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ABSTRACT
Algorithms are ubiquitous and critical sources of information
online, increasingly acting as gatekeepers for users accessing
or sharing information about virtually any topic, including
their personal lives and those of friends and family, news and
politics, entertainment, and even information about health
and well-being. As a result, algorithmically-curated content
is drawing increased attention and scrutiny from users, the
media, and lawmakers alike. However, studying such content
poses considerable challenges, as it is both dynamic and
ephemeral: these algorithms are constantly changing, and
frequently changing silently, with no record of the content
to which users have been exposed over time. One strategy
that has proven effective is the algorithm audit: a method of
repeatedly querying an algorithm and observing its output
in order to draw conclusions about the algorithm’s opaque
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inner workings and possible external impact. In this work,
we present an overview of the algorithm audit methodology,
including the history of audit studies in the social sciences
from which this method is derived; a summary of key algo-
rithm audits over the last two decades in a variety of domains,
including health, politics, discrimination, and others; and a
set of best practices for conducting algorithm audits today,
contextualizing these practices using search engine audits as
a case study. Finally, we conclude by discussing the social,
ethical, and political dimensions of auditing algorithms, and
propose normative standards for the use of this method.
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1
An Introduction to Auditing

In 2012, Harvard professor Latanya Sweeney and her colleague found
themselves Googling Dr. Sweeney’s name, searching the web for a copy
of a paper she had written. Instead, at the top of the search page
they found an advertisement with the headline, “Latanya Sweeney.
Arrested?” (Sweeney, 2013a). With no arrest record to speak of, Dr.
Sweeney was shocked. After paying a fee to access the company’s
supposed information, she confirmed that the company’s records did not
contain any criminal information under her name. Investigating further,
Dr. Sweeney and her colleague searched for his name, and found an
advertisement from the same company—but this one simply offering
information about people with that name, with no mention of an arrest
record or anything of the sort. Searching for more and more names, Dr.
Sweeney and her colleague were forced to conclude that it seemed like
the advertisements Google was serving were racially biased, suggestive
of arrest records more often for Black-sounding names like Dr. Sweeney’s
than white-sounding names like her colleague’s. Well-equipped to study
this phenomenon rigorously, Dr. Sweeney undertook a study collecting
the ads served by Google for over 2,000 names of real people, using one
set of names likely to belong to someone Black and another likely to

3

Full text available at: http://dx.doi.org/10.1561/1100000083



4 An Introduction to Auditing

belong to someone white. She found that Google’s advertisements were
up to 25% more likely to suggest an arrest record for a Black name than
a white one, a discrepancy that was statistically significant and large
enough that, were an employer disparately treating employees by race
to this degree, the employer could potentially be charged with violating
U.S. labor discrimination laws.

The reason for this racist discrepancy in ads being shown by Google is
hard to identify conclusively; at worst, companies buying advertisements
from Google could be purposefully targeting minority-sounding names.
But the same outcome could result if companies provided Google with
several versions of ad copy for the algorithm to automatically choose
to maximize clicks, and people searching for Black-sounding names
were for some reason more likely to click ads mentioning arrest, while
people searching for white-sounding names were more likely to click
on neutrally-worded ads. In any case, the implications are obviously
serious. Imagine your potential employers, university admissions officers,
or even your new partner’s parents searching for your name on Google
and finding ads that suggest an arrest record. The negative impact
of such ads could be severe and immediate, and in this case, as Dr.
Sweeney showed, it disproportionately affected Black people.

This kind of discrimination, apparent only in aggregate, is especially
challenging to study in the context of computer systems whose exact
workings are opaque to an outside observer. Sweeney’s strategy, sys-
tematically querying the Google Search algorithm with a wide range of
inputs and statistically comparing the results, is one of the most effective
ways to study bias in algorithms. It is known as the algorithm audit.
In this monograph, we present an overview of this powerful method
including what it is, how it is used, and why it matters. We discuss the
history of the audit method, its use in algorithm contexts, and best
practices for researchers conducting algorithm audits in their own work.
Our team of researchers has extensive experience conducting algorithm
audits, and in this work we seek to answer such questions by drawing
from the history of auditing in the social sciences as well as exemplary
work auditing sociotechnical systems in recent decades.

