-assisted hardware design and
verification.

Full text available at: https://nowpublishers.com/EDA

Deep Learning and Generative AI
for Monolithic and Chiplet SoC
Design and Verification: A Survey
Imed Ben Dhaou1,2, Syhem Larguech3, Sree Ranjani Rajendran4,
Rajat Subhra Chakraborty5, Hannu Tenhunen2 and Ahmed
Abdelgawad6

1Dar Al-Hekma University, Saudi Arabia
2University of Turku, Finland; imed.bendhaou@utu.fi
3Cadence Design Systems, USA
4Florida Atlantic University, USA
5Indian Institute of Technology Kharagpur, India
6Central Michigan University, USA

ABSTRACT
The rapid development of integrated circuit (IC) technology,
driven by the growing demand for Internet of Things (IoT)
devices, cloud computing, and cyber-physical systems, has in-
troduced significant challenges in the design and verification
of modern System-on-Chip (SoC) systems. Contemporary
SoCs, whether used in desktops or servers, are extremely
complex with billions of transistors and often use mixed-core
technologies. Designing complex SoCs in modern technolo-
gies faces issues in scalability, security, verification, and
design optimization, especially as the industry transitions to
chipset-based architectures. In this work, we explore the po-
tential of deep learning and generative Artificial Intelligence

Imed Ben Dhaou, Syhem Larguech, Sree Ranjani Rajendran, Rajat Subhra
Chakraborty, Hannu Tenhunen and Ahmed Abdelgawad (2025), “Deep Learning
and Generative AI for Monolithic and Chiplet SoC Design and Verification: A
Survey”, Foundations and Trends® in Electronic Design Automation: Vol. 14, No. 4,
pp 245–294. DOI: 10.1561/1000000063-1.
©2025 I. Ben Dhaou et al.

Full text available at: https://nowpublishers.com/EDA

5

(AI) to address these challenges, focusing on applications
in Register Transfer Level (RTL) code generation, design
automation, hardware security, and verification.
In this work, we review the state-of-the-art in AI-driven
Electronic Design Automation (EDA) tools, examining both
open source and commercial platforms that have integrated
AI to enhance design efficiency and performance. The work
focuses on AI’s role in optimizing power, performance, and
area (PPA) metrics, as well as improving hardware security
by mitigating threats such as hardware Trojans. In addition,
we discuss the implications of adopting AI in SoC workflows
and its transformative potential in democratizing hardware
design.

Full text available at: https://nowpublishers.com/EDA

1
Introduction

The design of integrated circuits (ICs) has made significant strides in
recent years, with modern System-on-Chip (SoC) architectures now
containing more than six billion transistors and incorporating hundreds
of mixed-core technologies. As highlighted in recent studies, this rapid
advancement in IC technology is driven by the growing demand for
IoT edge devices, personal augmentation systems, cloud computing,
and cyber-physical systems. The proliferation of AI across edge, fog,
and cloud computing has intensified the need for robust security and
scalable hardware solutions.

In the era of giga-scale integration and multicore technology, circuit
designers are faced with increasing challenges in thermal management, re-
liability, cost, and verification. To mitigate operating expenses (OPEX),
semiconductor companies are adopting new methodologies emphasis-
ing design reuse and hardware intellectual property (IP) based design.
However, while these approaches offer significant benefits, they also
introduce new challenges in the development of secure SoCs. As reported
in Bhunia et al. (2014), Bhunia and Tehranipoor (2017), Hussain et al.
(2023), and Rama et al. (2024), the heavy reliance on third-party IPs has
jeopardized the security of embedded systems. Hardware Trojan (HT)

6

Full text available at: https://nowpublishers.com/EDA

7

can be inserted through malicious IPs, affecting the SoC’s functionality,
reliability, and privacy.

Motivated by the need to reduce cost and power consumption,
monolithic SoC design has been the primary focus in integrated circuits
during the last three decades commonly known as Moore’s era. In the
post-Moore law era, which is characterized by the integration of hetero-
geneous components and non-silicon technologies, chiplet-based designs
are emerging as a more efficient alternative to traditional monolithic
SoC (Ravikumar, 2024; Liu et al., 2024). There are two common ap-
proaches for designing chiplets: 2.5D heterogeneous integration, which
involves assembling multiple chiplets on an interposer, and 3D inte-
gration, which consists of stacking several dies vertically. Figure 1.1
illustrates the 2.5D and 3D heterogeneous integration approach.

Figure 1.1: 2.5D and 3D Chiplets SoC.

The traditional EDA design flow has been typically used to design
chiplets independently. However, as suggested in Kabir and Peng (2020),
early co-optimization of chiplets significantly improves system perfor-
mance, signal integrity, and power efficiency compared to traditional
methods where chiplets and packages are developed separately. Fur-
thermore, EDA tools must enable secure chiplet design. The proposed
secure chiplet design flow, as illustrated in Figure 1.2, involves several
key stages. First, the requirements and specifications for the SoC are

Full text available at: https://nowpublishers.com/EDA

8 Introduction

Figure 1.2: EDA design flow for designing secure SoC Chiplets.

gathered and processed. Next, these specifications are transformed into
an architecture that can be described using a high-level modeling lan-
guage, such as SystemC. Automated tools then convert this architecture
into an RTL (Register Transfer Level) description, typically in VHDL
or Verilog, which is verified through simulation. Following this, the logic
synthesis phase converts the RTL design into a gate-level netlist. This
list is divided into individual chiplets, each of which can be fabricated
using the appropriate technology. Finally, the manufactured chiplets are
assembled in the last stage of the design flow. Along the design process,
after each transformation, the functionality, security, power, and timing
of the design should be rigorously verified to ensure performance and
security requirements are met.

The machine learning (ML) algorithms most frequently employed
in the realm of SoC design and electronic design automation (EDA)
tools include several notable techniques. First, reinforcement learning
(RL) is particularly effective for applications that demand constant
learning and adaptation to the dynamic constraints of design, such as
in routing algorithms and design optimization tasks at various design
abstraction levels. Next, supervised learning shows efficacy in tasks that

Full text available at: https://nowpublishers.com/EDA

9

involve identifying patterns, notably in bug detection, Register Transfer
Level (RTL) verification, and ensuring hardware security. Additionally,
deep learning frameworks, especially Deep Neural Networks (DNN), are
capable of capturing and modeling intricate dependencies and complex
relationships. These capabilities are especially beneficial in tackling
issues like printed circuit board (PCB) routing and the design of chiplets.

This work seeks to explore the potential applications of generative
artificial intelligence, alongside advanced deep learning techniques, in
both the creation and advancement of SoC architectures, applying both
monolithic approaches and chiplet-based configurations. The primary
contributions of this work are enumerated as detailed below:

• This study investigates the substantial potential and impacts of
deploying large language models (LLMs) within the spheres of
RTL code generation, the systems inherent in design automation,
and the critical verification processes that are essential to these
technologies.

• It provides a comprehensive account of the various design chal-
lenges encountered in crafting monolithic SoCs alongside chiplet-
based architectures, with particular emphasis on challenges entail-
ing scalability, security, and performance enhancement.

• The work meticulously examines the application of artificial
intelligence-driven tools throughout various stages of design, in-
cluding logic synthesis, complex physical design methodologies,
and exhaustive verification procedures.

• It proposes an in-depth discussion regarding the utilization of
artificial intelligence to improve strategies that enhance hardware
security, focusing on methodologies aimed at reducing susceptibil-
ity to threats such as hardware Trojans and side-channel attack
mechanisms.

• A detailed overview is included on the successful implementation
of deep learning methods in design processes adopting the chiplet-
based approach.

Full text available at: https://nowpublishers.com/EDA

10 Introduction

Generative AI, encompassing Large Language Models (LLMs) and Deep
Learning frameworks, has emerged as a transformative approach to
tackle the complexities of modern SoC design and verification. Genera-
tive AI systems create new content, such as RTL code or circuit layouts
(Mangalagiri et al., 2024), by learning patterns and structures in their
training data. LLMs, such as GPT-4, specialize in understanding and
generating human-like text, making them invaluable for automating
tasks like code and script generation or debugging (Bengesi et al., 2024).
Deep Learning, a subset of machine learning, employs multi-layered
neural networks to model intricate dependencies, making it particularly
effective for tasks such as routing, design optimization, and performance
analysis (Dong et al., 2021).

This survey focuses on Large Language Models (LLMs), Deep Neural
Networks (DNNs), and RL, as these are particularly well-suited for the
complexities of SoC design and verification. Classic machine learning
approaches, such as decision trees or clustering, are not included due to
their limited applicability in addressing the high scalability and intricate
dependencies inherent to SoC workflows

The rest of the work is organized as follows. Section 2 reviews existing
survey works and puts our work in context. Section 3 summarizes the
research work related to the design and verification of SoC systems.
Section 4 describes the algorithms, tools, and techniques for large
language models and generative AI. Subsequently, Section 5 discusses
the application of generative AI in monolithic SoC design. Section 6
delves into the application of deep learning in chiplet design. Section
7 surveys the adoption of LLM and deep learning by EDA toolchains.
Section 8 discusses the open issues in the effective use of LLM for SoC
design. Finally, Section 9 concludes the work.

Full text available at: https://nowpublishers.com/EDA

2
Related Work

The inherent statistical variability of parameters in integrated circuits,
such as delay, power consumption, and transistor count, has driven the
adoption of machine learning, artificial intelligence, and data mining
techniques for optimising, designing, and synthesizing analog, Radio
Frequency (RF), and digital integrated circuits. Numerous survey papers
have extensively explored this growing intersection of AI and IC design,
highlighting its potential to address the challenges associated with
designing and optimizing SoC systems.

The integration of artificial intelligence into integrated circuit design
began four decades ago. Early examples of computer-aided design (CAD)
and computer-aided manufacturing (CAM) tools include XCON, an
expert system for configuring computer systems (Kirk, 1985). CMU-DA
(Carnegie Mellon University Design Automation) generated technology-
independent circuit components from data flow graphs (Kowalski and
Thomas, 1983), while TALIB was a knowledge-based system for au-
tomatic NMOS cell layout (Kim and McDermott, 1983). EMUCS, an
extension of CMU-DA, synthesized data paths from behavioral descrip-
tions (Hitchcock and Thomas, 1983).

The complexity of designing very-large-scale integration (VLSI) cir-
cuits, classified as an NP-complete problem, soon necessitated heuristic

11

Full text available at: https://nowpublishers.com/EDA

12 Related Work

algorithms and design abstraction levels to address challenges. As de-
tailed in Breuer et al. (2000), heuristic algorithms for circuit partitioning
during physical synthesis include the Kernighan–Lin algorithm, Fiduc-
cia–Mattheyses algorithm, hMetis (a multilevel partitioning algorithm),
and ratio-cut partitioning. For floorplanning and placement, key heuris-
tic techniques discussed are simulated annealing, genetic algorithms, and
the quadratic placement algorithm. In the domain of Automatic Test
Pattern Generation (ATPG) for single stuck-at faults (SSFs), heuristics
such as the D-algorithm, Path-Oriented Decision Making (PODEM),
and fan-out-oriented test generation algorithms are highlighted. Finally,
fault simulation methodologies explored include concurrent fault simu-
lation, parallel fault simulation, deductive fault simulation, and critical
path tracing.

Heuristic algorithms in CAD often produce suboptimal results,
as they balance performance against computational complexity. To
address these limitations, machine learning (ML) has emerged as a
powerful alternative. As highlighted in the survey by Rapp et al. (2022),
ML surpasses heuristics by learning directly from data, enabling it
to capture complex patterns, interactions, and dependencies inherent
in modern designs. Moreover, ML leverages advanced techniques such
as RL and gradient-based optimization to explore vast design spaces
effectively, achieving globally optimal or near-optimal solutions. Machine
learning algorithms effectively address a wide range of design challenges
in the semiconductor industry, including lithography, physical design,
manufacturing, yield, reliability, failure modelling, analog design, and
system optimization (Elfadel et al., 2019). Specifically, machine learning
algorithms have been proven to be effective in performance prediction,
design space exploration, black-box design, decision-making design
automation (Huang et al., 2021).

Estimating power at a high level is a crucial aspect of designing
complex SoCs. For devices running on batteries, minimizing power
consumption has become a vital design goal, aiming to extend the
device’s operational duration. The power used by the ASIC/SoC is
influenced by factors such as operating frequency, switching activities,
supply voltage, and switching capacitance. A variety of methods have
been put forward to decrease power consumption at different stages like

Full text available at: https://nowpublishers.com/EDA

13

the system, algorithm, architecture, logic, circuit, and layout levels (Ben
Dhaou, 2002; Rabaey, 2009; Reda and Nowroz, 2012). In the realm of
low-power design, statistical, probabilistic, and simulation-based power
estimation methods have been predominant. These techniques have
been reviewed in Nasser et al. (2021). In the statistical approach, linear
regression which is a supervised machine learning that has been widely
used for developing high-level power estimation tools (Ben Dhaou and
Tenhunen, 2002; Schuermans and Leupers, 2019).

In traditional machine learning, there is often a significant reliance
on the extraction of features manually, along with various pre-processing
steps. The scope and depth of these actions can differ substantially
depending on the specific algorithm being employed and the characteris-
tics of the dataset. However, with the remarkable progress made in the
realm of cloud computing and the analytics of big data, there has been
a notable rise in the application of deep learning (DL) as a particularly
robust branch of machine learning. Deep learning fundamentally relies
on multiple layers of artificial neural networks (ANNs) to facilitate
the automatic learning of hierarchical features directly from raw data
inputs. These sophisticated architectures are commonly known as Deep
Neural Networks (DNNs), and they encompass specialized variants such
as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). These variants are particularly well-suited for complex tasks,
including but not limited to image recognition applications and sequence
modeling endeavors (Dong et al., 2021).

In CAD (Computer-Aided Design), deep learning is a game-changing
tool with uses in synthesis, performance prediction, design exploration,
run-time management, device and technology evolution, physical de-
sign, lithography, and manufacturing. For instance, convolutional neural
networks (CNNs) have been employed to predict the performance of
integrated circuits during high-level synthesis, enabling designers to
explore vast design spaces efficiently. Similarly, generative adversarial
networks (GANs) have shown promise in optimizing lithography pro-
cesses by generating mask patterns that minimize defects and improve
yield (Rapp et al., 2022)

Many of the studies mentioned above have neglected the importance
of designing secure integrated circuits, which are the foundation of trust

Full text available at: https://nowpublishers.com/EDA

14 Related Work

in any computing-based solution. As noted in Koblah et al. (2023),
major cybersecurity attacks such as Meltdown and Spectre exploited
the vulnerabilities at the processor level. In cases where it is challenging
to analytically model security properties or when multiple security
conditions must be satisfied, machine learning techniques are invaluable
for designing secure Computer Aided Desing (CAD) tools.

In recent years, the application of large language models (LLMs)
to SoC design has gained traction. Studies such as Saha et al. (2024)
explored their potential in hardware security, demonstrating capabilities
in vulnerability insertion, security assessment, and countermeasure
development. These advancements underscore the transformative role of
AI in both optimizing performance and ensuring the security of modern
IC designs.

Full text available at: https://nowpublishers.com/EDA

3
Design and Verification of SoC Systems

In the modern era characterized by advanced technology, there is a
notable predominance of chip-centric systems. Such systems comprise de-
vices that seamlessly integrate hardware and software components that
have been meticulously pre-engineered. Collectively, these components
are known in the industry as design intellectual properties, commonly
abbreviated as IPs. In the present landscape, the majority of companies
either independently develop these IPs through their in-house teams or
opt to outsource this development to specialized external firms. When
it comes to incorporating these IPs into a fully functional device, a
dedicated team responsible for SoC integration takes on the crucial role.
This team is charged with the careful collection and meticulous integra-
tion of the IPs, ensuring they align with the unique system requirements
of the desired device. It is of paramount importance that these IPs
communicate effectively amongst themselves, utilizing standardized
interfaces to guarantee their successful integration into the system’s
configuration. For instance, the ARM AMBA bus interface provides an
on-chip interconnect specification that facilitates the connection and
management of various functional blocks within the system. Within the
domain of SoC design, there exist two distinct verification processes:

15

Full text available at: https://nowpublishers.com/EDA

16 Design and Verification of SoC Systems

one dedicated to validating the proper functioning of the individual IPs
and ensuring compliance with interface protocols, and another focused
on verifying the assembled system as a whole. In contemporary times,
the field of hardware verification has reached a relatively advanced
stage of maturity, having been the subject of extensive study in both
academic research and industrial application for at least three decades,
as evidenced by numerous publications in the discipline (Bhadra et al.,
2007; Gupta, 1992).

In contemporary industrial practices, verification has become a key,
standardized phase integrated within the systems development lifecycle.
Despite the advancements achieved in technology, there remains a note-
worthy disparity between the existing capabilities of state-of-the-art
verification techniques and the demands imposed by contemporary in-
dustrial design practices. The dynamic evolution of the design landscape
further intensifies these challenges as we transition swiftly and perhaps
inevitably into an era characterized by autonomous vehicles, the prolifer-
ation of smart cities, and the expansive growth of the Internet of Things
(IoT). This profound shift has heralded the advent of an environment
wherein electronic devices ubiquitously gather, analyze, and securely
store vast amounts of our most personal and private information, such
as geographic location, health data, fitness metrics, and sleep cycles.
After this information is transmitted across a global network comprised
of billions of interconnected computers, the system remarkably sustains
uninterrupted operation, even in the presence of millions of potentially
malicious or compromised nodes within that network. Therefore, it is
crucial that verification processes evolve in tandem with the design and
architectural frameworks of these systems to effectively integrate within
this novel ecosystem (Ray et al., 2016; Farahmandi et al., 2023a; Nath
et al., 2018; Rajendran, 2020).

The availability of resources is a highly significant factor influenc-
ing the verification process in contemporary times. The imperative to
manufacture vast quantities of varied computing devices has intensified
the constraints on time to market for both design and system devel-
opment. Historically, the typical life cycle of a microprocessor—from
the exploratory phase to the commencement of production—spanned
approximately three to four years. Conversely, the life cycle duration

Full text available at: https://nowpublishers.com/EDA

17

for certain Internet of Things (IoT) devices has now been truncated to
less than one year (Chen et al., 2017).

Due to this accelerated contraction, there is inadequate time avail-
able for comprehensive design evaluations, which can lead to misunder-
standings between developers and stakeholders concerning the design’s
functional decomposition. This, in turn, elevates the risk of errors. Ad-
ditionally, a condensed life cycle allows for reduced testing duration.
Verification teams are consequently tasked with managing designs that
may be more prone to errors using limited resources and in a constrained
timeframe. Such aggressive scheduling has resulted in an increase in in-
field escapes and a heightened demand for post-deployment patches on
devices and systems, often necessitated through updates to software and
firmware. Moreover, the creation of verification methodologies targeting
feasible and highly valuable objectives, including security, networking,
and cyber-physical elements, has become imperative.

