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Preface

System-on-Chips (SoCs) are an integral part of our lives. The com-
plexity of SoCs requires sophisticated tools and methods for ensuring
functional correctness, especially in critical domains such as automotive
and healthcare applications. In addition, the prevalence of security
features in SoCs and emerging threats such as Spectre and Meltdown
underscore the need for advanced verification techniques to combat
security vulnerabilities. Existing verification approaches consume over
50% of development effort. Pre-silicon verification ensures functional
correctness before chip fabrication, while post-silicon validation detects
bugs that escape pre-silicon verification. Existing pre-silicon and post-
silicon approaches are inadequate resulting in skyrocketing bug escapes
and respins. To address these challenges, this book presents pre-silicon
verification and post-silicon validation methods based on Quick Error
Detection (QED) principles: self-consistency checking to detect and
localize design bugs.

Symbolic QED combines QED principles with model checking (a
formal verification technique) for pre-silicon verification. Many studies,
including industrial case studies, have demonstrated the effectiveness
and practicality of Symbolic QED:

(1) Symbolic QED successfully detected every logic bug detected
by traditional industrial verification flows, which included both
simulation- and formal-based verification techniques. Symbolic

2
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3

QED detected additional logic bugs that were not recorded as
detected by industrial verification flows.

(2) Symbolic QED significantly boosts design productivity, achiev-
ing 8X reduction in verification efforts for new designs and 80X
reduction for subsequent design revisions.

(3) Symbolic QED achieved rapid bug detection, with runtime at or
below 20 seconds, and concise counterexamples of 10 or fewer
clock cycles, facilitating swift debugging.

QED-based methods for post-silicon validation significantly reduce the
error detection latency (the time elapsed between the occurrence of a
bug and its manifestation as an observable failure) by several orders of
magnitude, addressing the limitations of existing validation and debug
approaches. Experimental results demonstrate the effectiveness and
applicability of QED:

(1) QED approaches can be largely automated, enabling large pro-
ductivity benefits.

(2) QED improves error detection latencies by up to 9 orders of
magnitude, reducing it to very few clock cycles (generally fewer
than 1,000 clock cycles for most bug scenarios).

(3) QED enables up to 4X improvement in bug coverage, detecting
bugs that may be missed by traditional post-silicon validation
approaches.

The book also discusses Unique Program Execution Checking (UPEC),
a hardware security verification technique inspired by QED principles.
UPEC systematically detects Transient Execution Side-channels (TES)
in processor implementations and has demonstrated its ability to detect
Spectre and Meltdown type security attacks on complex processor cores.
UPEC is the first formal verification approach at the Register-Transfer
Level (RTL) that comprehensively checks for TES vulnerabilities in
microarchitectures without prior knowledge of specific attacks. This
enables the detection of new or previously unknown TES threats through
UPEC rather than depending on the insights of security researchers

Full text available at: http://dx.doi.org/10.1561/3500000003



4 Preface

and experts. The scalability of UPEC has been validated on complex
out-of-order processors, such as BOOM, which features over 650,000
state bits.

Beyond the specific QED techniques described here, a new pre-
silicon verification approach called G-QED (Generalized Quick Error
Detection) is already demonstrating significant drastic benefits for pre-
silicon verification of a wide variety of designs.
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