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ABSTRACT

This monograph presents a possible research agenda for analytics
and control of a deep decarbonized electric grid with pervasive
data, interactive consumers, and power electronics interfaces. It
focuses on new lines of investigation that are driven by new
technological, economical, and policy factors. Conventional mon-
itoring and control of the power grid heavily depends upon the
physical principles of the underlying engineering systems. There
is however increasing complexity of the physical models com-
pounded by a lack of precise knowledge of their parameters, as
well as new uncertainties arising from behavioral, economic, and
environmental aspects. On the other hand there is increasing avail-
ability of sensory data in the engineering and economic operations
and it becomes attractive to leverage such data to model, monitor,
analyze, and potentially close control loops over data.

The increasing deployment of large numbers of Phasor Measure-
ment Units (PMUs) provides the potential for providing timely
and actionable information about the transmission system. Chap-
ter 2 examines a framework for drastically reducing the dimen-
sionality of the high volume streaming data, while preserving its
salient features for purposes such as event detection, classification
and visualization, and potentially even to close the loop around

Le Xie, Meng Wu and P. R. Kumar (2018), “Architecture and Economics for Grid Operations
3.0”, Foundations and Trends R© in Electric Energy Systems: Vol. 2, No. 3, pp 198–323. DOI:
10.1561/3100000007.
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the data. Driven by the deepening penetration of renewable en-
ergy resources at both transmission and distribution levels, there
is an increasing need for utilizing power electronics interfaces
as intelligent devices to benefit the overall grid. Chapter 3 of-
fers a conceptual design and concrete examples of a qualitatively
different power grid stabilization mechanism in the context of
networked microgrids. Another major paradigm change in the
operation of the grid is that demand will have to be engaged much
more to balance the partially variable renewable energy supply,
which in turn requires greater understanding of human behavior
to economic variables such as price. Chapter 4 presents a possible
formulation to model the behavior of individual consumers in
future grid operations. Chapter 5 presents a proposed solution
to the problem of detecting attacks on the sensor measurements
in the grid, which has become a greater concern with increasing
reliance on sensor data transported over communication networks,
with both sensors and networks liable to malicious cyber-attacks.

The goal of this monograph is to design clean, affordable, reliable,
secure, and efficient electricity services. and to expand the horizon
of the state of the research in the electric energy systems, at a
critical time that is seeing the emergence of Grid 3.0. It is by no
means complete and aims to stimulate research by next generation
researchers.
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1
Introduction

The electric utility industry designed, built, and operates the largest and most
complex engineered system on the planet, and gave it a level of reliability
that is unmatched by any other manufacturing industry (National Academy
of Engineering, 2015). While constantly-evolving, it can be characterized
roughly by three major milestones (NIST, 2015).

As the legacy grid of the 20th century,“Grid 1.0” can be thought of as
interconnections of the bulk electric power system. Industrialized economies,
and the developing nations, have gone through this process. The major tech-
nologies introduced during this generation set the foundation of the modern
electric energy systems. The key features of electricity services in this gen-
eration can be summarized as follows: (1) the electricity generation centers
are located far away from the load centers; (2) electricity is delivered from the
generation centers to the load centers through alternating-current (AC) long-
distance transmission systems; (3) the price of electricity is mostly determined
by government policies, with no market competition involved.

In the past 10 to 15 years, “Grid 2.0” saw the emergence of industry
deregulation and attempted to introduce market-based solutions to wholesale
electric energy systems. Most industrialized economies have gone through
this generation and adopted various electricity market policies. The price of

3
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4 Introduction

electricity is determined by a competitive electricity market rather than fixed
government policies. This could benefit consumers by lowering electricity
prices, while offering the public more choices on the types of paid services.

“Grid 3.0” refers to what is happening now and is likely to proliferate
in the next few decades: a smarter grid that integrates many more diverse
resources and decision makers through a more flexible delivery system, with
the overall objective of achieving cleaner, more affordable, and more reliable
electricity services. The power grid is undergoing profound changes as a key
enabler of sustainable societal and economic development in the 21st century.
Fossil fuel based generation is being rapidly replaced by renewable energy
resources. In the U.S., more than 16 GW of coal generation retired from the
fleet in 2015 alone, while in the same year more than 9 GW of wind and
solar power was integrated to the grid. A key research question during this
paradigm change is that many objectives of the operation do not align well
in a renewable-dominant power system. One example is that the objective
of reducing greenhouse gas emissions by replacing conventional fossil fuel
generation with renewables can have an adverse impact on grid reliability and
efficiency. For instance, in California the high amount of photovoltaic (PV)
penetration has led to the infamous “duck curve” where to maintain power
balance there is a substantial need for fast ramping fossil fuel generation,
which in turn reduces the environmental benefits of renewables.