The increasing complexity of contemporary computing devices ne-
cessitates meticulous planning from the outset, which extends through
nearly the entire design lifecycle. The process of verification planning
is initiated simultaneously with the commencement of product plan-
ning and persists throughout the entirety of the system development
phase (Chen et al., 2017; Rajendran, 2020). Within the framework of
product planning, it becomes essential to delineate the diverse Intel-
lectual Properties (IPs) needed, as well as their breakdown into both
hardware and software constituents. This process involves specifying
the interfaces required for interconnection and seamless communication.
Additionally, it is crucial to establish and understand the variety of
objectives concerning power consumption, system performance, security,
and energy efficiency. As a result, the phase of verification planning
encompasses the development of detailed test plans and corresponding
test cards, alongside the generation of Verification IPs (VIPs). These
Verification IPs represent specialized blocks within the design that play
a critical role in debugging activities following the silicon fabrication.
Furthermore, the design incorporates instrumentation that is integral to
the processes of monitoring, checking, and actively exercising the system.

System architecture is a critical aspect of defining an SoC design,
as it establishes the functional parameters, communication protocols

Full text available at: https://nowpublishers.com/EDA

18 Design and Verification of SoC Systems

among IPs, and the schemes for managing power and performance.
This phase involves an in-depth examination of numerous parameters
and design characteristics, such as cache size, pipeline depth, and
protocol specifications for security and power management. During this
exploration, various “architectural models” are employed to simulate
typical workloads and the intended use cases of the device, thus helping
to determine parameters that meet the objectives set in the planning
phase, which often includes considerations like power, performance,
and security. At this juncture in the architectural exploration process,
two primary verification activities are paramount (Rashinkar et al.,
2007; Lee and Kim, 2011; El Fentis, 2020). The initial activity involves
ensuring that all communication protocols function as anticipated. By
engaging in this process early, when the design models are abstract
and the overall design is still nascent, high-level protocol errors can be
detected early, leading to reduced costs; if such errors are discovered
later in the product implementation, resolving them might necessitate
a significant redesign of multiple IPs.

Due to the abstract nature of design models at this phase, formal
analysis is employed to meet this goal. In conjunction with formal anal-
ysis, high-level simulation is utilized in practice to obtain the necessary
coverage (Talupur et al., 2015). Besides its indispensable contribution to
software and firmware verification, verification is instrumental in com-
mencing the creation of hardware prototyping models. This requirement
arises because the low-level software and firmware programs must be
validated to function correctly alongside the target (and evolving) hard-
ware design developed during the implementation phase. Nevertheless,
the verification of software and firmware must proceed without waiting
for the hardware implementation to stabilize. Consequently, high-level
hardware-software models are generated to expedite the verification
process for software and firmware.

The process of formal verification of SoC connectivity typically in-
volves representing specifications in spreadsheets or XML documents.
Once these specifications are loaded, the dedicated software tool au-
tonomously generates the properties necessary to carry out formal veri-
fication (Liao and Hsiung, 2003). This approach, however, brings about
the challenge of establishing a standardized specification framework

Full text available at: https://nowpublishers.com/EDA

19

capable of encapsulating the myriad of available connection schemes.
Furthermore, the intricacy involved in administering the verification
process for an extensive number of properties—running into tens of thou-
sands—can be daunting, often necessitating the parallel operation of
formal verification engines across a distributed computing environment.
In addition to formalizing the connectivity verification as per an existing
specification, there exists an additional utility that is adept at extracting
and retrieving high-level connectivity specifications from a given design,
in instances where no formal specification is provided (Farzana et al.,
2019). The design specifications can subsequently be reviewed based on
these extracted specifications. Moreover, it is a typical scenario wherein
SoC designs undergo modifications aimed at enhancing performance
or features, with the connectivity remaining unaffected. Hence, the
extracted specifications serve as a valuable resource for formally veri-
fying whether such design modifications have maintained connectivity
integrity.

Within an SoC architecture, IP blocks comprise numerous memory-
mapped registers that can be accessed by system or user-level software
to configure the IP and monitor its operational state. Relative to other
system components, these memory-mapped registers exhibit a lower
complexity in terms of implementation. However, due to the vast number
of registers, each governed by distinct access protocols, verifying them
manually using directed or slightly random tests is a labor-intensive and
error-prone process, as stated by Kim et al. (2013). This challenge is
further exacerbated by sophisticated features like register aliasing and
remapping, which introduce additional layers of complexity. Verifying
memory-mapped registers is also hindered by the lack of precise and
dependable specifications; specification documents occasionally overlook
critical details, such as scenarios where a memory-mapped register might
be internally altered (Kim et al., 2013; Roy, 2007; Liao and Hsiung,
2003). In circumstances where behavior is undocumented, verification
engineers are often compelled to resort to trial and error methods to
ascertain this behavior.

Due to the increasing complexity and integration of SOC, its devel-
opment time increases dramatically, and its verification time even more
so. As part of the verification process, many directed or randomized

Full text available at: https://nowpublishers.com/EDA

20 Design and Verification of SoC Systems

simulation tests are generated and run as regression tests. As far as full
chip verification goes, this regression could represent a critical path in a
project’s schedule if it takes a considerable amount of time to complete.
A machine learning (ML) model was useful in automating many parts
of the process, which occupied engineers’ time and distracted them from
adding new coverage metrics. A variety of machine learning models are
currently being deployed in areas such as stimulus constraining, test
generation, coverage collection, bug detection, and localization (Vaithi-
anathan et al., 2024). By combining AI and Machine Learning with
Universal Verification Methodology (UVM), semiconductor design has
been thought to become more efficient and accurate. The most effective
applications of AI and ML are those concerned with automating time-
tapping processes that were previously subject to human error. Using
these technologies, it is possible to sift through a huge volume of data
and identify what the algorithm believes is likely to be weaknesses in a
design not easily noticeable by humans. In addition to supporting the
verification task, it also improves the quality of the verification result.

Detecting bugs in software at the Register Transfer Level (RTL)
level through a novel AI-driven approach is proposed in Wang et al.
(2024a). By combining advanced machine learning techniques with
domain-specific knowledge of chip design, we address the challenges of
increasing complexity and deadline pressures in modern integrated cir-
cuits. A comprehensive preprocessing pipeline captures the syntactic and
semantic features of RTL code and feeds it into a novel attention-based
neural network model. There are still a number of major challenges
facing formal verification despite impressive advances. Modeling the
environment, insufficient specifications, and complex decision problems
are among the most significant. Inductive inference (learning from ex-
amples) using hypotheses about system structure is a viable method
of tackling these challenges (Seshia, 2012). Researchers (Farahmandi
et al., 2023b) examined the benefits of machine learning, inferred new
relationships between side-channel measurements, and extracted sensi-
tive data in the survey. The survey also focuses on techniques used to
detect and prevent malicious attacks in machine learning systems. Fur-
thermore, it seeks to identify challenges associated with using machine
learning for security purposes. In Hughes et al. (2019), two DUTs were

Full text available at: https://nowpublishers.com/EDA

21

tested using both reinforcement ML algorithms and supervised learning
algorithms. Constrained-random DV environment tools are leveraged
by using supervised learning and reinforcement learning techniques
to enhance them. In this way, Design Verification (DV) objectives of
full design coverage are achieved on an accelerated timescale and with
fewer resources than randomly generated results. Here are two hardware
verification examples based on open-source RISCV-Ariane design and
Google’s RISCV Random Instruction Generator: one using a Cache
Controller design and the other using an open-source RISCV-Ariane
design.

Employing formal methods to verify records offers the possibility
of automating the traditionally manual procedure of analyzing access
policies. This is achieved through the formulation of formal properties
concerning these policies and subsequently verifying their accuracy and
integrity using formal methodologies. The principal challenge encoun-
tered in this context is the creation of thorough and robust assumptions
about access policies, especially in relation to their application to ad-
vanced functional aspects (Grimm et al., 2018).

While classic ML algorithms, such as k-means clustering and support
vector machines (SVMs), have been explored in hardware design, they
often fall short in tasks requiring scalability and adaptive learning, such
as routing and design optimization. This survey emphasizes modern
algorithms like LLMs, RL, and DNNs, which better address these
challenges.

Full text available at: https://nowpublishers.com/EDA

4
Overview of Generative AI and Large Language

Model

Natural Language Processing (NLP) is an important field in computer
science and artificial intelligence which lies at the intersection of com-
putational linguistics, statistical engineering, and human language. It
has evolved from simple tasks, such as translation in the early 1960s,
to solving more complex problems, driven by Large Language Models
(LLMs).

LLM represents a category within generative artificial intelligence,
often abbreviated as GenAI. While LLMs primarily focus on producing
human-like text, GenAI encompasses a broader spectrum of capabilities.
Beyond text generation, it can create a variety of other media formats.
These include the production of visual media such as videos and images,
as well as auditory outputs like speech (Bengesi et al., 2024).

Typical NLP applications include virtual assistant text summariza-
tion, sentiment analysis, information retrieval, and speech recognition.
As shown in Figure 4.1 a typical NLP chain consists of four main stages.
In the first stage, the text or corpus is pre-processed. In the second
stage, the features of the document are extracted. In the third stage, the
language of the document is modeled. Finally, the last stage performs
the intended task on the document.

22

Full text available at: https://nowpublishers.com/EDA

23

Figure 4.1: NLP processing blocks.

Language modeling (LM) plays an instrumental role in the design
of effective NLP tasks. Earlier techniques such as N-gram models have
been based on probabilistic theory, in which it predicts the next word,
wn, given the history (w1, w2, . . . , wn−1) using conditional probability
P (wn | w1, w2, . . . , wn−1) (Chang et al., 2024). The N-gram model is
computationally efficient and requires processing a corpus to compute
the probabilities. However, its precision is limited by the number of
words n used to compute the probability, making it unable to capture
long-term dependencies in the text. Furthermore, the N-gram model
suffers from both sparsity and storage problems.

Neural networks (NN) and their variants, such as Recurrent Neural
Networks (RNN) and Long Short-Term Memory (LSTM) networks,
have replaced the N-gram model, ushering in a new era of language
modeling. As illustrated in Figure 4.2, words or tokens are first converted
into word embeddings using algorithms that produce vectors in a high-
dimensional space, capturing the semantic relationships between words.
These vectors are then fed into the input layer of the neural network. The
hidden layers process the embeddings, and the output layer generates
the final predictions.

Neural network (NN)-based architectures have significantly trans-
formed language modeling, laying the foundation for advanced tech-
niques in natural language processing (NLP), particularly in tasks such
as neural machine translation (NMT) and named entity recognition
(NER). The introduction of NNs, particularly recurrent neural net-
works (RNNs), enabled breakthroughs in sequence processing, while
the development of word embeddings provided a method to represent
words as continuous vectors in semantic space, capturing relationships

Full text available at: https://nowpublishers.com/EDA

24 Overview of Generative AI and Large Language Model

Figure 4.2: Architecture of a neural network-based language model.

between words through vector similarity. However, a key limitation
of early NN-based translation models, such as those using RNNs, is
their reliance on fixed-length vector representations to encode input
sequences. This constraint can lead to information loss in long sequences
and impose computational inefficiencies, particularly when dealing with
long or complex sentences.

The attention mechanism, proposed as a solution to this limitation,
allows models to selectively focus on relevant parts of the input sequence
while generating each output token (Bahdanau et al., 2015). This so-
lution addressed the bottleneck of fixed-length vectors and improved
both accuracy and computational efficiency. The chief idea is the dy-
namic assignment of different weights to different input tokens based on
their relevance to the current prediction. Despite these improvements,
attention-based models that still rely on RNNs face challenges, notably
high memory consumption and slower training times. To address these
issues, the Transformer architecture was introduced in 2017, replacing

Full text available at: https://nowpublishers.com/EDA

25

RNNs entirely with attention mechanisms. The Transformer, composed
of an encoder-decoder architecture, uses multi-headed self-attention
and feed-forward neural networks to process sequences in parallel, dras-
tically improving both sed and scalability. The encoder consists of
layers of multi-headed self-attention and feed-forward networks, while
the decoder incorporates masked multi-headed self-attention to handle
autoregressive generation. This technique, known as the Transformer-
based architecture, created another inflection point in NLP (Vaswani
et al., 2017).

As summarized by Zhao et al. (2023), scaling laws relate the perfor-
mance and efficiency of LLMs to the model size (NM), the number of
tokens (ND), and the computation cost during training (NC). The two
most widely used formulas for estimating the performance of LLMs are
the KM scaling law and the Chinchilla scaling law, which are capable
of estimating the performance of LLMs given NM , NDS, and NC . In
their original article, Kaplan et al. (2020) found that the scaling law is
weakly dependent on the network depth and size. Using the cross-entroy
loss (L), the expression for the KM scaling law is given in (4.1–4.3).
Those equations are valid for model size in the range of 768 million to
1.5 billion non-embedding parameters and the data size in the interval
22 million to 23 billion tokens.

L(NM) =
(

Nc

NM

)α

NM
(4.1)

L(ND) =
(

Dc

ND

)α

ND
(4.2)

L(NC) =
(

Cc

NC

)α

NC
(4.3)

The fitting values for Nc, αNM , Dc, αND, Cc and αNC are summarized
in Table 4.1.

The emerging capabilities of LLMs have been shown to be pre-
dicted using these scaling laws, including in-context learning, instruction
follow-up, and step-by-step reasoning. The general architecture of LLMs,
depicted in Figure 4.3, illustrates the essential operations involved in
LLM (Naveed et al., 2023). The architecture includes blocks dedicated
to in-context training, which allows the model to adapt and respond

Full text available at: https://nowpublishers.com/EDA

26 Overview of Generative AI and Large Language Model

Table 4.1: Summary of fitting values for various parameters.

Parameter Fitting Value
Nc 88 trillions non-embedding parameters

αNM 0.076
Dc 54 trillions tokens

αND 0.095
Cc 3.1108 PF-day

αNC 0.05

Figure 4.3: Generic architecture of LLM with prompting and reward.

based on the context provided within the input data. Furthermore, the
architecture incorporates mechanisms for improvement through Rein-
forcement Learning with Human Feedback (RLHF), where the model’s
performance is iteratively improved based on feedback from humans.
The prompt block guides the operation of the LLM by providing specific
instructions or contexts that the model uses to generate relevant and
coherent responses.

Full text available at: https://nowpublishers.com/EDA

5
Applications of Generative AI in SoC Design

Prior to the development of large language models (LLMs), neural
network-based natural language processing (NLP) techniques were
widely adopted in tasks such as automatic software development, soft-
ware testing, and bug fixing for both embedded systems and general-
purpose computing (Hai et al., 2022). As highlighted in a survey by
Dehaerne et al. (2022), popular applications of machine learning in
automatic software development include code generation from natural
language specifications, software documentation, automatic program
repair, and programming by example. The survey also emphasized that
transformer-based models significantly outperform earlier architectures
like recurrent neural networks (RNNs) and convolutional neural net-
works (CNNs) for tasks involving code generation from natural language
specifications. This is largely due to the transformers’ ability better to
capture long-range dependencies and contextual relationships in code,
making them more effective for complex programming tasks.

Earlier approaches for automatic software development had limited
capabilities in handling complex and context-rich tasks. In contrast,
large language models have demonstrated impressive performance in
software engineering. For example, Codex, a fine-tuned generative pre-

27

Full text available at: https://nowpublishers.com/EDA

28 Applications of Generative AI in SoC Design

trained transformer developed by OpenAI, can generate standalone
Python functions from docstrings which is a string used to document a
Python function, class, module, or method (Chen et al., 2021). Codex
is used in GitHub Copilot (OpenAI, 2024).

Stemmed by the success in code generation, recently, LLMs’ capabil-
ities have been extended to cover SoC design. As summarized in Wang
et al. (2024b), LLMs have been used in EDA and hardware security. In
the EDA realm, LLMs are used, for instance, for RTL code generation,
design optimization, bug fixes, script generation for HLS tasks, HDL
verification, and analyses (Wu et al., 2024a). For hardware security, the
applications of LLMs include fixing hardware security bugs, inserting
Hardware Trojan (HT), defending against side-channel attacks, and
generating security assertions.

With the objective of democratizing hardware design, the Open-
ROAD project, an open-source EDA toolchain, has been initiated. The
tool is capable of performing logic synthesis and physical design tasks,
including floor planning, clock tree synthesis, and global and detailed
routing. The OpenRoad design flow is described in Figure 5.1. It com-
bines both logic and physical synthesis. The tool generates GDSII
file given the RTL description of the circuit using Verilog hardware
description language (Ajayi et al., 2019).

Figure 5.1: openROAD design flow.

Full text available at: https://nowpublishers.com/EDA

29

To further enhance the capabilities of the OpenROAD toolchain,
an open-source curated dataset for training large language models has
been created. The dataset is designed to generate scripts and answer
questions through a tailored chatbot. The question-answer dataset has
been collected from the OpenROAD GitHub and is categorized into
three groups: general questions pertaining to the use of OpenROAD,
specific questions on OpenROAD tools, and questions on the design
flow of OpenROAD from RTL to GDS. The dataset has been used to
develop an open-source LLM-powered chatbot using the Llama3-8B
foundation model. The training process is pictured in Figure 5.2.

Figure 5.2: Training process for the OpenRoad-assistant reported in Sharma et al.
(2024).

The process is initiated by sending queries to the retriever model,
which searches through a domain-specific database. The context re-
trieved is merged with the supervised training data to form a RAFT (Re-
trieval Augmented Fine-Tuning) dataset. The Llama3 foundation model
is then trained using the new RAFT dataset. Compared with ChatGPT-
3.5, ChatGPT-4, Code Llama, and Claude3, the OpenROAD-Assistant
scored high in script generation (77% pass@1 and 80% pass@3) and in
question-answering tasks (98% BERTScore and 96% BARTScore).

The work presented in Chen et al. (2024) explores the shift from tra-
ditional AI-enhanced Electronic Design Automation (AI4EDA) towards
AI-native EDA systems, driven by the development of Large Circuit
Models (LCMs). The authors argue that existing AI4EDA solutions,
which repurpose models from domains like vision and language process-

Full text available at: https://nowpublishers.com/EDA

30 Applications of Generative AI in SoC Design

ing, are insufficient for the unique complexities of circuit design. Instead,
they propose LCMs—multimodal models tailored to EDA workflows
that can unify diverse design stages such as specification, RTL, netlists,
and physical layouts.

