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ABSTRACT

People-to-people (P2P) technology-assisted interconnections,
embedded in a global environment, will be at the core of 21st
century communications and will command the technological
development of the future. The Internet-of-Things (IoT)
comprises only machine-to-machine (M2M) communications
handling only data and things. Expanding itself beyond
IoT, the Internet-of-Everything (IoE) also incorporates intel-
ligently the interaction of people and process (providing
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at a precise moment the correct knowledge to the exact
person/machine).

In general, IoT comprises all physical or cyber objects
(things) with an address that can transmit information
without human-to-machine interactions (data), while the
IoE also involves communications (processing) among the
users (people) and the whole universe of electronic gadgets.
Further, they both operate with data acquired from analog
sources, thus connecting two different realities, the analog
(physical/real) and the digital (cyber/virtual) worlds. Since
the interface between the two realms deals with analog
signals, its mandatory functions involve sensing, measuring,
filtering, converting, processing, and connecting, with the
accuracy and precision of the analog layer ruling the entire
system. Such interface integrates several analog and mixed-
signal subsystems that include signal sensing, transmission
and reception, frequency generation, energy harvesting (EH),
in-memory processing, and data and power conversion.

This paper presents state-of-the-art designs of the most
critical building blocks of the analog/digital interface high-
lighting new and innovative circuit architectures and tech-
niques. It addresses capacitive sensor interfaces, ultra-low-
power wireless transceivers, key technologies for wireline
transceivers, oscillators and frequency generators, integrated
energy harvesting (EH) interfaces, in-memory processing,
as well as, data and power converters, all exhibiting high-
quality performance with low power consumption, high
energy-efficiency and high speed, thus enabling a reliable
and consistent development of the IoE while enlarging its
frontiers.

Full text available at: http://dx.doi.org/10.1561/3500000007



1
Introduction

At first sight, most people think that the Internet-of-things (IoT) and
the Internet-of-everything (IoE) are just distinct definitions of the same
technology and they use both designations indistinguishably. However,
although they share similar characteristics, the two conceptualizations
are quite different.

1.1 The Internet-of-Things

In the history of IoT, an important reference in its origins is Kevin
Ashton who worked at Procter & Gamble when he stamped the term
for the first time in 1999 during a presentation where he analyzed the
higher efficiency in the management of supply chains when controlled
by a network-connection of RFID-enabled devices. Initially, his idea was
just to incorporate “Internet” in the title to stimulate the attention of
the audience, but afterward the designation of IoT spread to everything
that had internet connection among devices that sensed and shared
data without human intervention, interaction also known as machine-
to-machine (M2M) communication [8, 9, 10] (Figure 1.1).

Human behavior toward technology forced a frantic development
of IoT that explored the great advances in hardware and software,

3
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4 Introduction

Figure 1.1: Internet-of-Things — Visualization concept by Ashton [10].

constantly evolving with plummeting costs. The continuous emerging of
new state-of-the-art elements led to the transfiguration of the marketing
and delivery of products, goods, and services, with an enormous impact
in all aspects of our daily social and economic life. With the utilization
of IoT, the users can enjoy a more sophisticated and systematic analysis
with larger integration and complete automation, only possible with
the access to current and emerging technology for sensing, networking
and robotics. Besides, it also significantly enlarges the accuracy and
outstretch to all areas.

The IoT links the backbone of connectivity (Internet) with the
physical or cyber objects (Things) that gather and swap data across
wireless networks, empowering the internet virtual world, the han-
dling and systematic analysis of data, plus the decision-making pro-
cess, with the real world of physical objects. The most important

Full text available at: http://dx.doi.org/10.1561/3500000007



1.2. The Internet-of-Everything 5

components/characteristics of IoT include sensors, connectivity, artifi-
cial intelligence, active engagement, and small devices. Without sensors,
the IoT loses its significance because they are the meaningful tools
transforming a normal passive grid of devices into an active network
accomplishing real-world integration. In addition, new technologies
enable innovative, practical, and efficient networking in a smaller and
cheaper scale than the usual exclusive web provided by major suppliers.
On the other hand, artificial intelligence can convert everything virtually
into a smart gadget strengthening our daily activity with the power of
databases, artificial intelligence algorithms, and networks. Furthermore,
the usual interaction with connected technology involves mainly passive
engagement of the objects while IoT allows a paradigm shift with the
introduction of active contents derived from the product or the service
commitment. Finally, since the devices become smaller, cheaper, and
more powerful, the IoT can constantly explore innovations like, for
example, purpose-built small devices that can lead to more precise,
highly scalable, and extra flexible networks.