In order to fully realize the premise of great individual pieces of technology
(such as advanced power electronics control of PV panels and new sensory
data), we are taking a path that will integrate the grid with (i) massive amount
of streaming data; (ii) pervasive power electronics interfaces; and (iii) human-
in-the-loop economics. We define this vision as “Grid 3.0”. The research
agenda is how to monitor and control a deep decarbonized grid with the above
three driving forces.

1.1 Driving factors of the Grid 3.0 transition

A number of technological, economical, and policy drivers are behind the
“Grid 3.0” transition, as illustrated in Figure 1.1.

On the technological front, much higher levels of modeling and opera-
tional uncertainties arise due to the drastic change of the generation portfolio.
Some 200 GW of renewable variable energy capacity contributes to about 20%

Full text available at: http://dx.doi.org/10.1561/3100000007



1.1. Driving factors of the Grid 3.0 transition 5

Figure 1.1: Driving factors of the Grid 3.0 transition.

of the entire generation capacity in the U.S., while 16 GW of coal generation
retired in 2015 alone with more to come in the next couple of decades (US
Energy Information Administration, 2017). The reliability and security 1 of
the grid will need to be carefully engineered for such a change of generation
portfolio. The conventional boundary between transmission and distribution is
also rendered less clear due to the fact that many new resources are directly
integrated at the distribution levels. For example, in the European Union,
more than 90% of the newly installed solar PV is integrated at lower voltage
distribution systems in 2016 (European Renewable Energy News, 2017). The
increasing level of human-in-the-loop decision making from demand response
strategies further compounds the modeling complexity and uncertainty. This
potentially shifts the focus of research from primarily addressing optimiza-
tion of the high voltage network to utilizing and controlling the distribution
systems.

The above significant change in the generation resource mix also raises
challenges to the resilience of the future electric grid. As more intermittent
and uncontrollable renewable resources are being connected to the grid, and
as extreme weather conditions happen more frequently, future electric grids
are being threatened by grid resilience and fuel security issues. To resolve the
resilience challenges, Federal Energy Regulatory Commission (FERC) issued
an order in January 2018 (FERC, 2018) and sought for comments on better
definition of grid resilience, methods for assessing and measuring resilience
risks, as well as potential mitigation measures of resilience problems. Besides,

1Power system security is the ability to maintain the flow of electricity from the generators
to the customers, especially under disturbed conditions.
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6 Introduction

for systems with deregulated electricity markets, the proper market mechanism
is needed for addressing the grid resilience challenges.

Enabling technologies also can potentially lead to a fundamental re-
thinking of how to model, analyze, and control the grid. Over the past decade,
billions of dollars have been invested in deploying tens of millions of sensors
such as smart meters and thousands of PMUs in the electric grid. This large
scale deployment has enabled the collection of a massive amount of data. The
payback from this huge investment in data infrastructure is anticipated to be
(a) more flexibility from demand response participation for smart aggregators;
and (b) improved real-time situational awareness for the grid operators. The
streaming data in the smart grid thereby provides unprecedented opportunities
to transform the operation of the grid.

Another key technology enabler during the Grid 3.0 transition is poten-
tially pervasive power electronics-based interfaces with renewable generations
and price-responsive demand/loads. By leveraging highly controllable power
electronics (PE) interfaces – voltage source inverters (VSIs), and advanced
measurement technology – PMUs, novel control strategies can be applied,
through which desirable power sharing behavior among coupled microgrids
can be achieved. These PE interfaces can change the interface dynamics
between microgrids and the bulk transmission grid in several ways:

• PE interfaces can change grid operations from simulation-based opera-
tions to design-based operations.

• PE interfaces can change distribution system loss minimization and
reactive power management from a top-down centralized model-based
approach to bottom-up adaptive approach.

On the economics front, a key driver is the potential collapse of the conven-
tional commodity business model for the utilities. A prime need for utilities is
to exploit new business models for electric distribution systems. Electricity
sales by utilities in many areas are declining for a variety of reasons, including
increased efficiency and conservation, and distributed generation. For utilities
to remain viable and ensure continued reliability of power delivery, new busi-
ness models that incentivize distribution systems to invest in capital purchases
and operations are needed.

Full text available at: http://dx.doi.org/10.1561/3100000007



1.2. Grid 3.0 research agenda overview 7

Coupled with technological and economic drivers, a third dimension of
policy driver around the globe is the movement towards low carbon energy
systems (Chu and Majumdar, 2012; United Nations, 2015). Driven by this
agenda, many more renewable energy resources are being integrated into the
system. Therefore, there is an increasing need for leveraging flexibility from
the demand side to partially balance the intermittent supply.

1.2 Grid 3.0 research agenda overview

The objective of this monograph is to present the research problems in the new
era of Grid 3.0, as well as possible research opportunities that could pave the
way for such a transition. The key is to leverage the pervasive data, control,
communication, and computation capabilities, that are becoming available at
the end-user household interface, and to provide an engineering and economics
model and solution for them to provide, rather than only consume a variety
of services that are critical to the reliability of the grid operation. Figure 1.2
describes the authors’ view of a possible research agenda.