Motivated by the need to have a specialized LLM for automating
the design of SoC, the work by Wu et al. (2024b) elaborates on an au-
tonomous agent named ChatEDA, which uses a fine-tuned open-source
LLM model, Llama2. The agent, AutoMage, is capable of autonomously
decomposing tasks, generating scripts, and executing tasks. The work
details the integration of EDA tools to streamline the design flow from
RTL to GDSII. The capabilities of AutoMage have been compared
with existing foundation models such as GPT-3.5, Claude2, and GPT-4,
demonstrating superior performance in handling EDA tasks. Addition-
ally, an upgraded version, AutoMage2, incorporates enriched train-
ing data, instruction tuning with explanations, and chain of thoughts
prompting to further enhance its capabilities.

Full text available at: https://nowpublishers.com/EDA

6
AI Techniques for Chiplet Design and
Heterogeneous Integration Packaging

The semiconductor sector is transitioning significantly from tradi-
tional monolithic chips to the arena of three-dimensional integrated
circuits (3D-IC), chiplets, as well as vertically stacked silicon and wafers.
Presently, advanced SoCs are encountering the constraints imposed by
reticle size limits. Many enterprises have come to the consensus that
solely adhering to Moore’s Law, often referred to as “More Moore,” no
longer represents the most viable path forward in terms of both tech-
nical and economic aspects, especially for the upcoming generation of
designs. As the industry approaches the finite scaling limits inherent to
advanced nodes, the pressure for enhanced computational performance
along with efficient data transfer has reached unprecedented levels. This
scenario has necessitated the exploration and development of pioneering
solutions, aiming to maintain the trajectory of Moore’s Law scaling
while achieving notable improvements in performance, coupled with a
reduction in power consumption.

The semiconductor packaging sector is gearing up to assume a
more prominent and essential role in the design of future electronic
products. The integration of chips through vertical stacking within a
single package (known as 3D integration) and the employment of a

31

Full text available at: https://nowpublishers.com/EDA

32 AI for Chiplet Design and Heterogeneous Integration Packaging

multi-chiplet structure utilizing a silicon interposer within the same
package (referred to as 2.5D integration) are becoming favored solutions,
each presenting distinct challenges. As the demand for heterogeneous
chiplet-based architectures increases, there is a necessity to develop
innovative system-level design methodologies that focus on optimizing
Power, Performance, and Area (PPA) metrics at the system level. The
Cadence Integrity 3D-IC platform stands as the industry’s pioneering
comprehensive solution for system planning, execution, and precise
preliminary analysis. This platform makes use of Cadence’s leading-
edge implementation and validation technologies across digital, analog,
and packaging domains, all coordinated within a cohesive hierarchical
database.

In the context of heterogeneous integration, an IC package now
includes various elements such as bare dies/chiplets, packaged devices,
interposers, bridges, and passive components. Numerous complex IPs
must be routed within the package, including die-to-die connections
and links between dies and SMD components to the board, such as
DDR, PCIe, and UCIe. A range of strategies must be explored to find
the optimal routing solution, which can be time-consuming. The chosen
strategy will directly affect the routing quality of both the IC package
and the board, as well as the overall system cost. AI approaches have
demonstrated their ability to outperform humans in problems requiring
multiple strategies to win.

In the design flow, many advanced routing algorithms are adopted
to automatically route all nets. Physical design routing was traditionally
solved using heuristics and optimization. Below is an example of some
work related to physical design routing.

The algorithms are classified into escape routing and area routing.
Escape routing is more complex to achieve compared to area routing
because of the high routing density. It is an important problem in
package and PCB design. Several works were conducted to develop
escape routing solutions mainly for PCB designs. Network flow (Yan
and Wong, 2012) and nonflow (Gandhi et al., 2019) are pervasively
used to model this problem. The proposed escape routing models are
classified into three categories; unordered escape (Yan and Wong, 2012)
(Chen et al., 2023), ordered escape (Lin et al., 2021) and simultaneous
escape (Ozdal and Wong, 2004).

Full text available at: https://nowpublishers.com/EDA

33

For instance, the DDR macro is considered the most complex IP to
escape route in IC package design. It often determines the required total
number of layers of the substrate. For this macro type, net grouping is
needed, requiring an ordered escape routing approach with significant
consideration given to power and ground connections. Each of the above
methods has limitations, such as not considering different net types
(power, ground, and Differential Pairs (DP)) or net ordering. Crosstalk is
a major issue for DDR macro routing. To achieve the IP’s requirements
in terms of crosstalk values, adjusting the line spacing outside the escape
region is often a key element. The line spacing outside the escape routing
region also influences the escape routing strategy. The more severe the
crosstalk requirements, the larger the spacing between the lines both
outside and inside the macro.

In the study outlined in Yu and Wei-Ming Dai (1995), the authors
present a pioneering routing framework known as the Alpha-PD-Router,
which is underpinned by a RL methodology that is independent of spe-
cific data architectures. This model is adept at learning to route circuits
while simultaneously resolving short violations. The underpinning RL
strategy, named Alpha-Go Zero, distinguishes itself by negating the
necessity for extensive training datasets, which are notoriously chal-
lenging and costly to compile. Rather than relying on such datasets,
this approach empowers an RL agent to acquire routing efficiencies
and improve routing strategies through dynamic interactions within the
design environment. The designed Alpha-PD-Router leverages a sophis-
ticated cooperative min-max game framework synergistically integrated
with physical design routing algorithms. This novel framework derives
its conceptual foundation from the principles of Alpha-Go Zero, an
innovation by Google that has demonstrated the capability to master
the intricate game of Go autonomously, without human guidance.

The work presented by McMurchie and Ebeling (1995) introduces a
comprehensive routing algorithm designed to address a variety of com-
plex, real-world constraints essential for effective printed circuit board
routing. For this routing task (including Signal, power, and ground dis-
tribution, and DP), the Pathfinder algorithm (Fang et al., 2009), known
for its negotiation-based approach, is utilized. This algorithm aims at
minimizing violations of design rules while achieving comprehensive

Full text available at: https://nowpublishers.com/EDA

34 AI for Chiplet Design and Heterogeneous Integration Packaging

routing solutions. Notably, the pathfinder is capable of executing both
escape routing and area routing operations. Originally devised for rout-
ing circuits on FPGAs, Pathfinder functions as an iterative algorithm
adept at managing and reconciling the conflicting objectives of reducing
congestion and minimizing the delay across critical paths within an
iterative process. This process begins by permitting signals to utilize
shared routing resources but transitions into a phase where signals must
negotiate to ascertain which requires the shared resources the most. The
authors further suggest an innovative cost function specifically designed
for managing obstacles encountered by routed nets during each iteration
of the routing process.

The core innovation of Fang et al. (2007) involves the use of non-local
criss-cross attention networks, a type of neural network architecture
that captures long-range dependencies and spatial relationships more
effectively than traditional methods. This allows the model to consider
thermal effects across the entire PCB layout, rather than just local
areas. The criss-cross attention module enables the network to focus
on critical areas that influence thermal distribution, allowing for more
informed routing decisions. The model incorporates thermal metrics
directly into the routing optimization process, using data on thermal
conductivity, power dissipation, and other relevant factors. The au-
thors use a comprehensive dataset of PCB designs, including thermal
simulations and routing solutions, to train and evaluate the T-Router
model. Performance is assessed using metrics such as thermal uniformity,
routing efficiency, and computational time. The thermal-driven routing
approach shows high efficiency in achieving a low-temperature PCB
design compared to the classic verification-then-fix approach.

Full text available at: https://nowpublishers.com/EDA

7
Adoption of Generative AI and Deep-learning by

Open Source and Commercial EDA Tools

Leading Electronic Design Automation (EDA) companies have been
expanding their capabilities by integrating AI and generative AI tech-
nologies into their toolsets. The following section explores this significant
surge and its impact on the evolution of EDA solutions.

7.1 Cadence Design Systems

The Cadence Joint Enterprise Data and AI (JedAI) platform is designed
to accelerate intelligent design processes from chips to complete systems.
It features a variety of generative AI applications, including Allegro
X AI, Optimality Intelligent System Explorer, Verisium AI-Driven
Verification, and Cadence Cerebrus Intelligent Chip Explorer (Cadence
Design Systems, 2025).

Allegro X AI utilizes cloud scalability to significantly reduce PCB
design cycle times. By automating component placement, power plane
creation, and critical net routing, it boosts engineers’ productivity. This
allows for more iteration and exploration without sacrificing quality,
ensuring electrical correctness and manufacturability.

The Cadence Optimality Intelligent System Explorer facilitates the
analysis and optimization of electronic systems, transcending traditional,

35

Full text available at: https://nowpublishers.com/EDA

36 Adoption of Generative AI and Deep-learning

labour-intensive optimization processes. It replaces the conventional
design-test-refine loop with generative AI technology, quickly delivering
optimal system design solutions without compromising accuracy. Addi-
tionally, Cadence Cerebrus Intelligent Chip Explorer offers an AI-driven,
automated approach to chip design flow optimization. Block engineers
define design goals, and the generative AI features intelligently optimize
the design to meet power, performance, and area (PPA) objectives in a
fully automated manner.

Moreover, the Cadence Verisium AI-Driven Platform represents a
significant leap forward by harnessing big data and generative AI across
multiple runs of multiple engines in a comprehensive SoC verification
campaign. Verisium optimizes verification workloads, enhances coverage,
and accelerates root-cause analysis of bugs. Cadence Virtuoso Studio,
a key component of the Cadence.AI Generative AI Platform, builds
on 30 years of industry expertise in custom/analog design, extending
support to systems including RF, mixed-signal, photonics, and advanced
heterogeneous designs. Innovative AI techniques, cloud enablement,
infrastructure improvements, and seamless integration across Cadence
products further streamline these design flows, creating an efficient hub
for delivering real-world designs.

In a significant advancement, Cadence is rolling out its inaugural
robust demonstration of a large language model (LLM) tool tailored
for chip design, named Cadence ChipGPT. This innovative LLM is
particularly advantageous in the design-cleanup phase, allowing engi-
neers to cross-verify designs against specifications, diagnose and rectify
potential discrepancies, and initiate analytical tasks with comprehen-
sive explanations in human-readable language. This sophisticated tool
facilitates various review processes, conserves substantial engineering
hours, and diminishes the frequency of extensive group discussions.
Additionally, it plays a critical role in detecting numerous bugs that
may elude identification prior to regression verification (Freund, 2023).

The proof-of-concept for Cadence’s ChipGPT signifies the com-
mencement of a potentially protracted journey towards implementing
large language models (LLMs) in the sphere of chip design. Nevertheless,
those clients leveraging the JedAI platform have already demonstrated
remarkable outcomes through this initiative, achieving a substantial

Full text available at: https://nowpublishers.com/EDA

7.2. Siemens EDA Software 37

reduction in the time needed to transition from initial specifications
to final designs while simultaneously improving the degree of design
control.

Cadence emphasizes data security in scenarios where AI algorithms
need to interact with sensitive intellectual property. The implemen-
tation of Cadence’s LLM is conducted wholly on-premises, ensuring
that all data is securely stored and managed within the confines of
the Cadence.AI platform, safeguarded by the enterprise’s firewall. The
LLM’s computational operations are executed on the server infrastruc-
ture provided by the customers, which can be based on either CPU or
GPU architectures.

7.2 Siemens EDA Software

The company offers a full suite of EDA tools for designing PCBs,
integrated circuits, and packaging. According to Siemens (2023), the
integration of AI into its EDA tools began in 2018, driven by a shortage
of experienced design engineers and the need to reduce time-to-market.
AI has been deployed to automate various IC design processes, ensuring
correct-by-design hardware and significantly improving design efficiency
and accuracy.

The high-level synthesis and verification tool, Catapult, automat-
ically transforms a SoC described in SystemC or C++ into a PPA-
optimized RTL description. To enhance designer productivity, Catapult
AI uses machine learning to convert Python code into designs for neural
network (NN) hardware or AI accelerators. The design flow for Catapult
AI NN is shown in Figure 7.1.

7.3 Synopsys EDA Software

Synopsys offers a wide range of EDA tools for designing monolithic SoCs
and chiplet-based SoCs. It also provides access to its EDA toolchain
through Software as a Service (SaaS) via cloud computing. The Fu-
sion Design Platform is accessible through a hybrid cloud model. The
platform uses AI to analyze and optimize design parameters and to
automate intricate design tasks.

Full text available at: https://nowpublishers.com/EDA

38 Adoption of Generative AI and Deep-learning

Figure 7.1: Design flow of Catapult NN.

Table 7.1: Summary of Synopsys AI solution.

Application Description
VSO.ai AI-based verification space optimization
DSO.ai Design space optimization AI

Design.da End-to-End AI-driven data analytics platform
TSO.ai AI-driven autonomous system for ATPG configuration and QoR optimization

Silicon.da A comprehensive data analytics solution from design through manufacturing
Fab.da Comprehensive AI-driven process analytics and control solution

The company has a full stack of AI-driven EDA tools that span
system architecture, design, and manufacturing. AI in the toolchain is
used to optimize the design, data analytics, and generative AI. Gener-
ative AI facilitates the use of the EDA tools, better analyses reports,
and streamlines workflows. It is also used to reduce the time spent
on developing RTL and in the universal verification methodology. Fig-
ure 7.2 summarizes the use of generative AI, machine learning, and
data analytics solutions in Synopsys’s design tools. These solutions are
summarized in Table 7.1.

7.4 Start-up AI EDA Companies

An unprecedented increase in the emergence of startup enterprises, often
referred to as AI EDA firms, has been significantly driven by recent
progress in artificial intelligence technologies.

Full text available at: https://nowpublishers.com/EDA

7.4. Start-up AI EDA Companies 39

Figure 7.2: Integration of Generative AI, ML, and data analytics in Synopys’s
toolchain.

The company Primis AI (2025) has developed an AI-driven EDA
tool known as RapidGPT. This tool greatly aids engineers by provid-
ing capabilities to write, optimize, and troubleshoot HDL code with
elevated efficiency. RapidGPT extends support to VHDL, Verilog, and
SystemVerilog languages. Additionally, the tool is equipped with a Re-
trieval Augmented Generation (RAG) database, which is a significant
asset for hardware designers seeking to integrate intellectual properties
(IPs) within their design processes.

Silimate, established in 2023, represents another emerging company
in the field of AI-driven electronic design automation (EDA). The firm
is actively working on bringing to market a co-pilot tool designed to
assist designers in crafting Register Transfer Level (RTL) code that is
both free from bugs and optimal in terms of power, performance, and
area (PPA) efficiency (Silimate, Inc., 2025).

Full text available at: https://nowpublishers.com/EDA

8
Discussions

The integration of deep learning and generative AI into SoC and chiplet-
based designs is rapidly transforming the landscape of hardware design
and verification. This work has demonstrated the potential of these
technologies in addressing some of the most critical challenges in design
scalability, performance optimization, and hardware security. In partic-
ular, the application of AI-driven EDA tools like Siemens’ Catapult,
Cadence Cerebrus, and the emerging OpenROAD-Assistant illustrates
how AI can enhance traditional design workflows, improving time-to-
market and reducing the complexity of verification processes.

One of the most significant contributions of AI is its ability to
optimize RTL code generation, physical design, and logic synthesis
through automation. By leveraging machine learning models, tools can
now handle vast design spaces, offering design space exploration with
a level of efficiency that manual processes cannot match. AI-driven
optimizations have shown promise in achieving improvements in power,
performance, and area (PPA) metrics, making them particularly valuable
in the era of heterogeneous chiplet architectures. For example, the use
of deep learning for routing algorithms in chiplets, as discussed, has the
potential to streamline complex design constraints while minimizing
signal integrity and thermal issues.

40

Full text available at: https://nowpublishers.com/EDA

41

Despite the progress, several challenges remain. One of the most
critical issues is the interpretability of AI models in hardware design.
While large language models (LLMs) and deep learning algorithms can
optimize design processes, the lack of transparency in how decisions
are made can be problematic, especially in security-critical applications.
Explainable AI approaches will need to be integrated into the design
flow to ensure that engineers can understand and trust AI-generated
solutions.

Another challenge is the scalability of AI models, particularly when
applied to increasingly complex SoC architectures. As chiplets and 3D-
IC designs become more widespread, AI models must scale efficiently
to handle the larger datasets and more intricate design requirements.
Furthermore, integrating AI-generated designs into existing workflows,
especially in environments with legacy systems, poses another hurdle.
Ensuring compatibility and seamless integration with traditional EDA
tools will be key to broader adoption.

In the process of validating Verilog designs, Large Language Models
(LLMs) have exhibited significant potential in automating the generation
of test stimuli. For example, LLMs have successfully generated test
cases for simple combinational and sequential circuits. Nevertheless, the
reliability of LLMs in verifying more complex designs, such as those
with extensive concurrent processes and intricate module hierarchies,
remains a challenge. This domain still demands additional exploration
and detailed study. Future research should focus on enhancing LLMs’
comprehension of large-scale Verilog code and integrating them with
other AI techniques, such as Graph Neural Networks (GNNs), to improve
their scalability and accuracy (Ma et al., 2024).

The deployment of foundational models such as GPT-4 in the de-
velopment of SoCs offers both significant potential benefits and certain
challenges. These models are characterized by their unmatched flexibil-
ity, rendering them appropriate for a plethora of applications, including
the generation of Hardware Description Language (HDL) via natural lan-
guage, optimizing logic synthesis, and enhancing verification procedures.
Moreover, their ability to integrate diverse types of data and deliver
high-caliber solutions matches well with the growing complexity inherent
in contemporary Electronic Design Automation (EDA) processes.

Full text available at: https://nowpublishers.com/EDA

42 Discussions

Despite their broad applicability, foundational models often fall short
in terms of the domain-specific precision that custom language models,
refined using hardware-specific datasets, can provide. These tailored
models have the advantage of utilizing historical design data to boost
outcomes in key tasks such as Register-Transfer Level (RTL) generation,
verification, and Power-Performance-Area (PPA) optimization. As recent
studies underline, meticulous fine-tuning and careful prompt engineering
can greatly improve both the accuracy and utility of these models in
the EDA domain.

Nevertheless, the shift towards using specialized models highlights
a gap in accessibility. Bigger corporations, equipped with substantial
internal datasets, ample computational power, and proprietary resources,
are more capable of capitalizing on these benefits, potentially deepening
the divide between leading industry players and smaller companies.
Mitigating this disparity by promoting open-source datasets, fostering
cooperative development, and ensuring democratized access to advanced
models constitutes a vital avenue for further investigation (Zhong et al.,
2023).

