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ABSTRACT

Centralized algorithms are widely used for optimization and
control in power system applications. These algorithms re-
quire all the measurements and data to be accumulated at
central location and hence suffer from single-point-of-failure.
Additionally, these algorithms lack scalability with an in-
creasing number of sensors and actuators, specially with
the increasing integration of distributed energy resources
(DERs). As the power system becomes a confluence of a
diverse set of decision-making entities with a multitude of
objectives, the preservation of privacy and operation of the
system with limited information has been a growing concern.
Distributed optimization techniques solve these challenges
while also ensuring resilient computational solutions for the
power system operation in the presence of both natural
and man-made adversaries. A detailed discussion of possible
applications of distributed optimization in power systems is
provided in this work. However, there exist multiple chal-
lenges for accurate and computationally efficient distributed
solutions.

Commonly-used distributed optimization approaches include
Lagrange relaxation, augmented Lagrangian, approximate

Jannatul Adan and Anurag K. Srivastava (2023), “Distributed Optimization for
the DER-Rich Electric Power Grid”, Foundations and Trends® in Electric Energy
Systems: Vol. 7, No. 1, pp 1–62. DOI: 10.1561/3100000036.
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network directions in conjunction with standard Lagrangian,
auxiliary problem principle, alternating directions method
of multipliers, optimality condition decomposition, proximal
atomic coordination, and optimal feedback-based voltage
control. A comprehensive classification of the distributed
optimization problems has been discussed and detailed in
this work. All of these algorithms have displayed efficient
identification of global optimum solutions for convex con-
tinuous distributed optimization problems. The algorithms
discussed so far are predominantly used to manage contin-
uous state variables. Inclusion of integer variables in the
decision support are needed for specific power system prob-
lems.
Mixed integer programming (MIP) problem arises in a power
system operation and control due to tap changing trans-
formers, capacitors and switches. The global optimization
techniques for MIPs are Branch and Bound, Branch and Cut,
Cutting planes, Adaptive coordinate search, Nelder-Mead,
Genetic algorithm etc. Although the above optimization
techniques are able to solve NP-hard convexified MIP prob-
lems centrally, but are time consuming and do not scale
well for large scale distributed problems. Decomposition and
solution approach of distributed coordination can resolve
the scalability issue. Despite the fact that a large body of
work is present on the centralized solution methods for con-
vexified MIP problems, the literature on distributed MIPs is
relatively limited. The distributed optimization algorithms
applied in power network to solve MIPs are reported here.
ML based solutions can help to get faster convergence for
distributed optimization or can replace optimization tech-
niques depending on the problem as discussed in this work.
Finally, a summary and path forward are provided, and
the advancement needed in distributed optimization for the
power grid is also presented.
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1
Introduction to Distributed Optimization in

Power System

1.1 Optimization Requirements in Power System

Majority of the decision-making tools used in the power system can be
classified into (i) rule/heuristic-based approaches, and (ii) optimization-
based approaches. Therefore, the scope of power system resource opti-
mization problems, also known as mathematical programming, ranges
from tools deployed within the energy management system (EMS) of
the power transmission system control center, advanced distribution
management system (ADMS), outage management systems, energy
market operational problems (economic dispatch and unit commit-
ment) to enterprise asset management. Consequently, optimal power
flow (OPF) problems, where power flow equations are considered to
be constraints of the optimization problem, is one of the well studied
problems in the power engineering literature, since it was introduced by
Carpentier (Carpentier, 1962). Typically, power system optimization
problems deal with steady-state system operation subject to satisfying
system operating conditions, independent of having to worry about
how these states would be reached. In this regard, model predictive
control (MPC) has also been used in the power engineering context
to determine the control action for a dynamical system over a finite,

3
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4 Introduction to Distributed Optimization in Power System

receding time horizon. In this case, ‘dynamics’ of the system is typically
captured by the load and generation variability, and hence, it would be
wise to classify them as multi-period rolling horizon optimization prob-
lems. Additionally, the research community is increasingly concerned
about security-/chance-constrained OPF so that the system performs
desirably under varying operating conditions. Therefore, the scope of
OPF problems is indeed vast, with each of the optimization algorithms
having widely varying operational, and infrastructural requirements,
depicting their performance.

