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Abstract

The last decades have seen the development of a profusion of theoretical
models of the term structure of interest rates. The aim of this survey is
to provide a comprehensive review of these continuous time modeling
techniques of the term structure applicable to value and hedge default-
free bonds and other interest rate derivatives. The originality of the
survey lies in the fact that it provides a unifying framework in which
most continuous-time term structure models can be nested and thus
related to each other. Thus, we not only present the most important
continuous-time term structure models in the literature but also provide
a mathematically rigorous and unifying setting in which these models
can be compared in terms of their similarities, distinguished in terms of
their idiosyncratic features and in which their main contributions and
limitations can easily be highlighted.
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1

Introduction

1.0.1 Objectives of this Monograph

Understanding and modeling the term structure of interest rates
represents one of the most challenging topics in the recent financial
economics literature. Judging by the proliferation of term structure
models that have been proposed over the last decades, the subject
seems to have been theoretically and empirically widely explored and
with good reason since it lies at the core of the most basic and elaborate
valuations problems encountered in finance. Indeed, all financial assets
can be valued by the technique of discounting their expected future
cash flows given an appropriate discount rate function that embeds an
underlying theory about risk premia and the term structure. Moreover,
since the introduction of option trading on bonds and other interest rate
contingent claims, much attention has been given to the development of
models to price and hedge interest rate derivatives as well as to manage
the risk of interest rate contingent portfolios.

However, while the Black and Scholes (1973) model has rapidly
established itself as ”the” reference model for pricing and hedging stock
contingent claims, none of the many continuous-time models that have
been proposed by academics and used by practitioners to price and

1
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2 Introduction

hedge interest rate contingent claims deserves the same qualification.
It is indisputable that we benefit from the rich diversity of models of the
term structure of interest rates but this variety comes at the expense of
the lose of both consistency and harmonisation at the aggregate level of
the positions that are being managed according to those various models.

The aim of this monograph is to provide a comprehensive review of
the continuous-time modeling techniques of the term structure applica-
ble to value and hedge default-free bonds and other interest rate deriva-
tives. The originality of this monograph is the unified framework in
which most continuous-time term structure models are nested and thus
related to each other. Thus, we present the most important term struc-
ture models developed over the last three decades in a mathematically
rigorous and unified setting which highlights similarities, idiosyncratic
features, major contributions and limitations. In addition we show that
most term structure models can be grouped into two main families, first
the short-term rate-based univariate and multivariate term structure
models and second the Heath, Jarrow and Morton (1992) forward rate
based term structure models. We also provide conceptual bridges that
allow us to redefine - under a certain set of assumptions - some of the
models belonging to one family in terms of reciprocal models belonging
to the other family. Finally, based on our own research, in Section 9
we characterize and quantify the profit and loss function due to model
mis-specification when hedging interest rate contingent claims within
both families of models.

Nice mathematical introductions to interest rates are the books by
Privault (2008) and Filipović (2009). For advanced mathematical and
financial surveys on term structure modeling, we highly recommend
the in-depth book by Musiela and Rutkowski (2005) as well as Björk
(1997)’s excellent short survey. The difficult subject of infinite dimen-
sional interest rate models is treated in Filipović (2001) and Carmona
and Tehranchi (2006). Brigo and Mercurio (2001) cover empirical and
practical issues.

This monograph is organized as follows: Chapter 1 presents
the main objectives and provides the definitions and notation used
throughout the monograph. Chapter 2 proposes an interest rate model
taxonomy and Chapter 3 introduces the mathematical framework
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3

used throughout the monograph. In chapter 4, we briefly present
the main economic theories of the term structure of interest rates.
Chapter 5 uses the mathematical framework to present the family
of short-term rate-based term structure models. Chapter 6 uses the
mathematical framework to present the family of forward rate based
models. In Chapter 7, we briefly survey the empirical evidence on
interest rate model estimation, discuss calibration issues and list
selected empirical references for practitioners interested in the validity
and the performance of these models. Chapter 8 introduces a novel
approach to characterize and quantify the profit and loss function due
to model mis-specification. Chapter 9 discusses some of the challenges
in simulations of continuous - time term structure models. Chapter 10
concludes the survey. Finally, some useful mathematical results can be
found in the Appendix of the survey.

A first difficulty associated with the term structure literature is
related to its rich but often heterogeneous terminology. In order to
minimize this problem, we will start by defining the terms and the
notation used in the following sections.