Full text available at: https://nowpublishers.com/EDA

9
Conclusion

At the onset of the fourth industrial revolution and in the More than
Moore technology the design of complex SoCs is drifting from monolithic
towards chiplet-based designs. In the traditional design techniques of
integrated circuits, the optimization focused on three metrics: area,
speed, and power consumption. However, the explosion in IoT devices
(low, middle, and high-end devices) has put critical infrastructure at
increasing risk of cyber threats. This has been further exacerbated by
the heavy reliance on third parties for the design of complex SoCs.
These and other factors have put the security of SoCs at the forefront.

In this work, we have conducted a comprehensive review of the use
of deep-learning models and LLMs for the design and verification of
SoC systems. We have considered both monolithic and chiplet-based
designs. LLMs, especially fine-tuned ones, can increase the productivity
of the design process. However, the challenge in the wide acceptance of
LLMs lies in the transparency of training or fine-tuning the LLMs. In
addition, the security and privacy concerns related to the use of cloud
computing to run the LLMs can pose a serious barrier.

43

Full text available at: https://nowpublishers.com/EDA

References

Ajayi, T., V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta,
S. Reda, M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W.
Swartz, L. Wang, Z. Wang, M. Woo, and B. Xu. (2019). “Toward
an Open-Source Digital Flow: First Learnings from the OpenROAD
Project”. In: Proceedings of the 56th Annual Design Automation
Conference 2019. DAC ’19. Las Vegas, NV, USA: Association for
Computing Machinery. doi: 10.1145/3316781.3326334.

Bahdanau, D., K. Cho, and Y. Bengio. (2015). “Neural machine transla-
tion by jointly learning to align and translate”. In: 3rd International
Conference on Learning Representations, ICLR 2015. 1–15. url:
https://arxiv.org/abs/1409.0473.

Ben Dhaou, I. and H. Tenhunen. (2002). “HIPED: a tool for high-
level power estimation of digital signal processing algorithms”. In:
9th International Conference on Electronics, Circuits and Systems.
Vol. 2. 729–732 vol.2. doi: 10.1109/ICECS.2002.1046272.

Ben Dhaou, I. (2002). “Low Power Design Techniques for Deep Submi-
cron Technology with Application to Wireless Transceiver Design”.
PhD thesis. KTH, Microelectronics and Information Technology,
IMIT.

44

Full text available at: https://nowpublishers.com/EDA

References 45

Bengesi, S., H. El-Sayed, M. K. Sarker, Y. Houkpati, J. Irungu, and
T. Oladunni. (2024). “Advancements in Generative AI: A Compre-
hensive Review of GANs, GPT, Autoencoders, Diffusion Model,
and Transformers”. IEEE Access. 12: 69812–69837. doi: 10.1109/
ACCESS.2024.3397775.

Bhadra, J., M. S. Abadir, L.-C. Wang, and S. Ray. (2007). “A survey of
hybrid techniques for functional verification”. IEEE Design & Test
of Computers. 24(02): 112–122.

Bhunia, S., M. S. Hsiao, M. Banga, and S. Narasimhan. (2014). “Hard-
ware Trojan Attacks: Threat Analysis and Countermeasures”. Pro-
ceedings of the IEEE. 102(8): 1229–1247. doi: 10.1109/JPROC.2014.
2334493.

Bhunia, S. and M. M. Tehranipoor. (2017). The Hardware Trojan
War: Attacks, Myths, and Defenses. eng. 1st ed. Cham: Springer
International Publishing AG.

Breuer, M., M. Sarrafzadeh, and F. Somenzi. (2000). “Fundamental
CAD algorithms”. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems. 19(12): 1449–1475. doi: 10.1109/
43.898826.

Cadence Design Systems. (2025). “AI for Intelligent Design”. url:
https://www.cadence.com/en_US/home/ai/overview.html.

Chang, Y., X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen,
X. Yi, C. Wang, Y. Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu,
Q. Yang, and X. Xie. (2024). “A Survey on Evaluation of Large
Language Models”. ACM Trans. Intell. Syst. Technol. 15(3). doi:
10.1145/3641289.

Chen, L., Y. Chen, Z. Chu, W. Fang, T.-Y. Ho, R. Huang, Y. Huang,
S. Khan, M. Li, X. Li, Y. Li, Y. Liang, J. Liu, Y. Liu, Y. Lin, G.
Luo, Z. Shi, G. Sun, D. Tsaras, R. Wang, Z. Wang, X. Wei, Z. Xie,
Q. Xu, C. Xue, J. Yan, J. Yang, B. Yu, M. Yuan, E. F. Y. Young,
X. Zeng, H. Zhang, Z. Zhang, Y. Zhao, H.-L. Zhen, Z. Zheng, B.
Zhu, K. Zhu, and S. Zou. (2024). “The Dawn of AI-Native EDA:
Opportunities and Challenges of Large Circuit Models”. url: https:
//arxiv.org/abs/2403.07257.

Full text available at: https://nowpublishers.com/EDA

46 References

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F.
Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A.
Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W.
Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra,
E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba. (2021). “Evaluating Large Language
Models Trained on Code”. CoRR. abs/2107.03374. url: https://
arxiv.org/abs/2107.03374.

Chen, T., S. Xiong, H. He, and B. Yu. (2023). “TRouter: Thermal-
Driven PCB Routing via Nonlocal Crisscross Attention Networks”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. 42(10): 3388–3401. doi: 10.1109/TCAD.2023.3243544.

Chen, W., S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang. (2017).
“Challenges and trends in modern SoC design verification”. IEEE
Design & Test. 34(5): 7–22.

Dehaerne, E., B. Dey, S. Halder, S. De Gendt, and W. Meert. (2022).
“Code Generation Using Machine Learning: A Systematic Review”.
IEEE Access. 10: 82434–82455. doi: 10.1109/ACCESS.2022.3196347.

Dong, S., P. Wang, and K. Abbas. (2021). “A survey on deep learning
and its applications”. Computer Science Review. 40: 100379. doi:
https://doi.org/10.1016/j.cosrev.2021.100379.

El Fentis, I. (2020). “Methodologies for SOC verification”. PhD thesis.
Politecnico di Torino.

Elfadel, I. M., D. S. Boning, and X. Li. (2019). Machine learning in
VLSI computer-aided design. Springer.

Fang, J.-W., C.-H. Hsu, and Y.-W. Chang. (2009). “An Integer-Linear-
Programming-Based Routing Algorithm for Flip-Chip Designs”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. 28(1): 98–110. doi: 10.1109/TCAD.2008.2009151.

Full text available at: https://nowpublishers.com/EDA

References 47

Fang, J.-W., I.-J. Lin, Y.-W. Chang, and J.-H. Wang. (2007). “A
Network-Flow-Based RDL Routing Algorithmz for Flip-Chip De-
sign”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. 26(8): 1417–1429. doi: 10.1109/TCAD.2007.
891364.

Farahmandi, F., M. S. Rahman, S. R. Rajendran, and M. Tehranipoor.
(2023a). CAD for hardware security. Springer.

Farahmandi, F., M. S. Rahman, S. R. Rajendran, and M. Tehranipoor.
(2023b). “CAD for Machine Learning in Hardware Security”. In:
CAD for Hardware Security. Springer. 211–230.

Farzana, N., F. Rahman, M. Tehranipoor, and F. Farahmandi. (2019).
“Soc security verification using property checking”. In: 2019 IEEE
International Test Conference (ITC). IEEE. 1–10.

Freund, K. (2023). “Cadence Design is Working with Renesas to Build
the World’s First LLM Tool for Up-Front Chip Design”. url: https:
//www.forbes.com/sites/karlfreund/2023/09/11/cadence-design-
is-working-with-renesas-to-build-the-worlds-first-llm-tool-for-up-
front-chip-design/?sh=4da0c67b21a4.

Gandhi, U., I. Bustany, W. Swartz, and L. Behjat. (2019). “A Rein-
forcement Learning-Based Framework for Solving Physical Design
Routing Problem in the Absence of Large Test Sets”. In: 2019
ACM/IEEE 1st Workshop on Machine Learning for CAD (ML-
CAD). 1–6. doi: 10.1109/MLCAD48534.2019.9142109.

Grimm, T., D. Lettnin, and M. Hübner. (2018). “A survey on formal ver-
ification techniques for safety-critical systems-on-chip”. Electronics.
7(6).

Gupta, A. (1992). “Formal hardware verification methods: A survey”.
Formal Methods in System Design. 1: 151–238.

Hai, T., J. Zhou, N. Li, S. K. Jain, S. Agrawal, and I. Ben Dhaou.
(2022). “Cloud-based bug tracking software defects analysis using
deep learning”. Journal of Cloud Computing. 11(1): 32. doi: 10.
1186/s13677-022-00311-8.

Hitchcock, C. and D. Thomas. (1983). “A Method of Automatic Data
Path Synthesis”. In: 20th Design Automation Conference Proceedings.
484–489. doi: 10.1109/DAC.1983.1585697.

Full text available at: https://nowpublishers.com/EDA

48 References

Huang, G., J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H.
Zhang, K. Zhong, X. Ning, Y. Ma, H. Yang, B. Yu, H. Yang, and Y.
Wang. (2021). “Machine Learning for Electronic Design Automation:
A Survey”. ACM Trans. Des. Autom. Electron. Syst. 26(5). doi:
10.1145/3451179.

Hughes, W., S. Srinivasan, R. Suvarna, and M. Kulkarni. (2019). “Op-
timizing design verification using machine learning: Doing better
than random”. arXiv preprint arXiv:1909.13168.

Hussain, M., N. K. Baloach, G. Ali, M. ElAffendi, I. B. Dhaou, S. S. Ul-
lah, and M. Uddin. (2023). “Hardware Trojan Mitigation Technique
in Network-on-Chip (NoC)”. Micromachines. 14(4). doi: 10.3390/
mi14040828.

Kabir, M. A. and Y. Peng. (2020). “Chiplet-Package Co-Design For
2.5D Systems Using Standard ASIC CAD Tools”. In: 2020 25th
Asia and South Pacific Design Automation Conference (ASP-DAC).
351–356. doi: 10.1109/ASP-DAC47756.2020.9045734.

Kaplan, J., S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R.
Child, S. Gray, A. Radford, J. Wu, and D. Amodei. (2020). “Scaling
laws for neural language models”. CoRR. abs/2001.08361. url:
https://arxiv.org/abs/2001.08361.

Kim, J. and J. McDermott. (1983). “TALIB: an IC layout design assis-
tant”. In: Proceedings of the Third AAAI Conference on Artificial
Intelligence. AAAI’83. Washington, D.C.: AAAI Press. 197–201.

Kim, N., J. Park, B. Min, and W. Park. (2013). “Register verification:
Do we have reliable specification?” In: Design and Verification
Conference and Exhibition.

Kirk, R. S. (1985). “The impact of AI technology on VLSI design”.
In: Managing Requirements Knowledge, International Workshop
on. Los Alamitos, CA, USA: IEEE Computer Society. 125. doi:
10.1109/AFIPS.1985.63.

Koblah, D., R. Acharya, D. Capecci, O. Dizon-Paradis, S. Tajik, F. Ganji,
D. Woodard, and D. Forte. (2023). “A Survey and Perspective on
Artificial Intelligence for Security-Aware Electronic Design Automa-
tion”. eng. ACM transactions on design automation of electronic
systems. 28(2): 1–57.

Full text available at: https://nowpublishers.com/EDA

References 49

Kowalski, T. and D. Thomas. (1983). “The VLSI Design Automation As-
sistant: Prototype System”. In: 20th Design Automation Conference
Proceedings. 479–483. doi: 10.1109/DAC.1983.1585696.

Lee, J.-H. and S.-C. Kim. (2011). “Analysis of Verification Methodologies
Based on a SoC Platform Design”. International Journal of Contents.
7(1): 23–28.

Liao, W.-S. and P.-A. Hsiung. (2003). “FVP: A formal verification
platform for SoC”. In: IEEE International [Systems-on-Chip] SOC
Conference, 2003. Proceedings. IEEE. 21–24.

Lin, T.-C., D. Merrill, Y.-Y. Wu, C. Holtz, and C.-K. Cheng. (2021). “A
Unified Printed Circuit Board Routing Algorithm With Complicated
Constraints and Differential Pairs”. In: 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC). 170–175.

Liu, Y., X. Li, and S. Yin. (2024). “Review of chiplet-based design:
system architecture and interconnection”. eng. Science China. In-
formation sciences. 67(10).

Ma, R., Y. Yang, Z. Liu, J. Zhang, M. Li, J. Huang, and G. Luo.
(2024). “VerilogReader: LLM-Aided Hardware Test Generation”.
In: 2024 IEEE LLM Aided Design Workshop (LAD). 1–5. doi:
10.1109/LAD62341.2024.10691801.

Mangalagiri, P., L. Qian, F. Zafar, P. Mosalikanti, P. Chang, A. Kurian,
and V. Saripalli. (2024). “CDLS: Constraint Driven Generative AI
Framework for Analog Layout Synthesis”. In: Proceedings of the
61st ACM/IEEE Design Automation Conference. DAC ’24. San
Francisco, CA, USA: Association for Computing Machinery. doi:
10.1145/3649329.3656232.

McMurchie, L. and C. Ebeling. (1995). “PathFinder: A Negotiation-
Based Performance-Driven Router for FPGAs”. In: Third Interna-
tional ACM Symposium on Field-Programmable Gate Arrays. 111–
117. doi: 10.1109/FPGA.1995.242049.

Nasser, Y., J. Lorandel, J.-C. Prévotet, and M. Hélard. (2021). “RTL
to Transistor Level Power Modeling and Estimation Techniques for
FPGA and ASIC: A Survey”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. 40(3): 479–493.
doi: 10.1109/TCAD.2020.3003276.

Full text available at: https://nowpublishers.com/EDA

50 References

Nath, A. P. D., S. Ray, A. Basak, and S. Bhunia. (2018). “System-on-
chip security architecture and CAD framework for hardware patch”.
In: 2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE. 733–738.

Naveed, H., A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Us-
man, N. Akhtar, N. Barnes, and A. Mian. (2023). “A Compre-
hensive Overview of Large Language Models”. arXiv preprint
arXiv:2307.06435. url: https://arxiv.org/abs/2307.06435.

OpenAI. (2024). “OpenAI Codex”. url: https://openai.com/index/
openai-codex/.

Ozdal, M. and M. Wong. (2004). “Simultaneous escape routing and
layer assignment for dense PCBs”. In: IEEE/ACM International
Conference on Computer Aided Design, 2004. ICCAD-2004. 822–
829. doi: 10.1109/ICCAD.2004.1382689.

Primis AI. (2025). “Primis AI: Welcome to the Future of Hardware
Design”. url: https://primis.ai/.

Rabaey, J. M. (2009). Low Power Design Essentials. Boston, MA:
Springer. doi: 10.1007/978-0-387-71713-5.

Rajendran, S. R. (2020). “Security challenges in hardware used for
smart environments”. In: Internet of Things and Secure Smart
Environments. Chapman and Hall/CRC. 363–381.

Rama, E., M. Ayache, R. Buchty, B. Bauer, M. Korb, M. Berekovic,
and S. Mulhem. (2024). “Trustworthy Integrated Circuits: From
Safety to Security and Beyond”. IEEE Access. 12: 69603–69632. doi:
10.1109/ACCESS.2024.3400685.

Rapp, M., H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf, and J.
Henkel. (2022). “MLCAD: A Survey of Research in Machine Learning
for CAD Keynote Paper”. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 41(10): 3162–3181. doi:
10.1109/TCAD.2021.3124762.

Rashinkar, P., P. Paterson, and L. Singh. (2007). System-on-a-chip Ver-
ification: Methodology and Techniques. Springer Science & Business
Media.

Ravikumar, C. (2024). “Chiplets for Integration of Electronic Systems”.
IETE Journal of Education. 0(0): 1–17. doi: 10.1080/09747338.2024.
2311372.

Full text available at: https://nowpublishers.com/EDA

References 51

Ray, S., Y. Jin, and A. Raychowdhury. (2016). “The changing computing
paradigm with internet of things: A tutorial introduction”. IEEE
Design & Test. 33(2): 76–96.

Reda, S. and A. N. Nowroz. (2012). “Power Modeling and Characteriza-
tion of Computing Devices”. Foundations and Trends® in Electronic
Design Automation. 6(2): 121–216. doi: 10.1561/1000000022.

Roy, S. K. (2007). “Top level SOC interconnectivity verification using
formal techniques”. In: 2007 Eighth International Workshop on
Microprocessor Test and Verification. IEEE. 63–70.

Saha, D., S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor,
and F. Farahmandi. (2024). “LLM for SoC Security: A Paradigm
Shift”. IEEE Access: 1–1. doi: 10.1109/ACCESS.2024.3427369.

Schuermans, S. and R. Leupers. (2019). Power Estimation on Elec-
tronic System Level Using Linear Power Models. Cham, Switzerland:
Springer. doi: 10.1007/978-3-030-01875-7.

Seshia, S. A. (2012). “Sciduction: Combining induction, deduction, and
structure for verification and synthesis”. In: Proceedings of the 49th
Annual Design Automation Conference. 356–365.

Sharma, U., B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria, and A.
Rovinski. (2024). “OpenROAD-Assistant: An Open-Source Large
Language Model for Physical Design Tasks”. In: Proceedings of the
2024 ACM/IEEE International Symposium on Machine Learning
for CAD. MLCAD ’24. Salt Lake City, UT, USA: Association for
Computing Machinery. doi: 10.1145/3670474.3685960.

Siemens. (2023). “A New Era of EDA Powered by AI”. url: https:
//resources.sw.siemens.com/en-US/white-paper-a-new-era-of-eda-
powered-by-AI.

Silimate, Inc. (2025). “Silimate: Streamlining Chip Design Workflows”.
url: %7Bhttps://www.silimate.com/%7D.

Talupur, M., S. Ray, and J. Erickson. (2015). “Transaction flows and
executable models: Formalization and analysis of message-passing
protocols”. In: 2015 Formal Methods in Computer-Aided Design
(FMCAD). IEEE. 168–175.

Full text available at: https://nowpublishers.com/EDA

52 References

Vaithianathan, M., M. Patil, S. F. Ng, and S. Udkar. (2024). “Integrating
AI and Machine Learning with UVM in Semiconductor Design”. ESP
International Journal of Advancements in Computational Technology
(ESP-IJACT) Volume. 2: 37–51.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. (2017). “Attention is all you need”.
In: Advances in Neural Information Processing Systems. Vol. 30.
5998–6008. url: https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wang, S., H. Zheng, X. Wen, K. Xu, and H. Tan. (2024a). “Enhancing
chip design verification through AI-powered bug detection in RTL
code”. Applied and Computational Engineering. 92: 27–33.

Wang, Z., L. Alrahis, L. Mankali, J. Knechtel, and O. Sinanoglu. (2024b).
“LLMs and the Future of Chip Design: Unveiling Security Risks
and Building Trust”. In: 2024 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). 385–390. doi: 10.1109/ISVLSI61997.
2024.00076.

