Continuous-Time Linear Models
Continuous-Time Linear Models

John H. Cochrane

University of Chicago Booth School of Business and NBER. 5807 S. Woodlawn
Chicago, IL 60637 USA

john.cochrane@chicagobooth.edu

now

the essence of knowledge

Boston – Delft
Foundations and Trends® in Finance
Volume 6 Issue 3, 2011
Editorial Board

Editor-in-Chief:
George M. Constantinides
Leo Melamed Professor of Finance
The University of Chicago
Graduate School of Business
5807 South Woodlawn Avenue
Chicago IL 60637
USA
gmc@gsb.uchicago.edu

Editors
Franklin Allen
Nippon Life Professor of Finance and Economics,
The Wharton School, The University of Pennsylvania

Andrew W. Lo
Harris & Harris Group Professor, Sloan School of Management,
Massachusetts Institute of Technology

René M. Stulz
Everett D. Reese Chair of Banking and Monetary Economics,
Fisher College of Business, The Ohio State University
Editorial Scope

Foundations and Trends® in Finance will publish survey and tutorial articles in the following topics:

- Corporate Finance
 - Corporate Governance
 - Corporate Financing
 - Dividend Policy and Capital Structure
 - Corporate Control
 - Investment Policy
 - Agency Theory and Information
- Financial Markets
 - Market Microstructure
 - Portfolio Theory
 - Financial Intermediation
 - Investment Banking
 - Market Efficiency
 - Security Issuance
 - Anomalies and Behavioral Finance
- Asset Pricing
 - Asset-Pricing Theory
 - Asset-Pricing Models
 - Tax Effects
 - Liquidity
 - Equity Risk Premium
 - Pricing Models and Volatility
 - Fixed Income Securities
- Derivatives
 - Computational Finance
 - Futures Markets and Hedging
 - Financial Engineering
 - Interest Rate Derivatives
 - Credit Derivatives
 - Financial Econometrics
 - Estimating Volatilities and Correlations

Information for Librarians
Foundations and Trends® in Finance, 2011, Volume 6, 4 issues. ISSN paper version 1567-2395. ISSN online version 1567-2409. Also available as a combined paper and online subscription.
Continuous-Time Linear Models

John H. Cochrane

University of Chicago Booth School of Business and NBER.
5807 S. Woodlawn, Chicago, IL 60637, USA,
john.cochrane@chicagobooth.edu

Abstract

I translate familiar concepts of discrete-time time series to continuous-time equivalent. I cover lag operators, ARMA models, the relation between levels and differences, integration and cointegration, and the Hansen–Sargent prediction formulas.
Contents

1 Introduction 1

2 Linear Models and Lag Operators 3
 2.1 Discrete Time Operators 3
 2.2 A Note on Linear Processes 4
 2.3 Continuous-time Operators 5
 2.4 Laplace Transforms 8

3 Moving Average Representation and Moments 11

4 ARMA Models 13
 4.1 Discrete Time 13
 4.2 Continuous Time 14
 4.3 How not to Define ARMA Models 15

5 Differences 19
 5.1 Levels to Differences in Discrete Time 19
 5.2 Levels to Differences in Continuous Time 20

6 Impulse-response Function 23
 6.1 Discrete Time 23
 6.2 Continuous Time 24
Discrete-time linear ARMA processes and lag operator notation are convenient for lots of calculations. Continuous-time representations often simplify economic models, and can handle interesting nonlinearities as well. But standard treatments of continuous-time processes typically don’t mention how to adapt the discrete-time linear model concepts and lag operator methods to continuous time. Here I attempt that translation.

The point of this monograph is to exposit the techniques, understand the intuition, and to make the translation from familiar discrete-time ideas. I do not pretend to offer anything new. I also don’t discuss the technicalities. [Hansen and Sargent (1991)] is a good reference. [Heaton (1993)] describes many of these methods and provides a useful application. I assume basic knowledge of discrete-time time-series representation methods and continuous-time representations. [Cochrane (2005a,b)] cover the necessary background, but any standard reference covers the same material.

The concluding section collects the important formulas in one place.
References

References

