The Role of Power Electronics in Modern Energy System Integration
Other titles in Foundations and Trends® in Electric Energy Systems

Sustainable Transportation with Electric Vehicles
Fanxin Kong and Xue Liu
ISBN: 978-1-68083-388-1

Unit Commitment in Electric Energy Systems
Miguel F. Anjos and Antonio J. Conejo
ISBN: 978-1-68083-370-6

Reliability Standards for the Operation and Planning of Future Electricity Networks
Goran Strbac, Daniel Kirschen and Rodrigo Moreno

Toward a Unified Modeling and Control for Sustainable and Resilient Electric Energy Systems
Marija D. Ilic
The Role of Power Electronics in Modern Energy System Integration

Saeed Peyghami
Aalborg University
sap@energy.aau.dk

Subham Sahoo
Aalborg University
sssa@energy.aau.dk

Huai Wang
Aalborg University
hwa@energy.aau.dk

Xiongfei Wang
Aalborg University
xwa@energy.aau.dk

Frede Blaabjerg
Aalborg University
fbl@energy.aau.dk
Editor-in-Chief

Marija D. Ilić
MIT and Carnegie Mellon University
United States

Editors

David Hill
University of Hong Kong and University of Sydney

Daniel Kirschen
University of Washington

J. Zico Kolter
Carnegie Mellon University

Chao Lu
Tsinghua University

Steven Low
California Institute of Technology

Ram Rajagopalan
Stanford University

Lou van der Sluis
TU Delft

Goran Strbac
Imperial College London

Robert J. Thomas
Cornell University

David Tse
University of California, Berkeley

Le Xie
Texas A&M University
Editorial Scope

Topics

Foundations and Trends® in Electric Energy Systems publishes survey and tutorial articles in the following topics:

- Advances in power dispatch
- Demand-side and grid scale data analytics
- Design and optimization of electric services
- Distributed control and optimization of distribution networks
- Distributed sensing for the grid
- Distribution systems
- Fault location and service restoration
- Integration of physics-based and data-driven modeling of future electric energy systems
- Integration of Power electronics, Networked FACTS
- Integration of renewable energy sources
- Interdependence of power system operations and planning and the electricity markets
- Microgrids
- Modern grid architecture
- Power system analysis and computing
- Power system dynamics
- Power system operation
- Power system planning
- Power system reliability
- Power system transients
- Security and privacy
- Stability and control for the whole multi-layer (granulated) network with new load models (to include storage, DR, EVs) and new generation
- System protection and control
- The new stability guidelines and control structures for supporting high penetration of renewables (>50%)
- Uncertainty quantification for the grid
- System impacts of HVDC

Information for Librarians

Foundations and Trends® in Electric Energy Systems, 2022, Volume 5, 4 issues. ISSN paper version 2332-6557. ISSN online version 2332-6565. Also available as a combined paper and online subscription.
Contents

1 Introduction .. 2

2 Structure of Modern Power Systems 5

2.1 Power System Engineering 12

3 Electrical Energy Conversion 17

3.1 Thermal Power Plants 17

3.2 Wind Power Generation Technology 20

3.3 PV Power Generation Technology 23

3.4 Energy Storage System 27

3.5 Power to X (P2X) 29

4 Basic Power Converters for Grid Applications 33

5 Converter Control Structures 38

5.1 Inner Current Controllers 39

5.2 Outer Loop Controllers 40

5.3 Grid-Forming and Grid-Following Topologies 41

5.4 Power Electronic-Based Power System Operation ... 42

6 Power Electronics-Dominated Power System Reliability . 46

6.1 Modern Power System Reliability Assessment ... 48

6.2 Power Converters Availability 53
7 Power Electronics-Dominated Power System Challenges 55
 7.1 Renewable Energies Proliferation Challenges 56
 7.2 Challenges Induced by Power Electronics 58
 7.3 Reliability Enhancement Strategies . 61

8 Summary 63

References 64
The Role of Power Electronics in Modern Energy System Integration

Saeed Peyghami, Subham Sahoo, Huai Wang, Xiongfei Wang and Frede Blaabjerg

Department of AAU Energy, Aalborg University, Denmark; sap@energy.aau.dk, sssa@energy.aau.dk, hwa@energy.aau.dk, xwa@energy.aau.dk, fbl@energy.aau.dk

ABSTRACT

This monograph will discuss different aspects of power electronics in modern energy systems. The transition from conventional, centralized power systems with large-scale generations to modern, deregulated systems with distributed generations is discussed. Furthermore, the function of some dominant green energy generation technologies based on power electronics is explained. Moreover, the fundamentals of the control and operation of modern systems with power electronics-based generations are presented in this monograph. The major technical challenges that are deteriorating the overall system performance and reliability are addressed and feasible solutions are explained.

Keywords: Power system; energy system; power electronics; power converter; energy conversion; reliability; stability; energy storage; power-to-x; power to gas; control; planning; operation.

©2022 S. Peyghami et al.
Decarbonization is the key to move toward climate neutrality and electrification plays a dominant role in making a greener society [38]. Modern society is becoming more and more dependent on electricity. Interconnections among various sectors, e.g., heating/cooling, transportation, water supplies, and traffic controls are doable with electric power. This curtails/eliminates the carbon footprint in different sectors. Furthermore, the supply chain of electricity from generation down to distribution also needs to be greener. This has been started with renewable generations many years ago to produce clean energy instead of using carbon-based fuels. Today, the renewable technologies are quite mature and the contribution of green energy generation is remarkable, as shown in Figure 1.1.

Technically, moving toward renewable generations needs fundamental changes in power system structures both in physical and control/operation domains. This is due to the fact that (1) the capacity of renewable generation units is very small compared to the traditional power plants, and (2) they are integrated and controlled with power electronic converters. These factors induce major technical challenges to the more or full green power systems. Less flexibility in power control,
lower inertia, fast response, and need for communications are some of the major issues introduced by renewable generations. These challenges can affect system reliability and performance, thus introducing socio-economic issues. As the latest example, the Texas 2021 power crises in the state of Texas affected more than 4.5 million homes and businesses due to the shortage of electricity, water, food and heat. The power cut was initiated by frozen wind turbines and solar panels [102]. Another interesting example is the 900-MW photovoltaic (PV) power outage in California in 2017, which was due to the misfunction of power converter control units, more specifically its phase locked loop in measuring the frequency [63]. These examples show how the transition from reliable but non-clean energy sources to the unreliable but green sources can affect human life. Therefore, those moving toward green energy technologies need to understand the basics and provide solutions to guarantee energy security and prevent irrecoverable damages.

Looking from an electricity supply chain perspective, power electronics converters become one of the major components in different parts of power systems. They are used in interconnecting renewable generations, transferring high power among various location electronic transmission systems, distributing energy using AC/DC medium voltage transmission systems, and load point applications like electric vehicle (EV) chargers. Therefore, their performance can remarkably affect the entire power

![Figure 1.1: Change in global energy generation, 2014–2021 [38].](image-url)
and energy system security. This monograph aims to provide the fundamentals of energy transition in power systems with a specific focus on power electronics. First, the power systems structure will be described. Then, the concepts of planning and operation are explained in order to understand the basics of power system reliability. Afterward, the modern electrical energy conversion with wind and solar PV is discussed and the application of energy storage and power to X is presented. Next, the basic structures of power converters and their control and operation principles are explained. Moreover, the principles of reliability in power electronics and the fundamentals of system reliability assessment are discussed. Finally, some technical challenges of modern green power systems with more power electronics are presented.
References

References