Wu, B.-Y., U. Sharma, S. R. D. Kankipati, A. Yadav, B. K. George,
S. R. Guntupalli, A. Rovinski, and V. A. Chhabria. (2024a). “EDA
Corpus: A Large Language Model Dataset for Enhanced Interaction
with OpenROAD”. In: 2024 IEEE LLM Aided Design Workshop
(LAD). 1–5. doi: 10.1109/LAD62341.2024.10691774.

Wu, H., Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu.
(2024b). “ChatEDA: A Large Language Model Powered Autonomous
Agent for EDA”. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 43(10): 3184–3197. doi: 10.1109/
TCAD.2024.3383347.

Yan, T. and M. D. F. Wong. (2012). “Correctly Modeling the Diagonal
Capacity in Escape Routing”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. 31(2): 285–293.
doi: 10.1109/TCAD.2011.2169258.

Yu, M.-F. and W. Wei-Ming Dai. (1995). “Single-layer fanout routing
and routability analysis for ball grid arrays”. In: Proceedings of IEEE
International Conference on Computer Aided Design (ICCAD). 581–
586. doi: 10.1109/ICCAD.1995.480175.

Full text available at: https://nowpublishers.com/EDA

References 53

Zhao, W. X., K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
and J. Jiang. (2023). “A Survey of Large Language Models”. arXiv
preprint arXiv:2303.18223.

Zhong, R., X. Du, S. Kai, Z. Tang, S. Xu, H.-L. Zhen, J. Hao, Q. Xu,
M. Yuan, and J. Yan. (2023). “LLM4EDA: Emerging Progress in
Large Language Models for Electronic Design Automation”. url:
https://arxiv.org/abs/2401.12224.

Full text available at: https://nowpublishers.com/EDA

Large Language Models for EDA:
From Assistants to Agents
Zhuolun He1*, Yuan Pu1, Haoyuan Wu1, Yuhan Qin2, Tairu Qiu2 and
Bei Yu1*

1The Chinese University of Hong Kong, Hong Kong
2ChatEDA Tech, Hong Kong

ABSTRACT
This survey explores the application of Large Language Mod-
els (LLMs) in Electronic Design Automation (EDA), cov-
ering their roles as both assistants and autonomous agents.
We review current research and practical implementations
where LLMs are utilized for tasks such as question answer-
ing, script generation, and automated design processes. This
work highlights the benefits of LLMs, including enhanced
productivity and innovation, while also addressing challenges
like accuracy and integration with traditional EDA tools.
Furthermore, we discuss the evolution from LLMs as sup-
portive assistants to more sophisticated agents capable of
handling complex EDA workflows. This work aims to provide
a comprehensive overview and guide future advancements
in the integration of LLMs within the EDA domain.

*Corresponding authors: Zhuolun He, zleonhe@gmail.com, and Bei Yu,
byu@cse.cuhk.edu.hk.
Zhuolun He, Yuan Pu, Haoyuan Wu, Yuhan Qin, Tairu Qiu and Bei Yu (2025), “Large
Language Models for EDA: From Assistants to Agents”, Foundations and Trends® in
Electronic Design Automation: Vol. 14, No. 4, pp 295–314. DOI: 10.1561/1000000063.
©2025 Z. He et al.

Full text available at: https://nowpublishers.com/EDA

1
Introduction

Electronic Design Automation (EDA) is a critical discipline within the
field of electronics and computer engineering, encompassing the tools
and methodologies used for designing, verifying, and testing electronic
systems. As integrated circuits (ICs) have grown in complexity, so too
has the need for sophisticated EDA tools to manage this complexity.
These tools are essential for automating the design process, ensuring
that ICs meet performance, power, and area (PPA) requirements, and
enabling the rapid development of new technologies.

The advent of Artificial Intelligence (AI) and, more specifically,
Machine Learning (ML) techniques, has brought about a paradigm
shift in the capabilities of EDA tools. AI for EDA leverages learning
algorithms to improve various aspects of the design flow, from synthesis
and placement to timing analysis and power optimization. By harnessing
the power of data, these AI-driven solutions can predict outcomes,
optimize designs, and even learn from past projects, thereby significantly
accelerating the design cycle and improving the quality of results (QoR).

In recent years, Large Language Models (LLMs) have emerged as
a transformative force in the domain of natural language processing
(NLP), with applications spanning a wide array of fields. LLMs, such

55

Full text available at: https://nowpublishers.com/EDA

56 Introduction

as GPT-4, BERT, and their successors, are characterized by their vast
parameter counts and ability to generate or understand human-like
text based on the context provided. Figure 1.1 shows a timeline of
existing large language models, cited from Zhao et al. (2023). When
applied to the realm of EDA, LLMs have the potential to revolutionize
the way designers interact with EDA tools, transforming them from
passive assistants into active agents capable of performing complex
tasks autonomously.

2020

2023

2021
1-4

5-8

9-10

1-3

4-6

7-10

11-12

T5

GPT-3

WebGPT

BLOOMZ

Galatica

mT0

2019

FLAN

InstructGPT

GPT-NeoX-20B

CodeGen

OPT

OPT-IML

MT-NLG

T0

Tk-Instruct

1-6

GPT-4

GShard

UL2

PaLM Flan-T5

Flan-PaLM

Sparrow

ChatGPT

Ernie 3.0 Titan

Yuan 1.0

Gopher

GLaM

mT5 PanGu-𝛂

PLUG

LaMDA

CPM-2

HyperCLOVA

Publicly Available

Codex

Jurassic-1

Ernie 3.0

Anthropic

NLLBCohere

Luminous

YaLM

11-12

2022

GLM

AlexaTM

BLOOM

WeLM

AlphaCode

Chinchilla

CodeGeeX

7-12

LLaMA2

LLaMA

PanGu-Σ

Bard

Pythia

Vicuna

InternLM

2024

2019

Qwen

Mistral

Deepseek

Mixtral

MiniCPM

Gemma

Falcon

CodeGen2

StarCoder

PaLM2

ChatGLM

YuLan-Chat

1-6

LLaMA3

DeepSeek-V2

Qwen2

Figure 1.1 A timeline of existing large language models (Zhao et al., 2023).

This survey aims to provide a comprehensive overview of the current
state of research and application of LLMs in the context of EDA. We
will explore how LLMs function as assistants, where they augment
the capabilities of designers by offering instant access to information,
automating routine inquiries, and facilitating knowledge management.
Furthermore, we will delve into their role as agents, where they go
beyond simple assistance and actively participate in the design process,
from generating and optimizing scripts to performing complex analysis
and suggesting innovative solutions.

Through this exploration, we hope to highlight the significant con-
tributions that LLMs can make to the EDA community, and to inspire
further research and development in this exciting and rapidly evolving
area.

Full text available at: https://nowpublishers.com/EDA

2
LLMs as Design Assistants

In the dynamic and increasingly complex field of Electronic Design
Automation (EDA), the integration of Large Language Models (LLMs)
is ushering in a new era of intelligent assistance, fundamentally trans-
forming the way engineers approach design, verification, and debugging.
These advanced AI models, with their profound natural language un-
derstanding and extensive knowledge base, are becoming indispensable
tools that augment the capabilities of EDA professionals. By serving
as sophisticated assistants, LLMs can provide instant and accurate
responses to a wide range of technical queries, enhancing the question-
answering (QA) process and facilitating more informed decision-making.
Additionally, they can meticulously review design specifications, ensur-
ing compliance and identifying potential discrepancies or ambiguities
early in the design cycle. Furthermore, LLMs are proving to be valuable
in bug analysis, where they can help diagnose and resolve issues by offer-
ing detailed and contextually relevant insights. This section introduces
the role of LLMs as intelligent assistants in EDA, setting the stage for
a comprehensive exploration of their applications in QA, specification
review, and bug analysis in the following sections.

2.1 Question-Answering

HDLCopilot (Abdelatty and Reda, 2024), introduced by Manar Abde-
latty and Sherief Reda, is an LLM-powered system designed to facilitate
the querying of Process Design Kits (PDKs) using natural language.
PDKs, which contain standard cell libraries and various design rules, are
essential for the synthesis of abstract circuit definitions into manufac-
turable chips. Navigating these complex libraries is often time-consuming
and error-prone. HDLCopilot leverages LLMs to enable hardware de-

57

Full text available at: https://nowpublishers.com/EDA

58 LLMs as Design Assistants

sign engineers to interact with PDKs more efficiently, allowing them to
retrieve specific information about gates or design rules through natural
language queries. The system achieves an accuracy of 94.23% on an
evaluation set of diverse and complex queries, positioning itself as a
powerful tool for enhancing productivity and reducing human errors in
the hardware design process.

RAG-EDA (Pu et al., 2024) presents a customized retrieval aug-
mented generation (RAG) framework tailored for EDA tool documen-
tation question-answering (QA). Their approach includes a contrastive
learning scheme for fine-tuning text embedding models, a reranker dis-
tilled from proprietary LLMs, and a generative LLM fine-tuned with
high-quality domain-specific data. They also introduce ORD-QA, a
benchmark for evaluating QA performance on OpenROAD, an advanced
RTL-to-GDSII design platform. Experimental results demonstrate that
their proposed RAG flow and techniques achieve superior performance
on both the ORD-QA benchmark and a commercial EDA tool, outper-
forming state-of-the-art methods. This work underscores the importance
of customizing LLMs for specialized domains to enhance their effective-
ness and reliability. Figure 2.1 illustrates the overall flow of RAG-EDA.

How to repair
antenna violations?

user query

query: How to
repair antenna
violations?

Please answer the
query using the
relevant
documents below:
C1: …
C3: …

Answer: …

Preprocessing

Chunk
&

Index
Data

resources
Vector

database

[“How”,”to”,”repair”,
antenna”,

”violations”]
tokenization

query embedding semantic
search

Retriever

Reranker Generatorlexical
search

C1: to fix antenna
violations, use …

C2: ... to report the
antenna violations

C3: … remove
fillers before fixing
antenna violations

C4: … To visualize
antenna violations

C1: to fix antenna
violations, use …

C2: ... to report the
antenna violations

C3: … remove
fillers before fixing
antenna violations

C4: … To visualize
antenna violations

text embedding model
✅✅❌❌

Figure 2.1 Overall flow of RAG-EDA (Pu et al., 2024).

Wu et al. (2024a) introduce EDA Corpus, an open-source dataset
tailored for OpenROAD, a widely adopted open-source EDA toolchain.
The dataset features over 1,000 data points and is structured in two
formats: a pairwise set of question prompts with prose answers and a
pairwise set of code prompts with corresponding OpenROAD scripts.
By providing this dataset, the authors aim to facilitate LLM-focused
research within the EDA domain. The dataset is designed to train LLMs

Full text available at: https://nowpublishers.com/EDA

2.1. Question-Answering 59

on answering questions about physical design methods and generating
OpenROAD scripts, thereby enhancing the interaction between design-
ers and EDA tools. The evaluation shows that fine-tuning LLMs with
EDA Corpus leads to improved performance on physical design-specific
tasks, highlighting the critical role of tailored datasets in advancing
LLM-assisted EDA.

ORAssistant (Kaintura et al., 2024) is a Retrieval-Augmented Gen-
eration (RAG) based conversational assistant designed to support users
of OpenROAD. Google Gemini serves as the base LLM, which has been
fine-tuned for the specific domain of EDA and chip design. To build
the dataset, ORAssistant extracts conversations from GitHub Issues
and Discussions related to OpenROAD and OpenROAD-flow-scripts,
categorizing them into JSONL datasets using an LLM-based categoriza-
tion approach. These categories include bug reports, feature requests,
runtime issues, and more, which are then used to train the system to
provide relevant and accurate information. For evaluation, the team
used two QA datasets: a custom curated HumanEval dataset with 50
OpenROAD-related questions and 100 questions from the EDA Cor-
pus dataset. Evaluation results showed that ORAssistant significantly
outperformed base pre-trained LLMs, achieving high precision and re-
call scores, and a notably higher LLMScore. Additionally, ORAssistant
demonstrated faster response times compared to GPT-4o, while being
slightly slower than the base Gemini 1.5 Flash.

Xu et al. (2024) introduce ChipExpert, the first open-source, instruc-
tional LLM specifically tailored for the IC design field. Trained on the
Llama-3 8B model, ChipExpert undergoes a rigorous training process
that includes data preparation, continued pre-training, instruction-
guided supervised fine-tuning, and preference alignment. The dataset
used for training is constructed through manual selection and data
synthesis, ensuring high quality and relevance. ChipExpert is designed
to respond to user queries professionally, acquiring a vast amount of IC
design knowledge. To mitigate hallucinations, the model is integrated
with a Retrieval-Augmented Generation (RAG) system, making it a
robust and reliable assistant for IC design tasks. The availability of
ChipExpert and its associated dataset marks a significant step towards
democratizing access to advanced LLMs in the IC design community.

Full text available at: https://nowpublishers.com/EDA

60 LLMs as Design Assistants

Han et al. (2023) propose a new interaction paradigm for complex
EDA software, leveraging GPT and other LLMs. They developed Smar-
tonAI, an AI interaction assist plugin for EDA software, with KiCad
as the initial example. SmartonAI breaks down designer requests into
subtasks, such as analyzing help documentation and executing different
plugins, and leverages the built-in schematic and PCB manipulation
functions. The preliminary results show that SmartonAI can significantly
streamline the PCB design process by simplifying complex commands
into intuitive language-based interactions. This work demonstrates the
potential of LLMs to bridge the gap between complex EDA software and
user-friendly interaction, enhancing the productivity of EDA engineers.

Ask-EDA (Shi et al., 2024) is a chat agent designed to serve as a
24/7 expert available to provide guidance to design engineers. Ask-EDA
leverages LLMs, hybrid retrieval augmented generation (RAG), and
abbreviation de-hallucination (ADH) techniques to deliver more rel-
evant and accurate responses. The authors curated three evaluation
datasets — q2a-100, cmds-100, and abbr-100 — to assess general de-
sign question answering, design command handling, and abbreviation
resolution, respectively. The evaluation results show that hybrid RAG
offers significant improvements in recall, while ADH enhances the resolu-
tion of abbreviations, making Ask-EDA an effective tool for addressing
design-related inquiries.

2.2 Specification and Documentation Generation

Fernando et al. (2024) explore using LLMs to generate human-readable
design documentation from formal hardware models. In their proposed
workflow, a formal specification of a hardware system is pre-processed
into prompts that are then fed to an LLM. These prompts are crafted
using a generic template, which includes all necessary instructions but
leaves out technical details. The technical information, such as port and
bit widths, is extracted directly from the formal Unified Specification
Format (USF) model and inserted into the template. This method allows
the prompt to be repurposed across different USF models, facilitating
a more scalable solution. The generated documentation is evaluated
based on the manual effort required to review and revise it. The analysis

Full text available at: https://nowpublishers.com/EDA

2.3. Feedback Analysis 61

reveals that only 37.4% of the effort needed for fully manual writing is
required when using LLM-generated documentation. This translates to
a 2.7-fold increase in productivity. The quality of the generated text is
also assessed, with approximately 62% of the documentation needing
no corrections, 14% requiring minor revisions, and 19% necessitating
major changes. An additional 5% falls under the category of unusable,
requiring complete rewrites. To account for the reading and classification
of parts that need correction, the researchers added an estimated 10%
work effort, resulting in the aforementioned 37.4% total effort.

Li et al. (2024) introduce SpecLLM, a framework that leverages
LLMs for the generation and review of VLSI design specifications,
addressing the time-consuming and error-prone nature of manual spec-
ification development. They propose a structured definition of archi-
tecture specifications, categorizing them into three abstraction levels:
Highest-level (HAS), Middle-level (MAS), and Lowest-level (LAS). To
support this, they have compiled and released a dataset comprising 46
architecture specification documents from various sources. The authors
explore two primary applications of LLMs: generating new architecture
specifications, which includes writing specifications from scratch and
converting RTL code into detailed specifications, and reviewing existing
specifications to identify errors and inconsistencies. The study demon-
strates that LLMs can effectively generate and review specifications,
with the potential to significantly streamline the design process. How-
ever, they also highlight the importance of evaluating LLM-generated
feedback, suggesting that training a specialized model for this purpose
could improve the reliability of the review outcomes. Additionally, the
work addresses challenges such as the lack of unified writing standards
in the industry, the varying lengths of specifications, and the token limi-
tations of current LLMs, which can affect the accuracy of the generated
output.

2.3 Feedback Analysis

Qiu et al. (2024) explore the use of LLMs to generate novice-friendly ex-
planations of compile-time synthesis error messages from EDA tools like
Quartus Prime and Vivado (Figure 2.2). Training new engineers in digi-

Full text available at: https://nowpublishers.com/EDA

62 LLMs as Design Assistants

Vivado Quartus

VHDL VerilogBugs

IDEs

Vivado Logs Quartus LogsLogs

Prompt with
Error & Code

Prompt with
Error, Code, & Line

gpt-3.5-turbo gpt-4-turbo-
preview

Responses

Manual Grading

Prompt
Construction

LLM
querying

Result
collection

Scoring

gpt-4

Figure 2.2 LLM improves EDA tool usability (Qiu et al., 2024).

tal design, particularly in the use of complex EDA tools, is a significant
challenge. LLMs, with their text comprehension and question-answering
capabilities, can provide clear and understandable explanations of syn-
thesis errors, helping novices overcome common hurdles. The study
generates 936 error message explanations using three OpenAI LLMs
over 21 different buggy code samples and finds that in approximately
71% of cases, the LLMs provide correct and complete explanations
suitable for novice learners. This work highlights the potential of LLMs
in improving the learning and usability of EDA tools.

Wang (2024) present an innovative approach to semiconductor test
data analytics by incorporating LLMs into an AI agent named IEA-
Plot. The work advocates for an end-to-end methodology that places a
Knowledge Graph (KG) at its core, facilitating the analysis of complex
wafermap data. By leveraging LLMs, the system is capable of advanced
natural language-driven analytics, which utilizes GPT-3 and subsequent
models for instruction parsing, KG construction, and so on. The research
highlights the practical implementation of this AI agent, showcasing its
ability to conduct comprehensive data exploration and failure pattern
analysis, while also addressing the challenges of reducing manual effort,
especially in the context of concept-centric grounding. Despite these
advancements, the work acknowledges the ongoing necessity for further
research to fully automate the process, particularly in areas where
human expertise remains indispensable.