Figure 1.2: Overview of a possible Grid 3.0 research agenda.

Full text available at: http://dx.doi.org/10.1561/3100000007



8 Introduction

1.2.1 Closing the loop around data

Operation in the power grid involves with a large amount of streaming data.
The proliferation of new sensors such as PMUs and smart meters provides
much more data than conventional operation would have been able to manage.
On the other hand, the increasing complexity of the grid requires the operators
to make quicker and more adaptive decisions in near real-time. Data science
methodologies including data fitting, data mining, machine learning, system
identification, and adaptive control offer great opportunities in the new era of
operating the grid. In this monograph, we focus on the following data science
applications for energy system planning and operations:

• Data-driven situational awareness via dimensionality reduction.

• Data-driven low-quality data detection for PMU systems.

• Power plant model validation using PMU measurements.

In Chapter 2, the problems of utilizing streaming PMU data’s low dimen-
sionality and sparsity to conduct early anomaly detection, data quality filtering,
and power plant model validation are described.

1.2.2 Modeling and control the grid with power electronics inter-
faces

Most distributed and renewable energy resources interact with the AC grid
through power electronics interfaces. While many efforts have been devoted to
this endeavor, the full potential of a provably reliable, “plug-and-play” distri-
bution grid that supports cost-effective integration of sustainable resources has
not yet been realized. Foreseeing that disruptive, low-cost sensing (e.g., micro-
PMUs) and power electronics (e.g., voltage source inverters) technologies are
on the horizon, we propose a clean slate approach to rethinking the control
architecture of the distribution grid. In sharp contrast with today’s paradigm
in which the distribution grid serves as a passive, one-way, tree-structured
energy delivery system to end users, we envision a future distribution grid as
an open-access, active platform that supports multiple coupled and operated
microgrids. In short, each microgrid can serve as the intelligent periphery of
a smart distribution grid of the future (Bakken et al., 2011). In Chapter 3,

Full text available at: http://dx.doi.org/10.1561/3100000007



1.2. Grid 3.0 research agenda overview 9

we describe such a possible framework with voltage angle droop control of
power electronic interfaces for guaranteed dynamic stability in microgrid
interconnections.

1.2.3 Grid interaction with human-in-the-loop

The operation of electric power systems has traditionally adopted the philos-
ophy of controlling generation to match the stochastic demand. As a result,
dynamic modeling and control of power systems has been primarily focused
on the generator side. Governor-turbine-generator (GTG) modules for various
fossil fuels are modeled from first principles, resulting in a mature modeling
taxonomy with well engrained notions such as droop characteristics and ramp
rates. More recently, there has also been work done on the modeling of renew-
able energy sources. Wind farms have been modeled as stochastic dynamic
systems controlled by doubly-fed induction generators. During the era where
the prevailing paradigm was that supply follows demand, this modeling of the
supply side was sufficient to develop a coherent resource allocation framework
for electric power systems. However, with the advent of demand response
where demand too can be viewed as a controllable entity, it has become imper-
ative to symmetrically develop models for analyzing demand response too as
a dynamical system with well defined inputs and outputs.

The central challenge of modeling demand response is that human be-
havior is involved in the decision making process. In Chapter 4 we outline
a possible framework at both wholesale and retail levels to modeling grid
interactions with energy consumers. At the wholesale level, we present a
dynamical systems perspective to modeling price responsive demand. At the
retail level, we present an empirical exercise in engaging end users in coupon
incentive-based demand response.

1.2.4 Detecting cyber-attacks on sensor measurements

The introduction of more sensors to monitor the grid state, and the increasing
utilization of networks to transport the sensed data, permit better operation of
the grid. However, at the same time, they also increase the vulnerability of
the grid to cyber-attacks on sensors and networks. Indeed this has become a
major concern after reports of several attacks on industrial control systems
and infrastructure.

Full text available at: http://dx.doi.org/10.1561/3100000007



10 Introduction

In Chapter 5, we present a method for detecting cyber-attacks that is
based on active injections of “watermarks” into the grid, and testing whether
information flows carry the right transformations of these watermarks. This
provides a general purpose method for detecting attacks in “cyber-physical
systems.” We provide an analysis of this method and report on how it performs
in a simulation study in defending against attacks on Automatic Generation
Control.

1.3 Monograph organization

The rest of this monograph is organized as follows: Chapter 2 discusses
the possible ecosystem for closing the loop around data-driven technologies
in electric energy system planning and operations; Chapter 3 proposes the
possible power electronics applications for enhancing the end user experience.
Chapter 4 presents a future modeling framework for improving demand-side
economic efficiency. Chapter 5 presents an active method for detecting cyber-
attacks on sensor information in the grid. Chapter 6 provides concluding
remarks.

Full text available at: http://dx.doi.org/10.1561/3100000007
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