1.0.2 Zero Coupon Bonds and Interest Rates

A discount bond (also called zero-coupon bond) with maturity T
is a financial asset that pays to its holder one currency unit at time T
with certainty. The price at time t of a discount bond with maturity
date T > t is denoted by B(t,T ). Hereafter, we will exclusively focus
on bonds that do not have any default risk. Therefore, it follows imme-
diately that B(T,T ) = 1 for all T .

The yield to maturity at time t of a discount bond with matu-
rity T is the constant and continuously compounded rate of return at
which the discount bond price accrues from time t to time T to yield one
currency unit at time T . The yield to maturity is sometimes called the
spot rate and is denoted by R(t,T ) . We have the following definition

B(t,T )eR(t,T )(T−t) = 1.

Solving for the yield to maturity gives

R(t,T ) = − lnB(t,T )
T − t

. (1.1)

Full text available at: http://dx.doi.org/10.1561/0500000032



4 Introduction

To be consistent with financial intuition, one should observe R(t,T ) > 0
for any time t and T ≥ t.

The term structure of interest rates at time t expresses the
relationship between spot rates and their maturity dates as a graph of
the function T −→ R(t,T ) for T > t. Hereafter, we will assume that a
continuous set of bonds is traded, so that the term structure will be
continuous with respect to the maturity date.

An interesting point on the term structure of interest rates is the
instantaneous risk-free interest rate rt, also called short-term
rate. It is defined by

rt = lim
T→t

R(t,T ),

which is the yield to maturity of an instantaneously maturing discount
bond. Equivalently, it represents the interest rate on a risk-free invest-
ment over an infinitesimal time-period dt. We will see below that rt is
the state variable in many univariate models of the term structure. To
be consistent with financial intuition, one should observe rt > 0 for any
time t.

Another interesting point on the term structure of interest rates is
the long-term rate `t, also called consol rate. It is defined by

`t = lim
T→∞

R(t,T ),

but in practice the long-term rate can be approximated by the yield on
a consol bond (an infinite time-to-maturity bond that pays a contin-
uous coupon) which is quoted on some markets. To be consistent with
financial intuition, one should observe `t > 0 for any time t.

We denote by f(t,T1,T2) the continuously compounded forward
rate for a time interval [T1,T2], i.e. the rate at time t for a risk-free
loan starting at time T1 and maturing at time T2. One has

f(t,T1,T2) =
lnB(t,T2) − lnB(t,T1)

T2 − T1
.

Of particular interest is the instantaneous forward rate f(t,T ) =
f(t,T,T ), which is the rate that one contracts at time t for a loan
starting at time T for an infinitesimal period of time dt. Assuming that
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bond prices are differentiable, we have

f(t,T ) = − 1
B(t,T )

∂B

∂T
(t,T ).

Equivalently, one can define the bond price in terms of forward rates as

B(t,T ) = exp
(
−
∫ T

t
f(t,s)ds

)
.

Note that the spot interest rate is also simply given by the forward rate
for a maturity equal to the current date, that is,

rt = f(t, t). (1.2)

Not surprisingly, there exist some fundamental relationships between
the dynamics of the short-term rate, the dynamics of the discount bond
price and the dynamics of the forward rates. We will review them later
on, when considering the Heath, Jarrow and Morton (1992) family of
term structure models.

1.0.3 Simple Rates

In some cases discussed in Section 7 we will focus on simple interest
rates rather than continuously compounded interest rates. We define
the simple rate for a time interval [t,T ],the Libor spot rate, as

L(t,T ) = − B(t,T ) − 1
(T − t)B(t,T )

.

We can also define a Libor forward rate at time t for a time interval
[T1,T2] with T2 > T1 > t as

L(t,T1,T2) = −B(t,T2) − B(t,T1)
(T2 − T1)B(t,T1)

.

1.0.4 The Money Market Account

A rollover position at the short-term rate rt will be called a money
market account. By convention, we assume that the money market
account was initialized at time 0 with a one currency unit (e.g. one
dollar) investment, so that its value at time t is given by

Bt = exp
(∫ t

0
rsds

)
, (1.3)
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6 Introduction

or equivalently, by {
dBt = rtdt,

B0 = 1.

1.0.5 Remarks

Let us recall that there exist a set of discount bond price specific no-
arbitrage restrictions:

• any discount bond price process has a non-stochastic termi-
nal value at its maturity date.

B(T,T ) = 1.

• a zero-coupon bond price is less than or equal to the price of
another zero-coupon with a shorter maturity.
• interest rates (expressed in nominal terms) are not negative.
• the yield curve or term structure of interest rates is a smooth

function of time to maturity.

In the following, we will assume that these restrictions are fulfilled,
unless explicitly mentioned.
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