Full text available at: https://nowpublishers.com/EDA

3
LLMs as Autonomous Agents

In the rapidly advancing field of EDA, Large Language Models (LLMs)
are not only serving as powerful assistants but are also emerging as
autonomous agents capable of performing complex and specialized tasks.
As agents, LLMs go beyond merely providing information and support;
they actively participate in the design and automation processes, sig-
nificantly enhancing the efficiency and effectiveness of EDA workflows.
These models leverage their deep understanding of natural language
and extensive knowledge bases to generate flow scripts, assist in layout
design, and even contribute to the intricate domain of analog design. By
automating these tasks, LLMs can reduce the manual effort required,
minimize errors, and accelerate the design cycle. This section introduces
the role of LLMs as agents in EDA, setting the stage for a detailed explo-
ration of their applications in flow script generation, layout assistance,
and analog design in the following sections.

3.1 Flow Script Generation

ChatEDA (He et al., 2023; Wu et al., 2024b) introduces an innova-
tive autonomous agent framework leveraging large language models to
streamline EDA processes. As shown in Figure 3.1, this system leverages

63

Full text available at: https://nowpublishers.com/EDA

64 LLMs as Autonomous Agents

AutoMage

User Requirement

API Specifications

Task Decomposition

Script Generation

EDA Tools

Task Execution

ChatEDA

RTL GDSII

Figure 3.1 LLM as agents: ChatEDA (He et al., 2023)

a fine-tuned LLM (AutoMage) to interpret natural language instructions
and generate executable scripts for EDA tools, streamlining the design
flow from RTL to GDSII. This system, enhanced through instruction
tuning and low-rank adaptation, demonstrates superior performance
over generic LLMs like GPT-4, significantly improving the reliability
and efficiency of EDA workflows.

IICPilot (Jiang et al., 2024) introduces an innovative LLM-based
multi-agent system designed to automate the backend design of inte-
grated circuits using open-source EDA tools. This framework leverages
the advanced reasoning and natural language understanding capabilities
of large language models to significantly reduce the complexity and
expertise required for IC backend design. Key contributions include the
development of specialized agents for tasks such as script generation,
EDA tool invocation, design space exploration, and computing resource
allocation, all orchestrated through a unified EDA calling interface. By
automating these processes, IICPilot not only enhances the accessibility
and usability of open-source EDA tools but also improves the efficiency
and performance of IC design workflows.

OpenROAD-Assistant (Sharma et al., 2024) showcases the applica-
tion of large language models as autonomous agents in EDA, specifically

Full text available at: https://nowpublishers.com/EDA

3.2. Layout Helper 65

for physical design tasks. Leveraging the Llama3-8B foundation model
and employing retrieval-aware fine-tuning (RAFT), this open-source
chatbot generates natural language responses and Python scripts using
OpenROAD APIs. Unlike previous approaches that relied on proprietary
tools, OpenROAD-Assistant uses only public data, making it accessible
to new and experienced chip designers alike. The model outperforms
other foundational models, achieving high scores in both scripting (77%
pass@1, 80% pass@3) and question-answering (98% BERTScore, 96%
BARTScore), demonstrating its potential to enhance productivity and
accessibility in the EDA domain.

3.2 Layout Helper

ChatPattern (Wang et al., 2024) introduces a novel framework leverag-
ing Large Language Models as autonomous agents for flexible layout
pattern customization. This system, composed of an expert LLM agent
and a controllable layout pattern generator, interprets natural language
instructions to perform complex design tasks, such as generating high-
quality, large-scale VLSI layout patterns. The LLM agent not only
understands user requirements but also operates design tools to meet
specific design needs, demonstrating significant advancements in au-
tomating the creation of diverse and scalable pattern libraries, which
are crucial for various DFM studies and machine learning applications
in lithography design.

Chen et al. (2024a) present a novel framework that integrates rein-
forcement learning (RL) and large language models to automate the
development of optical proximity correction (OPC) recipes in semicon-
ductor manufacturing. The paper demonstrates how RL can optimize
the design of EPE measurement and fragmentation recipes, while LLMs
are employed to summarize and generalize these RL-generated recipes
into practical, rule-based guidelines. This two-stage approach not only
achieves significant improvements in key error metrics but also maintains
the efficiency of the OPC process, making it immediately applicable to
new layouts without additional optimization time. The study highlights
the potential of LLMs as autonomous agents in layout design, enhancing
both the effectiveness and efficiency of complex design tasks.

Full text available at: https://nowpublishers.com/EDA

66 LLMs as Autonomous Agents

3.3 Analog Design

ADO-LLM (Yin et al., 2024) introduces a novel framework that inte-
grates Large Language Models with Bayesian Optimization (BO) to
enhance the efficiency and effectiveness of analog circuit design. By
leveraging the rich domain knowledge embedded in LLMs and their
capability for in-context learning, ADO-LLM addresses the limitations
of traditional BO methods, such as the inefficiency in exploring high-
dimensional design spaces and the tendency to produce non-viable
solutions. The framework consists of a Gaussian Process-based BO
proposer, an LLM agent, a high-quality data sampler, and an HSPICE
simulator. The LLM agent is initialized with circuit definitions and
design specifications, and through iterative learning, it generates innova-
tive and feasible design points that are then evaluated and used to refine
future iterations. This cooperative approach not only accelerates the
design convergence but also enables the exploration of a broader design
space, demonstrating significant improvements in design efficiency and
effectiveness on two different analog circuits.

Chen et al. (2024b) introduce the LLANA framework, which also
leverages Large Language Models to enhance Bayesian Optimization for
the automated generation of analog layout constraints. Addressing the
limitations of traditional BO methods, such as slow convergence and high
data requirements, LLANA exploits the few-shot learning capabilities
of LLMs to efficiently explore the analog circuit design space and
generate design-dependent parameters. By integrating LLMs’ contextual
understanding and learning efficiency, LLANA not only matches the
performance of state-of-the-art BO methods but also demonstrates
superior exploration of the design space. This innovative approach
underscores the potential of LLMs as autonomous agents in accelerating
the design process and improving the accuracy and reliability of analog
layout synthesis. The authors provide an open-source implementation of
their framework, facilitating further research and practical applications
in the field.

Liu et al. (2024b) introduce AmpAgent, a pioneering multi-agent
system leveraging large language models for the autonomous design
of multi-stage amplifiers. AmpAgent is composed of three specialized

Full text available at: https://nowpublishers.com/EDA

3.3. Analog Design 67

agents: the Literature Analysis Agent, which extracts critical infor-
mation from academic literature; the Mathematics Reasoning Agent,
which performs complex calculations and derives key design parameters;
and the Device Sizing Agent, which integrates with simulation tools
to optimize device parameters. The system addresses the challenges
posed by the complexity and data scarcity in analog circuit design,
demonstrating significant improvements over conventional methods in
terms of design efficiency, iteration reduction, and performance enhance-
ment. By effectively decomposing the design process and leveraging the
reasoning capabilities of LLMs, AmpAgent showcases the potential of
LLMs in advancing EDA for analog circuits, particularly in the rapid
and accurate design of multi-stage amplifiers.

LayoutCopilot (Liu et al., 2024a) introduces a pioneering framework
that leverages LLMs as autonomous agents to enhance the efficiency and
usability of analog layout design. Addressing the steep learning curve
and cumbersome user experience associated with traditional design tools,
LayoutCopilot simplifies human-tool interaction by translating natural
language instructions into executable commands and interpreting high-
level design intents into actionable suggestions. Utilizing a multi-agent
collaborative system, the framework progressively transforms designer
requirements into precise layout adjustments, demonstrating high ac-
curacy and flexibility in handling real-world analog designs. Extensive
testing reveals that LayoutCopilot significantly improves the functional
correctness and analytical reasoning of layout outputs, particularly
when guided by specific instructions.

GLayout (Hammoud et al., 2024) introduces a novel approach to
automating analog layout design. Unlike conventional methods that
utilize Graph Convolutional Neural Networks (GCNs) and specific
constraint files, GLayout employs LLMs to interpret human language
prompts and transform them into compact, technology-generic text
representations of analog layouts. This framework uses fine-tuning and
in-context learning with Retrieval Augmented Generation (RAG) to
enable the LLM to generate layouts for unseen circuits effectively, as
shown in Figure 3.2. The models range from 3.8 to 22 billion parameters,
showing enhanced performance with larger models, and have been
validated on an open-source evaluation set that includes circuits from

Full text available at: https://nowpublishers.com/EDA

68 LLMs as Autonomous Agents

Figure 3.2 LLM as agents: GLayout (Hammoud et al., 2024)

simple 2-transistor designs to complex ∆Σ ADCs. This approach not
only simplifies the design process but also sets a standard benchmark
for evaluating LLM-based EDA tools, advancing the field towards more
intuitive and versatile automated design solutions.

SPICED (Chaudhuri et al., 2024) introduces a novel framework
which operates entirely in the software domain, eliminating the need for
hardware modifications and achieving high accuracy in detecting and
localizing both syntactical bugs and analog Trojans in circuit netlists. By
employing chain-of-thought reasoning and few-shot examples, SPICED
teaches LLMs to identify anomalies without explicit training, resulting
in zero area overhead. The framework demonstrates an average Trojan
coverage of 93.32% and a true positive rate of 93.4% across various
analog benchmark circuits, validating the effectiveness of LLMs in
enhancing EDA security and reliability.

Full text available at: https://nowpublishers.com/EDA

3.3. Analog Design 69

AnalogCoder (Lai et al., 2024) is a pioneering training-free Large
Language Model agent designed for automating analog circuit design
through Python code generation. Unlike previous approaches that re-
quire extensive training on specialized datasets, AnalogCoder leverages
a feedback-enhanced design flow and a circuit tool library to enable self-
correcting and efficient design processes. The agent interprets natural
language descriptions of circuit design tasks and generates functionally
correct Python code using the PySpice library, significantly reducing the
complexity and manual effort involved. Through extensive experiments,
AnalogCoder demonstrates superior performance compared to other
LLMs, successfully designing 20 out of 24 benchmark circuits.

LADAC (Liu et al., 2024c), a Large Language Model-driven Auto-
Designer for Analog Circuits, presents a novel approach to automating
analog circuit design by leveraging a domain-specific LLM as a decision-
making agent. This work addresses the limitations of current LLMs in
comprehending the intricate nature of analog circuits by integrating a
specialized knowledge library and interactive tools that enable the LLM
to autonomously perform tasks such as transistor sizing and simulation.
Through successful designs of amplifiers and a ring oscillator, LADAC
demonstrates the promising future of using LLMs for more complex
analog circuit design challenges.

Full text available at: https://nowpublishers.com/EDA

4
Conclusion

In this survey, we have explored the transformative impact of Large
Language Models (LLMs) on the field of Electronic Design Automation
(EDA), highlighting their dual roles as assistants and agents. The
benefits of LLMs in terms of productivity, efficiency, and innovation are
compelling. By automating routine tasks, providing expert-level insights,
and facilitating more intuitive and user-friendly interactions with EDA
tools, LLMs are poised to revolutionize the way electronic systems
are designed, verified, and manufactured. However, the integration of
LLMs into EDA workflows is not without its challenges. Ensuring the
accuracy and reliability of LLM-generated content, mitigating the risk
of hallucinations, and addressing the computational demands of training
and deploying these models are ongoing areas of research.

As the field continues to evolve, it is clear that LLMs will play
an increasingly central role in EDA. Future research will likely focus
on further customizing and fine-tuning these models for specific EDA
applications, improving their interpretability and explainability, and
integrating them more seamlessly into existing design environments. The
development of open-source datasets and benchmarks will be crucial for
advancing the state of the art and ensuring that the benefits of LLMs
are accessible to a broader community of designers and researchers. As
these models continue to mature and integrate more deeply into EDA
workflows, they will undoubtedly drive new innovations and efficiencies,
ultimately contributing to the development of more advanced and
reliable electronic systems. The journey from LLMs as assistants to
agents is well underway, and the future of EDA is set to be profoundly
shaped by these powerful AI-driven tools.

70

Full text available at: https://nowpublishers.com/EDA

References

Abdelatty, M. and S. Reda. (2024). “HDLCopilot: Hardware Design Li-
brary Querying with Natural Language”. arXiv preprint arXiv:2407.
12749.

Chaudhuri, J., D. Thapar, A. Chaudhuri, F. Firouzi, and K.
Chakrabarty. (2024). “SPICED: Syntactical Bug and Trojan Pattern
Identification in A/MS Circuits using LLM-Enhanced Detection”.
arXiv preprint arXiv:2408.16018.

Chen, G., H. Yang, B. Yu, and H. Ren. (2024a). “Intelligent OPC Engi-
neer Assistant for Semiconductor Manufacturing”. arXiv preprint
arXiv:2408.12775.

Chen, G., K. Zhu, S. Kim, H. Zhu, Y. Lai, B. Yu, and D. Z. Pan. (2024b).
“LLM-Enhanced Bayesian Optimization for Efficient Analog Layout
Constraint Generation”. arXiv preprint arXiv:2406.05250.

Fernando, S., R. Kunzelmann, D. S. Lopera, J. Al Halabi, and W. Ecker.
(2024). “Leveraging Large Language Models for the Automated
Documentation of Hardware Designs”. In: 2024 13th Mediterranean
Conference on Embedded Computing (MECO). IEEE. 1–6.

Hammoud, A., C. Goyal, S. Pathen, A. Dai, A. Li, G. Kielian, and
M. Saligane. (2024). “Human Language to Analog Layout Using
GLayout Layout Automation Framework”. In: Proceedings of the
2024 ACM/IEEE International Symposium on Machine Learning
for CAD. 1–7.

71

Full text available at: https://nowpublishers.com/EDA

72 References

Han, B., X. Wang, Y. Wang, J. Yan, and Y. Tian. (2023). “New inter-
action paradigm for complex eda software leveraging gpt”. arXiv
preprint arXiv:2307.14740.

He, Z., H. Wu, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu. (2023).
“ChatEDA: A Large Language Model Powered Autonomous Agent
for EDA”. In: 2023 ACM/IEEE 5th Workshop on Machine Learning
for CAD (MLCAD). IEEE. 1–6.

Jiang, Z., Q. Zhang, C. Liu, H. Li, and X. Li. (2024). “IICPilot: An
Intelligent Integrated Circuit Backend Design Framework Using
Open EDA”. arXiv preprint arXiv:2407.12576.

Kaintura, A., S. S. Luar, I. I. Almeida, et al. (2024). “ORAssistant:
A Custom RAG-based Conversational Assistant for OpenROAD”.
arXiv preprint arXiv:2410.03845.

Lai, Y., S. Lee, G. Chen, S. Poddar, M. Hu, D. Z. Pan, and P. Luo.
(2024). “AnalogCoder: Analog Circuit Design via Training-Free Code
Generation”. arXiv preprint arXiv:2405.14918.

Li, M., W. Fang, Q. Zhang, and Z. Xie. (2024). “Specllm: Exploring
generation and review of vlsi design specification with large language
model”. arXiv preprint arXiv:2401.13266.

Liu, B., H. Zhang, X. Gao, Z. Kong, X. Tang, Y. Lin, R. Wang, and
R. Huang. (2024a). “LayoutCopilot: An LLM-powered Multi-agent
Collaborative Framework for Interactive Analog Layout Design”.
arXiv preprint arXiv:2406.18873.

Liu, C., W. Chen, A. Peng, Y. Du, L. Du, and J. Yang. (2024b). “AmpA-
gent: An LLM-based Multi-Agent System for Multi-stage Amplifier
Schematic Design from Literature for Process and Performance
Porting”. arXiv preprint arXiv:2409.14739.

Liu, C., Y. Liu, Y. Du, and L. Du. (2024c). “LADAC: Large Lan-
guage Model-driven Auto-Designer for Analog Circuits”. Authorea
Preprints.

Pu, Y., Z. He, T. Qiu, H. Wu, and B. Yu. (2024). “Customized Re-
trieval Augmented Generation and Benchmarking for EDA Tool
Documentation QA”. arXiv preprint arXiv:2407.15353.

Qiu, S., B. Tan, and H. Pearce. (2024). “Explaining EDA synthesis
errors with LLMs”. arXiv preprint arXiv:2404.07235.

Full text available at: https://nowpublishers.com/EDA

References 73

Sharma, U., B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria, and A.
Rovinski. (2024). “OpenROAD-Assistant: An Open-Source Large
Language Model for Physical Design Tasks”. In: Proceedings of the
2024 ACM/IEEE International Symposium on Machine Learning
for CAD. 1–7.

Shi, L., M. Kazda, B. Sears, N. Shropshire, and R. Puri. (2024). “Ask-
EDA: A Design Assistant Empowered by LLM, Hybrid RAG and
Abbreviation De-hallucination”. arXiv preprint arXiv:2406.06575.

Wang, L.-C. (2024). “LLM-Assisted Analytics in Semiconductor Test”.
In: Proceedings of the 2024 ACM/IEEE International Symposium
on Machine Learning for CAD. 1–7.

Wang, Z., Y. Shen, X. Yao, W. Zhao, Y. Bai, F. Farnia, and B. Yu.
(2024). “ChatPattern: Layout Pattern Customization via Natural
Language”. ACM/IEEE Design Automation Conference (DAC).

Wu, B.-Y., U. Sharma, S. R. D. Kankipati, A. Yadav, B. K. George,
S. R. Guntupalli, A. Rovinski, and V. A. Chhabria. (2024a). “EDA
Corpus: A Large Language Model Dataset for Enhanced Interaction
with OpenROAD”. arXiv preprint arXiv:2405.06676.

Wu, H., Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu.
(2024b). “Chateda: A large language model powered autonomous
agent for eda”. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

Xu, N., Z. Zhang, L. Qi, W. Wang, C. Zhang, Z. Ren, H. Zhang, X.
Cheng, Y. Zhang, Z. Liu, et al. (2024). “ChipExpert: The Open-
Source Integrated-Circuit-Design-Specific Large Language Model”.
arXiv preprint arXiv:2408.00804.

Yin, Y., Y. Wang, B. Xu, and P. Li. (2024). “ADO-LLM: Analog Design
Bayesian Optimization with In-Context Learning of Large Language
Models”. arXiv preprint arXiv:2406.18770.

Zhao, W. X., K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B.
Zhang, J. Zhang, Z. Dong, et al. (2023). “A survey of large language
models”. arXiv preprint arXiv:2303.18223.