1.2 Limitations of Centralized Optimization

The underlying physics and system behaviour of a DER-Rich electric
grid is substantially different compared to a traditional one. On one
hand, DERs including micro turbines, diesel generators or inverter based
renewable energy resources have inherent capability of enhancing the
reliability of the system in conjunction with providing crucial self-healing
support during natural disasters. On the other hand, if not carefully
monitored and controlled, they can significantly hamper the stability of
the grid. The diverse set of unprecedented as well as unknown possible
scenarios emphasizes on strengthening the situational cognizance of the
system which has led to advancing sophisticated sensor arrangement,
data accumulation and processing technology. But the high volume
of data as well as the huge number of control variables drag some
serious concerns with the Centralized Controller. As the number of
variables increase, the computational burden and the time to find a
feasible solution increase exponentially instead of linearly which limit
the scalability of the centralized optimization solver. Also, centralized
controller suffer from the risk of single point of failure and increased
cyber vulnerability. A technical failure or a cyber attack at the central
controller can compromise the security of the whole system putting all
the decision making at hold. Apart from that, centralized controllers
requiring all information to be shared at a central location fall behind
in ensuring privacy preferred by many utilities, especially independently
owned DERs. Distributed approaches can potentially circumvent the
aforementioned challenges and act as a successful alternative with
satisfactory performance especially for DER-Rich Electric power grid.

Full text available at: http://dx.doi.org/10.1561/3100000036



1.3. Addressing the Limitations by Distributed Optimization 5

1.3 Addressing the Limitations by Distributed Optimization

In distributed optimization approach, the control system is divided into
multiple local agents each solving its own sub-problem and handling its
control variables. The local controllers share limited information only to
their neighboring agents and are expected to reach the global optimal
solution as would be determined by the central controller. Various
aspects of distributed approaches and their impact especially on solving
OPF for DER-Rich distribution systems are briefly discussed below.

1. Scalability:
Through the decomposition of the root optimization problem,
distributed approaches have a notable effect on the scalability
of the system. Since each controller deals with a subset of the
original set of decision variables, their computational requirement
become way less than the central controller. Furthermore, if a
new component such as a new DER or regulator is added to
the system, it would necessitate only the corresponding local
controller to reorganize its sub-problem to incorporate the new set
of variables associated with it. As with the increasing penetration
of DERs, number of decision variables to be optimized multiplies
substantially. In such a case, the development and implementation
of suitable distributed approaches can be a timely adaptation to
improve the scalability for DER-Rich distribution systems.

2. Privacy:
Distributed approaches do not require all the information from
local agents including critical data related to the privately owned
DERs to be sent to the central coordinator ensuring much needed
privacy to the private utilities.

3. Computation Requirement:
In a centralized approach, the central controller handles all the
variables which are part of the non-convex OPF problem requiring
the central controller to have a sophisticated computation capabil-
ity. But with distributed controller, each agent handles a subset
of variables which can reduce their computational requirements.

Full text available at: http://dx.doi.org/10.1561/3100000036



6 Introduction to Distributed Optimization in Power System

4. Communication Requirement:
In centralized manner, every local agent communicates with the
central controller via a communication link. So if there are n local
agents, there will at least be n communication links from each
agent to the central controller which may increase with presence of
backup communication links. For distributed approach, n agents
will at least need n-1 number of communication links which usually
increases if agents are more densely connected. To decrease the
number of communication links and hence communication burden,
some researchers propose suitable partitioning techniques to ensure
weak coupling requirements (Wang et al., 2017; Guo et al., 2017).
Furthermore, some researchers share concerns about an agent
participating in a distributed optimization algorithm failing to
share the data at the end of an iteration will cause other agents
to wait and not move to the next iteration. Hence, some works
have been reported to enable asynchronous update among the
subsystems to address the aforementioned problem (Mohammadi
et al., 2018; Mohammadi and Kargarian, 2022).