Full text available at: http://dx.doi.org/10.1561/1100000083



1.1. What is an Audit? 5

1.1 What is an Audit?

Algorithm audits, our focus in most of this monograph, are a specific
sub-type of a broader method, the audit study. Before we delve into the
specifics of what makes a good audit and how auditing is applied to
different social and sociotechnical contexts, we must define this method.
Developed originally as a type of experiment used by social scientists,
auditing is a methodology used to deploy randomized controlled experi-
ments in a field setting (i.e., outside the lab) (Gaddis, 2018). Auditors
conducting such a study must probe a process (e.g., a company’s hiring
process; a professor’s process of responding to student emails; an algo-
rithm providing users search results) by providing it with one or more
inputs, while changing some attributes of that input, such as e.g., the
race of the applicant (Bertrand and Mullainathan, 2004); the gender
of the student (Milkman et al., 2012); or the search history or date of
search (Robertson et al., 2018b; Metaxa et al., 2019). Many govern-
ments, including that of the United States, conduct audits routinely, as
a part of civic infrastructure. In the U.S., for instance, the Government
Accountability Office conducts audits at the specific request of Congress
or as mandated by law, and investigates the allocation of federal funds,
allegations of illegal activity, the success of policies enacted, and other
aspects of government function U.S. Government Accountability Office
(U.S. GAO) 2021.

Bertrand and Mullainathan (2004) is a classic example of a (non-
algorithmic) audit, one that inspired Latanya Sweeney’s later work
online. In that study, the authors sought to test whether there was
racial bias in hiring, specifically in the resume reviewing stage, across a
wide range of companies and industries. To do so, they constructed and
sent fictitious resumes with white-sounding or Black-sounding names
in response to job postings, and measured the rate at which those
fictional job applicants got callbacks for interviews. They found that
overall, applicants with white-sounding names received 50% more call-
backs than those with Black-sounding names, and that the amount of
discrimination was uniform across the industries they studied, conclud-
ing that racial discrimination was still widely prevalent in the labor
market.

Full text available at: http://dx.doi.org/10.1561/1100000083



6 An Introduction to Auditing

Algorithm audits are a specific subset of audit studies focused
on studying algorithmic systems and content (Sandvig et al., 2014).
Rather than studying racial bias in human resume reviewing, then,
an algorithm audit might investigate potential bias in an automated,
algorithmically-powered resume screening process. Challenges specific
to studying algorithms also lead algorithm audits to use different strate-
gies and techniques—while Dr. Sweeney was able to manually search
for Black- and white-sounding names and examine the search results
displayed, algorithm auditors often need to build a software apparatus
to amass large quantities of data from their platform of interest.

1.2 Differentiating Algorithm Audits from Other Testing

As evidenced by the examples we have already discussed, audit studies
often—but not always—have an end goal of determining whether a
system is biased or discriminatory. What all algorithm audits do have in
common is an aim to test whether some deficiency (discrimination, bias,
or something else) exists in an algorithmic system or not, without direct
access to the internals of that system. In pursuit of this goal, there are
several key features of audits that differentiate them from other types
of testing, including the focus of study, scope of the conclusions drawn,
and the position of the investigator while auditing.

Unlike other forms of testing such as A/B tests, the audit’s subject
of study is the system itself, not any particular component or a user’s
response to it. In an A/B test, for instance, the subject of study is
the user, with the investigator seeking to understand the user’s change
in behavior while interacting with a system. Auditors may also be
interested in a system’s effect on people, but the angle of an audit is
different, focused on the system itself. For auditors, studying the user is
neither necessary nor sufficient; while some audit studies may include a
component of user testing, audits more often measure the raw output
of a system and rely on theory to infer what these outputs mean for
a system’s users. In the rare case that an audit does experiment on
users, they are usually paid and consenting participants, rather than
unknowing users of a system. This is often the case because measuring
user behavior would be impossible (as when auditing a system one to
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1.2. Differentiating Algorithm Audits from Other Testing 7

which one does not have internal direct access), or unethical (we further
discuss the ethics of auditing in Section 4).

Algorithm audits are also differentiated from other types of system
testing by their scope. Most other forms of testing, including test suites,
result in binary pass/fail conclusions at the level of individual test cases.
An audit, on the other hand, has a broader scope and, it follows, must
be systematic. It results in a declaration about the system as a whole;
while auditors may conduct tests as part of their auditing, the overall
finding of an audit is not merely to conclude that a given system is
“right” or “wrong”—the results can only be discerned in aggregate. In
this sense, an audit is a method of inspection or analysis more than of
testing.