Full text available at: https://nowpublishers.com/EDA

Evaluating Large Language Models
for Automatic Register Transfer
Logic Generation for Combinational
Circuits via High-Level Synthesis
Sneha Swaroopa1, Rijoy Mukherjee2, Anushka Debnath3 and Rajat
Subhra Chakraborty4

1Indian Institute of Technology Kharagpur, India;
swaroopasneha202@kgpian.iitkgp.ac.in
2Indian Institute of Technology Kharagpur, India;
rijoy.mukherjee@iitkgp.ac.in
3National Institute of Technology Durgapur, India;
anushkadebnath77777@gmail.com
4Indian Institute of Technology Kharagpur, India;
rschakraborty@cse.iitkgp.ac.in

ABSTRACT
The ever-growing popularity of large language models (LLMs)
has resulted in their increasing adoption for hardware design
and verification. Prior research has attempted to assess the
capability of LLMs to automate digital hardware design by
producing superior-quality Register Transfer Logic (RTL)
descriptions, particularly in Verilog. However, these tests
have revealed that Verilog code production using LLMs at
current state-of-the-art lack sufficient functional correctness
to be practically viable, compared to automatic generation

Sneha Swaroopa, Rijoy Mukherjee, Anushka Debnath and Rajat Subhra Chakraborty
(2025), “Evaluating Large Language Models for Automatic Register Transfer Logic
Generation for Combinational Circuits via High-Level Synthesis”, Foundations
and Trends® in Electronic Design Automation: Vol. 14, No. 4, pp 315–337. DOI:
10.1561/1000000063-3.
©2025 S. Swaroopa et al.

Full text available at: https://nowpublishers.com/EDA

75

of programs in general-purpose programming languages such
as C, C++, Python, etc. With this as the key insight, in
this work we assess the performance of a two-stage soft-
ware pipeline for automated Verilog RTL generation for
combinational circuits: LLM based automatic generation
of annotated C++ code suitable for high-level synthesis
(HLS), followed by HLS to generate Verilog RTL. We have
benchmarked the performance of our proposed scheme us-
ing the open-source VerilogEval dataset, for four different
industry-scale LLMs, and the Vitis HLS tool. Our exper-
imental results demonstrate that our two-step technique
substantially outperforms previous proposed techniques of
direct Verilog RTL generation by LLMs in terms of aver-
age functional correctness rates, reaching a score of 0.86 in
pass@1 metric.

Full text available at: https://nowpublishers.com/EDA

1
Introduction

Digital hardware design using a Hardware Description Language (HDL)
like Verilog has traditionally been a labor-intensive and challenging
endeavor. It warrants significant expertise, and is error-prone, necessitat-
ing intense validation efforts for large industry-scale designs. Historically,
digital hardware design using HDLs has been a specialized skill-set, and
far lesser number of expert designers using HDLs like Verilog exist than
expert programmers in mainstream programming languages such as C,
C++, Java, Python, etc.

Naturally, there is an increasing interest in developing more ac-
cessible approaches for producing HDL, intending to simplify design
and testing processes. This would make constructing functionally cor-
rect hardware easier for those with pre-existing software development
experience in mainstream programming languages. Towards this end,
High-level synthesis (HLS) has emerged and matured over the last
few decades, as a paradigm that helps software developers to design
correct-by-construction hardware, by directly translating code from a
high-level programming language like C or C++ (the two most common
options), to a target HDL like Verilog (Cong et al., 2011). For instance,
Vitis HLS (AMD, n.d.) and Bambu (Ferrandi et al., 2021) are free-of-

76

Full text available at: https://nowpublishers.com/EDA

77

cost software tools that facilitate rapid hardware logic prototyping by
generating RTL in HDL, based on hardware specifications in (supersets
of) C, C++, and System C.

Recent efforts have been aimed at elevating the abstraction level
and ease of digital hardware design even further, where the goal is to
allow designers to articulate functional specifications of the logic to be
described in a natural language (NL) (Pearce et al., 2020). State-of-the-
art Large Language Models (LLMs) have the potential to revolutionize
digital hardware design and validation methodology, by automatically
generating correct-by-construction circuit descriptions in HDL, and
HDL code for hardware validation (“testbench”), when prompted by
the functional description of the circuit in a natural language, e.g.
English.

However, recent studies reported by multiple research groups to
evaluate the potential of LLMs at the current state-of-the-art in produc-
ing functionally correct HDL descriptions (mostly RTL in Verilog) have
identified limitations regarding their ability to generate correct and com-
plete Verilog (Liu et al., 2023). Input “prompt engineering” targeting
LLMs for automatic Verilog generation also lacks structure and is some-
times ambiguous. Another constraint is that currently, LLMs cannot
perform top-down digital design, necessitating (relatively) much more
laborious bottom-up design (Liu et al., 2023). LLMs often generate HDL
descriptions without ensuring functional correctness at the hardware
level and usually do not perform any design space exploration (Chang
et al., 2023). The main reason for the low effectiveness of LLMs in HDL
generation tasks is the relatively small amount of open-source codebases
in HDLs like Verilog and VHDL available for training the LLMs. These
limitations currently prevent the seamless integration of LLMs into
EDA workflows.

On the other hand, advances in LLMs have led to phenomenal
results on automatic code generation tasks (Rozière et al., 2024). This
is made possible by the availability of large collections of open-source
codebases in common general-purpose programming languages, which
can be used for fine-tuned training of the LLMs. LLMs have exhibited
unprecedented success in diverse tasks like suggesting code snippets
(“copilots”), solving complex algorithms, and explaining programming

Full text available at: https://nowpublishers.com/EDA

78 Introduction

concepts. Therefore, combining HLS which allows logic design through
higher-level programming interfaces, with the emerging LLMs, repre-
sents progress toward the vision of automatic and error-free hardware
logic design via natural language interaction.

In this work, we explore the capabilities of LLM in generating
sophisticated C++ programs suitable for HLS processing, starting with
natural language problem descriptions. We then use a HLS tool to
convert this generated C++ code to Verilog RTL. Since the reliability of
hardware design is a key factor, we enable the evaluation of the generated
final Verilog code through a robust validation procedure (Liu et al.,
2024b). Figure 1.1 compares the proposed software pipeline of LLM-
assisted automated hardware logic design, with that of the existing works.
We experimented with four different well-known industry-standard
LLMs (gpt-3.5 turbo (OpenAI, 2024a), gpt-4o (OpenAI, 2024c),
Claude 3 Haiku (Anthropic, 2024a), Claude 3.5 Sonnet (Anthropic,
2024b)), and Vitis HLS.

Figure 1.1: Comparison of existing RTL Generation via LLM with the proposed
software pipeline with HLS.

We use a subset of the VerilogEval dataset (Liu et al., 2023), com-
prising 70 problems sourced from the HDLBits platform, to evaluate
the approaches (the proposed software pipeline vs. existing techniques).
These problems constitute a wide variety of combinational circuits and
are versatile enough to serve as the foundation for creating larger, more
complex systems. Consequently, our chosen HDL dataset is smaller in
scale compared to those of higher-level programming languages, the 70

Full text available at: https://nowpublishers.com/EDA

79

combinational circuit problems in this dataset are both adequate and
representative for evaluating the diverse challenges of combinational
circuit design in HDL. We call this the HLSEval dataset, which es-
tablishes the superior accuracy (up to pass@1 value of 0.86) for our
proposed approach over existing LLM-assisted automatic Verilog RTL
generation. We have made the HLSEval benchmarks and LLM scripts
open-source on Github (Mukherjee, 2024).

In the next section, we describe some related work on automated
RTL generation and validation using LLMs.

Full text available at: https://nowpublishers.com/EDA

2
LLM-based Automated Digital Hardware Design

and Validation

With the escalating popularity of LLMs, several research works have
aimed at harnessing their power to generate HDL (primarily Verilog)
code, to automate digital hardware design and validation. Both Dehaerne
et al. (2023) and Thakur et al. (2024a) fine-tuned the open-source
CodeGen model (Nijkamp et al., 2023) using training data that consists
of Verilog code from GitHub and machine-readable Verilog code snippets
from electronic copies of Verilog textbooks. Evaluation of curated tasks
concluded that the resulting VeriGen model (Thakur et al., 2024a)
delivered functionally accurate code only 41.9% of the time. In Liu et al.
(2023), the authors designed a benchmarking framework to assess LLM
performance in Verilog code generation tasks in hardware design. They
also introduced a robust, comprehensive dataset called VerilogEval,
comprising 156 problems sourced from HDLBits (Wong, 2024), an
online Verilog learning platform. The evaluation demonstrated the
Verilog code generation capabilities of pre-trained language models like
gpt-3.5 (OpenAI, 2024a) and gpt-4 (OpenAI, 2024b), and the fine-
tuned VeriGen model, which incidentally achieved the best performance.
However, the improvement wasn’t much from the numbers achieved
previously. To improve the quality of Verilog generation by pre-trained

80

Full text available at: https://nowpublishers.com/EDA

81

models, Thakur et al. (2024b) developed a workflow with a chain of
feedback mechanisms called AutoChip to prompt the LLMs for iterative
hardware development. Chang et al. (2024) introduced ChipGPT-FT,
a Verilog design model, by fine-tuning the Llama-2 (Touvron et al.,
2023) model with the Verilog dataset augmented from GitHub. When
compared with performance of VeriGen (Thakur et al., 2024a) on
similar benchmarks, ChipGPT-FT increases functional correctness of the
generated code from 58.8% to 70.6%.

Another branch of work targeting LLMs has focused on the quality
of the generated Verilog code regarding creativity, optimization, resource
utilization and flexibility (Chang et al., 2023; DeLorenzo et al., 2024a;
DeLorenzo et al., 2024b; Blocklove et al., 2023). Other prominent works
in this domain have focused on using LLMs for hardware testing (Qiu
et al., 2024; Blocklove et al., 2024), bug fixing (Ahmad et al., 2024),
generating security assertions (Paria et al., 2023; Kande et al., 2024;
Meng et al., 2023) and formal verification of RTL (Orenes-Vera et al.,
2023). Works such as Wu et al. (2024) and Liu et al. (2024a) use LLM
to enhance hardware design productivity by providing a conversational
interface like an engineering chatbot that helps in task planning, EDA
script generation, bug analysis and task execution through the invocation
of EDA tool APIs.

Very few studies have been conducted in the LLM realm regarding
high-level synthesis. Collini et al. (2024) proposed a workflow called
C2HLSC, enabling seamless refactoring of a traditional C program to
HLS-compatible C, to produce optimized hardware architectures. Fu et
al. (2023) developed a framework called GPT4AIGChip, to design an AI
accelerator, starting from human language specifications. Specifically, it
used gpt-4 (OpenAI, 2024b) to design the AI accelerator by prompting
for decoupled HLS C++ modules. Though the authors investigated
the viability of HLS with the conclusion that current LLMs struggle
with understanding long dependencies, the experimentation was not
thorough and comprehensive enough to account for various types of
tasks frequently seen for hardware design in HLS.

Full text available at: https://nowpublishers.com/EDA

3
Proposed Software Pipeline for Automated

Verilog Generation and its Validation

In this section, we discuss in detail the HLSEval dataset; our proposed
software pipeline for automated Verilog generation, and its evaluation
technique.

3.1 The HLSEval Dataset

We assess the functional correctness of the proposed hardware design
pipeline on problems selected from the VerilogEval (Liu et al., 2023)
dataset. VerilogEval encompasses diverse coding tasks, ranging from
simple combinational circuits to complex finite state machines. Our
proposed HLSEval dataset consists of concise hardware design tasks
that demand problem-solving skills in circuit optimization, boolean
logic reduction, state transitions, and more. We only consider a subset
of 70 combinational logic circuits for this evaluation process. Sequential
circuits are realized in HLS in the form of streams (AMD, n.d.), whereas
in RTL, they are realized with one or more user-defined clock signal(s)
controlling a module. Thus, a fair comparison between our proposed two-
step approach with that of direct LLM-generated Verilog is difficult due
to contrasting underlying concepts (Cong et al., 2022; AMD, n.d.). So,
we did not include those 62 sequential problems. Remaining problems in

82

Full text available at: https://nowpublishers.com/EDA

3.2. Proposed Software Pipeline for Automated Verilog Generation 83

VerilogEval were related to bug-finding in Verilog codes and text-based
question answers, and are hence unrelated to our scope.

For HLSEval, the problem descriptions from the VerilogEval are
converted into a schema suitable for HLS C++ prompting. A sample for
problem statement xnor is shown in Figure 3.1. It has two parts: 1) the
problem description representing the hardware generation task in simple
English, and, 2) the function description providing a snapshot of the
function signature we are expecting from the LLM. Representing Finite
State Machines (FSMs) and Karnaugh maps (K-maps) into textual
forms was a challenge, and for this, we queried gpt-3.5 turbo (OpenAI,
2024a) as shown in Figure 3.2 and Figure 3.3. We adopted the textual
structure as returned by gpt-3.5 turbo, for further prompting by
LLM.

Figure 3.1: Problem desciption of xnor in HLSEval.

3.2 Proposed Software Pipeline for Automated Verilog Generation

The first stage of the proposed pipeline, as shown in Figure 1.1, consists
of prompting the LLM properly with well-crafted problem statements in
a natural language (English in our case). Figure 3.4 shows an example
of such prompting for the problem fadd (a binary full adder). The
system prompt is concatenated with an “one-shot” example and user
prompt, and sent to the LLM for inference. The one-shot example helps
to address ambiguity within the problem descriptions, particularly when
there is a precise requirement for certain attributes in the LLM response.

Full text available at: https://nowpublishers.com/EDA

84 Proposed Software Pipeline for Automated Verilog Generation

Figure 3.2: gpt-3.5 turbo response for Finite State Machine (FSM) specifications.

Figure 3.3: gpt-3.5 turbo response for Karnaugh map (K-map) specification.

The pragmas introduced for each problem are optional. In our case, we
use it to align the downstream Verilog generated with those generated
by the existing pipeline of Liu et al. (2023) for better comparison.
Figure 3.4 also shows the response produced by LLM, an annotated
HLS-compliant C++ code snippet with the provided function signature,
and correct functionality. Next, the generated HLS C++ code produced
by LLM is converted to Verilog using Vitis HLS (AMD, n.d.). Figure
3.5 shows the generated Verilog for fadd by Vitis HLS, corresponding
to the C++ code in Figure 3.4. In the full adder circuit description, the

Full text available at: https://nowpublishers.com/EDA

3.2. Proposed Software Pipeline for Automated Verilog Generation 85

Figure 3.4: Example of prompting for fadd (full adder) in HLSEval. The logic
description includes a description of the problem in natural language, a function
description, and a sample one-shot input and output definition.

inputs are a, b and cin, and we need to evaluate the outputs cout and
sum. These are expressed as logic functions of two intermediate signals
(for cout), and one intermediate signal and a primary input (for sum).

For a different circuit, the same system prompt and One-shot-
example as mentioned previously can be used. The user would just need

Full text available at: https://nowpublishers.com/EDA

86 Proposed Software Pipeline for Automated Verilog Generation

Figure 3.5: Verilog RTL of fadd generated by Vitis HLS.

to provide a new user prompt with a problem description and functional
description based on the new problem.

3.3 Evaluation Methodology for Proposed Technique

We use the open-source evaluation harness described in Liu et al. (2024b)
to validate the Verilog files generated by our pipeline. It compares simu-
lation results between the generated Verilog, and “golden reference” Ver-
ilog implementations. It uses the open-source Icarus Verilog (Williams,
2024) simulator adapted in a sandbox environment to safely run the
generated Verilog files. We use the popular pass@k metric (Chen et al.,
2021) to measure functional correctness of the generated Verilog RTL,
where a problem is considered solved if any one of k randomly selected
samples pass the unit tests:

Full text available at: https://nowpublishers.com/EDA

3.3. Evaluation Methodology for Proposed Technique 87

pass@k := EProblems

[
1 −

(n−c
k

)
(n

k

)
]

, (3.1)

where we generate n ≥ k samples per problem among which c ≤ n

samples pass testing. In practice, the number of samples n must be
sufficiently large (at least twice the value of k) to produce low-variance
estimates for pass@k.

In the next section, we describe comparative experimental evaluation
results.

Full text available at: https://nowpublishers.com/EDA

4
Experimental Results

For testing, we used four of the best state-of-the-art commercial LLMs,
namely, gpt-3.5 turbo (OpenAI, 2024a) and gpt-4o (OpenAI, 2024c)
from OpenAI, and Claude 3 Haiku (Anthropic, 2024a) and Claude
3.5 Sonnet (Anthropic, 2024b) by Anthropic (the last two were hosted
on Amazon Web Services). We set the parameters to be: top p = 0.95,
temperature = 0.8, and context length = 2048 for all the experiments.
For measuring pass@k = {1, 5, 10} we use (3.1), with n = 20 code
completions for each problem. We used Xilinx (AMD) Vitis HLS for
high level synthesis, and Xilinx (AMD) Vivado for synthesis of the
generated RTL designs targeting the Xilinx Artix-7 FPGA. The entire
flow was automated to a “push-button” mode using custom Python
scripts (for the LLM query and associated steps) and TCL scripts (for
the HLS and logic-synthesis steps). Given the ease of automating the
flow, the proposed methodology is amenable to being integrated with
existing industry-standard VLSI flows.

88

Full text available at: https://nowpublishers.com/EDA

4.1. English to Verilog RTL: Direct Conversion vs. Two-stage Proposed
Software Pipeline 89

4.1 English to Verilog RTL: Direct Conversion vs. Two-stage Pro-
posed Software Pipeline

Table 4.1 illustrates the pass@ rates for the HLSEval tasks using the
various LLMs, and compares both techniques. NL to Verilog refers to
existing technique (Liu et al., 2023), where LLM generates Verilog based
on natural language, whereas NL to Verilog via HLS refers to our
proposed approach where LLM generates HLS-compatible C++ based
on natural language, that is then converted to Verilog. The terminology
pass@1 refers to the probability that one sample is generated, and it
is found to be correct – a limiting case for the pass@k metric with
k = 1. It is computed by evaluating the expected fraction of problems
where the randomly chosen sample passes all unit tests, reflecting the
functional correctness of the generated code when only one sample is
evaluated per problem. Similarly, pass@5 and pass@10 measure the
probabilities that at least one of five or ten randomly selected samples,
respectively, passes all unit tests for a given problem.

These metrics reflect the functional correctness of the generated code
when evaluating up to five or ten samples per problem. From the study
in Liu et al. (2023), more capable and larger LLMs generally result in
better Verilog code generation capability. This observation is consistent
with our results for the four LLMs, both for the NL to Verilog scheme,
as well as the NL to Verilog via HLS scheme. However, we obtained
significant improvement in pass@ values for the proposed NL to
Verilog via HLS software pipeline, compared to the NL to Verilog
technique.

Table 4.2 shows the average percentage overheads incurred (post-
synthesis and routing) by implementations obtained by synthesizing
Verilog RTL generated following our proposed methodology, over the
“golden reference” designs of the VerilogEval dataset (Liu et al., 2023).
From these results, it is clear that overheads for most of the designs are
within acceptable limits, and even better (i.e. negative overhead) for
our proposed methodology. Notably, average power dissipation overhead
was negative for all the LLM models used by us.