5. Cyber Resiliency:
One concern with distributed approaches is that agents repetitively
share data during the iterative process of distributed algorithms,
and in case of unauthorized access to any controller, the shared
data can be used to infer information about the local systems. But
distributed approaches have provisions to improve the privacy by
choosing a modified set of variables to be broadcasted to neighbors
rather than the raw measurements which prevents the adversaries
to directly extract useful information even if they get access to the
shared data. The work proposed in Wu et al. (2021), Dvorkin et al.
(2021), and Ryu and Kim (2022) discusses different encryption
or modification techniques to ensure the privacy of the shared
variables. Furthermore, the impact of distributed optimization on
the propagation of a cyber attack is another important parameter
to assess the cyber resiliency. An adversary getting access to one
agent may result in compromising itself and its neighbors. But in
the case of centralized approach, since every local agent directly

Full text available at: http://dx.doi.org/10.1561/3100000036



1.4. Example Applications of Distributed Optimization 7

communicates with the central controller, the central controller
may directly get exposed through compromising a local agent
which increases the vulnerability of the controller. In addition
to that, distributed approaches are more robust to single point
of failure. Even if one local controller undergoes some technical
problem and fails to operate, the rest of the system can continue
their decision-making, keeping the rest of the system unaffected.
But a centralized controller will put all the decision making at a
halt if it fails to operate. Vosughi et al. (2022) provides a detailed
comparative analysis on the performance and characteristics of
centralized and distributed approaches along with local and de-
centralized techniques. Nonetheless, Augmenting the robustness
and resiliency of distributed approaches is an imperative field of
research. Research works including Alkhraijah et al. (2022a) and
Zhao et al. (2017) analyze the effect of cyber attacks in the opera-
tion of distributed optimization and provides insight for improving
it. Further discussion on this topic is added in Section 5.

Observing the aforementioned advantages, distributed optimization
techniques have begun to gain peak attention from the researchers
and essentially proving to achieve much importance onto solving power
system optimization problems specially for DER-Rich environments.

1.4 Example Applications of Distributed Optimization

OPF is a fundamental problem in power system operation which searches
for an operating point that optimizes a certain cost while ensuring vari-
ous security constraints of the network and satisfying network physics.
OPF problems can be single or multi-objective constrained optimization
problem. Some common use-cases of the OPF problem include:

• Voltage Regulation seeks to minimize the voltage deviation of
the overall system usually by utilizing VAR support from inverter
based DERs or through Volt-Watt optimization.

• Generation Cost Minimization decides optimal generation
from traditional and distributed energy resources that minimizes
the cost of generation while ensuring power balance between loads
and generation.

Full text available at: http://dx.doi.org/10.1561/3100000036



8 Introduction to Distributed Optimization in Power System

• Loss Minimization decides optimal power flow through the lines
and from generators so that total network loss is minimized.

• Unit Commitment as part of OPF tries to determine when and
which power plants at each generating station should be shut down
or started up so that cumulative generating cost is minimized
whilst generation-load demand equilibrium is met.

• Service Restoration is the process of gradually restoring the
network after partial or complete black-out. DERs can help in
providing the emergency power supply to critical loads. Service
restoration often entails network reconfiguration and co-ordination
of distributed generators to maximize the restored load.

• Market Pricing and Social Welfare is, on the contrary to eco-
nomic load dispatch, enabling load and generation to get matched
through a competitive electricity market to determine the marginal
price of electricity. Market clearing involves both buyers and sell-
ers to provide bids to be cleared, ensuring maximization of social
welfare.

• Active Power Curtailment cost of a generating unit represents
the opportunity cost of supplying real power that is lost due to
allocating reactive power from that unit. Active power curtailment
may also include minimizing the active power to meet the demand
or to reduce loading on distribution lines during peak demand
periods.

Full text available at: http://dx.doi.org/10.1561/3100000036
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