Finally, a third key difference is the role and position of the investi-
gator conducting an audit study. A distinguishing feature of an audit
study, unlike other forms of testing, is that an audit may be conducted
with varying levels of participation or consent from the entity being
audited—including partial or none at all. Audits are purposefully in-
tended to be external evaluations, based only on outward-facing aspects,
not insider knowledge on the process being studied. Most other testing
is conducted internally, at the explicit direction of the proprietors of
the system. This point raises interesting questions around the cost
accrued when conducting an audit (for example, in system resources).
Sending fake resumes to job postings costs companies employee time;
auditing ads served by the Google search engine by repeatedly querying
it uses Google’s servers’ resources. While most other forms of testing are
conducted internally by a willing entity who bears the full cost, audits
are conducted externally on an entity that is not necessarily willing or
even informed of the ongoing audit, but the cost of the audit is shared
between the investigators and the entity itself.

Before returning to algorithm-specific audits, in the the next section
we will delve into the history of audit studies in the social sciences,
establishing how the method was developed, what kinds of social systems
it has been used to study, and what impacts these studies have had on
the world.

Full text available at: http://dx.doi.org/10.1561/1100000083



8 An Introduction to Auditing

1.3 Positionality Statement

As academic researchers in the United States with experience conducting
search audits, we write primarily for fellow researchers interested in
conducting them, with a secondary goal of speaking to an audience
of academics, journalists, and others interested in interpreting and
evaluating such research. Our team of authors has combined experience
performing over 35 audits, covering areas including web search, social
media, ridesharing, online marketplaces, online dating, and advertising.

As social computing researchers, in relation to the positionality of
this work, we find it important to draw attention to the way the artifacts
we study are usually specific to a time and place, rather than being
universal or permanent. This influences our work in three important
ways.

First, our own experience is necessarily limited by the contexts in
which we have gained that experience. While we seek to provide a broad
range of examples in this work, we focus many of those examples in
Sections 3 and 4 on audits of search engines, where we have a particular
depth of expertise. Further, many of the articles we reference come from
the U.S. context; auditing itself is a broadly applicable practice, but
the systems being audited and legal contexts surrounding audits vary
widely, and the U.S. context is the one with which we are most familiar.

Second, the context dependence of social computing research impacts
the goals of this article and its contributions. Since we expect these
systems to develop and change over time, we seek to strike a balance
between providing enough concrete details that other researchers in
this domain can draw practical guidance from this work, while also
focusing at a sufficiently high-level such that future researchers can
understand the current moment from which we write—the motivations
and considerations currently entailed in studying search after the specific
details are deprecated.

Finally, as social computing researchers we also wish to draw atten-
tion to the potential for algorithm auditing to have significant political
implications, a position we elaborate upon in Section 5. The algorithms
that researchers such as ourselves audit are neither inevitable nor un-
changing; rather, they are constantly in flux, and both constructed
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1.4. Road Map 9

and used by people, and our work as auditors has the potential to
change them, and in doing so to change the society in which they exist.
As has been argued by scholars from the related field of Science and
Technology Studies, ownership over algorithmic tools and data, along
with the ability to monitor and understand them, increasingly yields
power in our society (Milan and Van Der Velden, 2016; Chun, 2011).
The possibility for direct change precipitated by an audit presents great
opportunity as well as risk, and we hope this work will help researchers
consider the politically weighty and socially important aspect of the
work at hand as deeply as the technical advice we can provide.

1.4 Road Map

In the sections that follow, we aim to provide readers with an under-
standing of the algorithm auditing method, including its history and
best practices. To do so, in Section 2 we begin by describing the audit-
ing method’s roots in the social sciences, prior to its use in the digital
realm. Next, in Section 3, we move our focus to algorithm auditing,
describing the method itself and summarizing key domains in which
it is applied along with notable algorithm audits. In Section 4, we
decompose algorithm audits into nine key dimensions, describing the
choices available to auditors and providing recommended best practices
within each. Before concluding, in Section 5, we further discuss the
social implications of conducting audits and advocate for auditors to
view this work through the lens of its broader social impacts.
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