Full text available at: https://nowpublishers.com/EDA

90 Experimental Results

Table 4.1: Comparison of different models on HLSEval dataset (average pass@k
values)

Model NL to Verilog NL to Verilog via HLS
(This Work)

pass@1 pass@5 pass@10 pass@1 pass@5 pass@10
gpt-3.5 turbo 0.36 0.53 0.56 0.60 0.66 0.68

gpt-4o 0.67 0.75 0.77 0.80 0.83 0.84
Claude 3 Haiku 0.50 0.63 0.66 0.64 0.72 0.74

Claude 3.5 Sonnet 0.70 0.80 0.83 0.86 0.87 0.87

Table 4.2: Comparison of different models on HLSEval dataset (average overhead
values, functionally correct Verilog only)

Model Average Overhead (%)
Hardware (# LUTs) Power Delay

gpt-3.5 turbo 1.55 -0.30 0.20
gpt-4o 0.80 -0.45 -0.05

Claude 3 Haiku 1.22 -0.15 0.15
Claude 3.5 Sonnet 0.85 -0.10 -0.10

4.2 Current Limitations and Discussions

In automated logic design from natural language, we found that realizing
circuits corresponding to K-map problems, such as those in Figure 4.1,
is a key challenge. Even though we prompt the LLM with the schema
provided in Figure 3.3, none of the four LLMs generated correct code.
By analyzing the generated (incorrect) Verilog RTL codes, we found
that the LLMs could not minimize the K-maps, or correctly identify
the minterms or maxterms. This could be a future work domain for
LLMs to solve, by fine-tuning with more data or advanced prompting
techniques. However, in our opinion, the inability of our methodology
to handle Karnaugh maps (K-maps) is not a major shortcoming of our
technique, since K-maps are usually difficult to employ to minimize
logic functions with more than four variables. This leaves K-maps to
be useful instructional tools, but little more than that. Also, equivalent
textual descriptions (e.g. functional descriptions or truth tables) exist
as alternatives for K-maps, which can be used in our methodology.

Full text available at: https://nowpublishers.com/EDA

4.2. Current Limitations and Discussions 91

Figure 4.1: An example Karnaugh Map (K-map) problem.

The scope of the current work is relatively limited because of its
focus on combinational circuits. Sequential circuits come in different
variants (e.g. controllers and finite state machines, instruction execution
pipelines and pipelined datapaths, registers and clocked buffers, etc.). In
particular, pipelined datapath circuit hardware architectures can vary
widely depending on whether the focus is on throughput or on hardware
resource footprint. Given a C++ code segment to describe an algorithm
at a substantially higher abstraction level, its equivalent sequential
circuit implementation during HLS requires substantial design-space
exploration, based on input user directives and constraints. In our
proposed methodology, we found it challenging to input these hardware
architectural specifications while querying the LLM to generate C++,
because of the gap in the level of abstraction. Our current research is
focused on overcoming this challenge.

Our usage of ready-made pre-trained LLM without any fine-tuning
may seem to be a disadvantage. However, fine-tuning requires an open-
source LLM, availability of sufficient computational resources, and the
expense of substantial computational effort. Unfortunately, currently
we do not have access to such extensive computational resources, which
prevented us from experimenting with fine-tuning an open-source LLM
model. Also, given that even current pre-trained LLMs demonstrate
extremely good capabilities for automatic C++ code generation (the
main observation on which the current work is based), we envisage little
improvement over the results that we have obtained.

Full text available at: https://nowpublishers.com/EDA

5
Conclusions

Researchers have applied LLMs to generate RTL descriptions for digital
hardware from hardware specifications written in natural language.
This work proposes an alternative as a software pipeline for automatic
hardware logic design, where LLMs are prompted to produce HLS-
compatible C++ code, followed by HLS of the generated C++ code
to Verilog RTL. Detailed experiments on a standard benchmark suite
demonstrated that Verilog code generation through the proposed soft-
ware pipeline achieves much higher functional correctness rate, at small
resource, delay and power overheads. Our future research efforts will be
directed towards exploring the ability of the proposed methodology for
sequential circuits, and to improve security, power efficiency, thermal
management and other important aspects of VLSI system design.

92

Full text available at: https://nowpublishers.com/EDA

References

Ahmad, B., S. Thakur, B. Tan, R. Karri, and H. Pearce. (2024). “On
Hardware Security Bug Code Fixes by Prompting Large Language
Models”. IEEE Transactions on Information Forensics and Security.
19: 4043–4057. doi: 10.1109/TIFS.2024.3374558.

AMD. “Vitis HLS”. url: https://docs.amd.com/r/en-US/ug1399-vitis-
hls.

Anthropic. (2024a). “Claude 3 Haiku”. url: https://www.anthropic.
com/news/claude-3-haiku.

Anthropic. (2024b). “Claude 3.5 Sonnet”. url: https://www.anthropic.
com/news/claude-3-5-sonnet.

Blocklove, J. et al. (2023). “Chip-Chat: Challenges and Opportuni-
ties in Conversational Hardware Design”. In: 2023 ACM/IEEE 5th
Workshop on Machine Learning for CAD (MLCAD). IEEE.

Blocklove, J. et al. (2024). “Evaluating LLMs for Hardware Design and
Test”. url: https://arxiv.org/abs/2405.02326.

Chang, K. et al. (2023). “ChipGPT: How far are we from natural
language hardware design”. url: https://arxiv.org/abs/2305.14019.

Chang, K. et al. (2024). “Data is all you need: Finetuning LLMs for Chip
Design via an Automated design-data augmentation framework”.
url: https://arxiv.org/abs/2403.11202.

Chen, M. et al. (2021). “Evaluating Large Language Models Trained on
Code”. url: https://arxiv.org/abs/2107.03374.

93

Full text available at: https://nowpublishers.com/EDA

94 References

Collini, L., S. Garg, and R. Karri. (2024). “C2HLSC: Can LLMs Bridge
the Software-to-Hardware Design Gap?” url: https://arxiv.org/
abs/2406.09233.

Cong, J. et al. (2011). “High-Level Synthesis for FPGAs: From Pro-
totyping to Deployment”. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 30(4): 473–491.

Cong, J. et al. (2022). “FPGA HLS Today: Successes, Challenges, and
Opportunities”. ACM Transactions on Reconfigurable Technology
and Systems. 15(4).

Dehaerne, E. et al. (2023). “A Deep Learning Framework for Verilog
Autocompletion Towards Design and Verification Automation”. url:
https://arxiv.org/abs/2304.13840.

DeLorenzo, M. et al. (2024a). “Make Every Move Count: LLM-based
High-Quality RTL Code Generation Using MCTS”. url: https :
//arxiv.org/abs/2402.03289.

DeLorenzo, M., V. Gohil, and J. Rajendran. (2024b). “CreativEval:
Evaluating Creativity of LLM-Based Hardware Code Generation”.
url: https://arxiv.org/abs/2404.08806.

Ferrandi, F. et al. (2021). “Bambu: an Open-Source Research Framework
for the High-Level Synthesis of Complex Applications”. In: 58th
ACM/IEEE Design Automation Conference (DAC). IEEE. 1327–
1330.

Fu, Y. et al. (2023). “GPT4AIGChip: Towards Next-Generation AI
Accelerator Design Automation via Large Language Models”. In:
IEEE/ACM International Conference on Computer Aided Design
(ICCAD). 1–9.

Kande, R. et al. (2024). “(Security) Assertions by Large Language
Models”. IEEE Transactions on Information Forensics and Security.
19: 4374–4389. doi: 10.1109/TIFS.2024.3372809.

Liu, M. et al. (2023). “VerilogEval: Evaluating Large Language Models
for Verilog Code Generation”. In: 2023 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD).

Liu, M. et al. (2024a). “ChipNeMo: Domain-Adapted LLMs for Chip
Design”. url: https://arxiv.org/abs/2311.00176.

Liu, M. et al. (2024b). “VerilogEval”. url: https://github.com/NVlabs/
verilog-eval.

Full text available at: https://nowpublishers.com/EDA

References 95

Meng, X. et al. (2023). “Unlocking Hardware Security Assurance: The
Potential of LLMs”. url: https://arxiv.org/abs/2308.11042.

Mukherjee, R. (2024). “HLSEval”. url: https://github.com/rijoym/
HLSEval.

Nijkamp, E. et al. (2023). “CodeGen: An Open Large Language Model
for Code with Multi-Turn Program Synthesis”. url: https://arxiv.
org/abs/2203.13474.

OpenAI. (2024a). “gpt-3.5”. url: https://openai.com/index/chatgpt/.
OpenAI. (2024b). “gpt-4”. url: https://openai.com/index/gpt- 4-

research/.
OpenAI. (2024c). “gpt-4o”. url: https://openai.com/index/hello-gpt-

4o/.
Orenes-Vera, M., M. Martonosi, and D. Wentzlaff. (2023). “Using LLMs

to Facilitate Formal Verification of RTL”. url: https://arxiv.org/
abs/2309.09437.

Paria, S., A. Dasgupta, and S. Bhunia. (2023). “DIVAS: An LLM-based
End-to-End Framework for SoC Security Analysis and Policy-based
Protection”. url: https://arxiv.org/abs/2308.06932.

Pearce, H., B. Tan, and R. Karri. (2020). “DAVE: Deriving Automati-
cally Verilog from English”. In: Proceedings of the 2020 ACM/IEEE
Workshop on Machine Learning for CAD. MLCAD ’20. Virtual
Event, Iceland: Association for Computing Machinery. 27–32.

Qiu, R. et al. (2024). “AutoBench: Automatic Testbench Generation
and Evaluation Using LLMs for HDL Design”. url: https://arxiv.
org/abs/2407.03891.

Rozière, B. et al. (2024). “Code Llama: Open Foundation Models for
Code”. url: https://arxiv.org/abs/2308.12950.

Thakur, S. et al. (2024a). “VeriGen: A Large Language Model for Verilog
Code Generation”. ACM Trans. Des. Autom. Electron. Syst. 29(3).

Thakur, S., J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri.
(2024b). “AutoChip: Automating HDL Generation Using LLM Feed-
back”. url: https://arxiv.org/abs/2311.04887.

Touvron, H. et al. (2023). “Llama 2: Open Foundation and Fine-Tuned
Chat Models”. url: https://arxiv.org/abs/2307.09288.

Williams, S. (2024). “The ICARUS Verilog Compilation System”. url:
https://github.com/steveicarus/iverilog.

Full text available at: https://nowpublishers.com/EDA

96 References

Wong, H. (2024). “HDLBits”. url: https://hdlbits.01xz.net/wiki/
Problem_sets.

Wu, H. et al. (2024). “ChatEDA: A Large Language Model Powered
Autonomous Agent for EDA”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems: 1–1. doi: 10.1109/
TCAD.2024.3383347.

Full text available at: https://nowpublishers.com/EDA

Editor Biographies

Imed Ben Dhaou (S’97-M’02, SM’2011) received his Ph.D. from the
Royal Institute of Technology, Sweden, and is currently a Full Pro-
fessor of Embedded Systems for IoT at the Department of Computer
Science, Dar Al-Hekma University, and a Docent at the Department
of Computing, University of Turku, Finland. He has authored over
120 publications, including journal articles, conference papers, book
chapters, and technical reports, with research interests in embedded
systems, IoT, and related technologies. Recognized among the top 2%
of scientists worldwide by Stanford and Elsevier, he has received several
awards, such as the Best Paper Award at the 1997 Finnish Symposium
on Signal Processing, a DAC travel grant (2000), a Publication Award
from Qassim University, the Dr. Hussein Mohammed Al-Sayyed Award
for Research, and the Community Service Award from Dar Al-Hekma
University. A member of Sigma Xi, he has served as an editor for Micro-
electronics Journal (Elsevier) since 2014 and as a guest editor for ISI
journals, including Electronics, Journal of Cloud Computing, Analogue
Integrated Circuits and Signal Processing, and Microprocessors and
Microsystems, alongside chairing technical committees at various con-
ferences. He is also the editor of the upcoming book IoT-Enabled DC
Microgrids: Architecture, Algorithms, Applications, and Technologies,
to be published by CRC Press in 2025.

97

Full text available at: https://nowpublishers.com/EDA

98

Hannu Tenhunen, Prof.Em. Dr.h.c. Prof.h.c., initiated IC and
system-on-chip activities at Tampere University in the late 1980s and
early 1990s. He then moved to KTH, Sweden, as a chair professor
of electronic system design, focusing on electronic system design and
Network-on-Chip methodologies. He has successfully launched interna-
tional master programs in Tampere (with a focus on DSP and DSP-
ASIC) and at KTH (with a focus on System-on-Chip). Additionally, he
established four double degree programs with elite Chinese universities,
approved by the Chinese Ministry of Education. As the director of the
Turku Center of Computer Science, he led a doctoral school with around
110 PhD students. He has also served as the European-level education
director for the European Institute of Innovation and Technology (EIT)
Digital and as an invited part-time professor of smart electronics at
the University of Turku. A member of the Finnish Academy of En-
gineering Sciences, he is also a part-time distinguished professor at
Fudan University, focusing on neuromorphic computing and innovative
engineering education, particularly with a Global South perspective.
He has published over 990 journal and conference papers, with more
than 20,000 citations, and has a Google Scholar H-index of 62. His
current research interests include AI, neural network accelerators, and
neuromorphic computing.

Ahmed Abdelgawad received his M.S. and a Ph.D. degree in
Computer Engineering from the University of Louisiana at Lafayette in
2007 and 2011, and subsequently joined IBM as a Design Aids & Au-
tomation Engineering Professional at the Semiconductor Research and
Development Center. In Fall 2012 he joined Central Michigan University
as a Computer Engineering Assistant Professor. In Fall 2022, Dr. Ab-
delgawad was promoted to the rank of Professor. He is a senior member
of IEEE. His areas of expertise are Internet of Things (IoT), distributed
computing for Wireless Sensor Network (WSN), Structural Health Mon-
itoring (SHM), data fusion techniques for WSN, low power embedded
system, digital signal processing, Robotics, RFID, Localization, VLSI,
and FPGA design. He has published two books and more than 130
articles in related journals and conferences. Dr. Abdelgawad served as
a reviewer for several journals and conferences, including the IEEE IoT

Full text available at: https://nowpublishers.com/EDA

99

Journal, IEEE Communications Magazine, IEEE Transactions on VLSI,
and IEEE Transactions on I&M, Springer, Elsevier, IEEE WF-IoT,
IEEE ISCAS, IEEE SAS, and IEEE MWSCAS. Dr. Abdelgawad served
as the general chair of the IEEE International Conference on Artificial
Intelligence, Blockchain, and Internet of Things, (AIBThings2023), the
3rd IEEE International Conference on Computing and Machine Intel-
ligence (ICMI2024), and the International Conference on Intelligent
Systems, Blockchain, and Communication Technologies (ISBCom2024).
He served in the organizing committees of IEEE WF-IoT, IEEE ISCAS,
IEEE ICIP, IEEE SiPS, IEEE MWSCAS, and GIoTS. In addition,
he taught many short IoT courses in different countries. He was the
keynote speaker for many international conferences and conducted many
webinars. He is currently the IEEE Northeast Michigan section chair
and IEEE SPS Internet of Things (IoT) SIG Member. In the last few
years, Dr. Abdelgawad was listed in the world’s top 2% of scientists by
Stanford University, USA. In addition, Dr. Abdelgawad served as a PI
and Co-PI for several funded grants from the NSF.

Sree Ranjani Rajendran is currently working as an Assistant
Professor in the Department of Electrical Engineering and Computer
Science at Florida Atlantic University, Boca Raton, Florida, US. Pre-
viously she was a postdoctoral associate with the Florida Institute for
Cybersecurity Research (FICS Research), in the Department of Electri-
cal and Computer Engineering, University of Florida, Gainesville. She
received her Ph.D. in Electronics and Communication Engineering from
Amrita Vishwa Vidyapeetham, India. She also worked as a postdoctoral
fellow in the Computer Science Department at the Indian Institute of
Technology Madras. She is a passionate and curious researcher pursuing
knowledge and expertise in the broader domain of Hardware Security,
with a specific interest in SoC Verification and developing CAD frame-
works for security (design-for-security). She has 10+ years of professional
experience in both research and teaching at universities. She authored 40
research articles published in refereed conference proceedings, renowned
journal publications, and book chapters. Her research interests include
hardware security verification and validation of System-on-Chips. Her
research has been published in premier ACM/IEEE journals and confer-

Full text available at: https://nowpublishers.com/EDA

100

ences, including IEEE Transactions on Emerging Topics in Computing,
Transactions on Information Forensics & Security (TIFS), Journal of
Cryptographic Engineering, ACM Workshop on Attacks and Solutions
in Hardware Security, International Conference on VLSI Design & The
International Conference on Embedded Design, and Design Automation
and Test in Europe (DATE). She is an IEEE and The Test Technology
Technical Community (TTTC) member. Her research has been awarded
in the IEEE Young Women Research Grant Award, the 28th IEEE Asian
Test Symposium (ATS), 2019, and the Best Technical Research Award
in the Hardware.io Poster Competition, 2020. In addition, her work has
been nominated for the Best Paper poster award at the GOMATECH
2023 conference.

Rajat Subhra Chakraborty is currently Associate Dean of the
Faculty of Engineering and Architecture at IIT Kharagpur, and Professor
at the Computer Science and Engineering Department of IIT Kharagpur.
He received his Ph.D. from Case Western Reserve University (U.S.A.)
and B.E. from Jadavpur University. He has professional experience of
working at Intel (Bangalore, India), National Semiconductor (Bangalore,
India) and Advanced Micro Devices (AMD) (Santa Clara, USA). His
research interests include Hardware Security, VLSI Design and Design
Automation, Digital Content Protection and Digital Image Forensics.
He holds 2 Granted U.S. patents, 3 granted Indian patents, and has
co-authored 6 books, 10 book chapters, and over 140 publications
in international journals and conferences. His work has received over
7500 citations to date and has won 2 Best Paper awards. He has
received several prestigious national and international awards such as
IIT Kharagpur Outstanding Faculty Award (2018), IEI Young Engineers
Award (2016), IBM Shared University Research (SUR) Award (2015),
Royal Academy of Engineering (U.K.) RECI Fellowship (2014) and IBM
Faculty Award (2012). He is currently an Associate Editor of IEEE
TCAD journal and has previously been an Associate Editor of IEEE
TMSCS journal. Prof. Chakraborty is a Senior Member of IEEE and a
Senior Member of ACM. He currently holds the position of Vice-chair
(2024), and has previously been the Secretary (2023), Treasurer (2022)
and Assistant Secretary (2021), of the IEEE Kharagpur Section (R10).

Full text available at: https://nowpublishers.com/EDA