1.2 The Internet-of-Everything

Apparently, the designation of IoE materialized in 2013 and was coined
by CISCO, although the company claims that other technology compa-
nies, for example Gartner and Qualcomm, started to use such a term
simultaneously (Figure 1.2). Independently of that, their definition
clearly states: “The IoE is bringing together people, process, data,
and things to make networked connections more relevant and valuable
than ever before — turning information into actions that create new
capabilities, richer experiences, and unprecedented economic opportunity
for businesses, individuals, and countries.”1

Ordinary people, but also technical experts, in academia and indus-
try, consider IoE as the subsequent development stage of IoT, classified
as a complete ecosystem that interconnects through the Internet, devices,
consumers and products with extended digital intelligence and versatility.
Then, IoE constitutes a broader concept that accentuates, besides the

1Cisco, 2013; https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/
IoE_Economy_FAQ.pdf.
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6 Introduction

Figure 1.2: Internet-of-everything.
Source: Cisco (https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoE_
Economy_FAQ.pdf).

important M2M, also the technological communication of people-to-
machine (P2M) and people-to-people (P2P). Such a worldwide network
notion that encompasses everything exhibits large benefits and has
a great impact in the intelligent online connection of four crucial
components: people, process, data, and things.

People, are the fundamental element of IoE because they add the
intelligence to the connection by using the devices all the time, through
the constant analysis and manipulation of data. Besides, people are key
in P2P and P2M communications and can even possess sensors allowing
them to serve as nodes in M2M communications. Process, determines
how the elements of the network (Internet, either wired or wireless)
operate with everything adding high value to the cyber/digital world,
then, the success of the overall operation lies in the correct collection of
data and transferring it to the right people at a precise moment.
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1.3. IoE/IoT Major Areas of Applications 7

Data, is a very sophisticated element of IoE that alone is purposeless,
however, its rigorous analysis and efficient management leads to swift
and intelligent decision-making. Finally, things equipped with sensors
and linking people or networks are the building blocks of IoE, allowing
the connection of devices that convene and share information among each
other through the Internet. The number of connected devices already
embedding some electronic intelligence in 1984 was 1 thousand, in 1992
jumped to 1 million, skyrocketed in 2010 to 10 billion, and currently, it
is estimated at more than 50 billion! This ultra-complex infrastructure
with ubiquitous sensing and control capability over a broad number of
devices provided by the IoE significantly simplifies our daily life and
increases productivity, although it requires a constant update in terms
of performance of state-of-the-art electronics, with a high pressure
for the development of computer chips or integrated circuits (ICs).
Current developments of portable wireless IoE systems are able to keep
efficiently trillions of gadgets constantly online and urgently call for more
advanced ICs, at the core of information and communication technology.
Besides the low-power and low-cost requirements, it is necessary to
self-power such chips through energy harvesting (EH) that dictate
highly efficient fully integrated power solutions to relieve the efforts
of battery replacement. Furthermore, new solutions should eliminate
off-chip components allowing multifaceted structures composed of small-
scale devices.

1.3 IoE/IoT Major Areas of Applications

In this new era of ubiquitous communications, many companies world-
wide use IoE/IoT technology for automation and simplification of their
business processes. Their application in major areas of the economy
relies on the capability of adaptation to any type of environment able
to supply the appropriate data about its operation and performance,
thus allowing remote observation and control. Here, we briefly highlight
a few practical areas of IoE/IoT applications.

Wearables and Health: When referring to “smart” IoE/IoT devices,
the first area that comes to mind is the wearable technologies normally
designated only as “wearables”. These are electronic gadgets used

Full text available at: http://dx.doi.org/10.1561/3500000007



8 Introduction

physically by people that allow tracking, analysis, and transmission
of personal biometric data, like the fitness bands that trace the heart
rate, calories spending or the sleep patterns. Besides, nowadays, we
also see underutilization in our daily lives, such as with virtual glasses,
smart watches, fit bits, smart jackets, and GPS tracking belts, just
to name a few. Usually, these electronic systems are small, energy-
efficient, and already include sensors, namely, they embed the required
hardware and software necessary to measure, read, collect, and organize
all the data related with the particular body metrics of an individual.
Another important wearable is the glucose-monitoring device for people
with diabetes. A glucose sensor with a tiny electrode placed under the
skin detects glucose levels and transfers the information via RF to a
mobile phone, for example. Wearables are still a hot topic in the market,
serving a wide range of activities such as medical, wellness or fitness;
then we can consider them as symbolic components of industries serviced
by IoE/IoT applications. Since they include sensors, in the medical
industry they already allow doctors to monitor the health status of the
patients in real-time, even outside the hospital. The IoE/IoT system
of communications, together with the specific data archived for each
patient, allows the continuous monitoring of the precise metrics and
detects automatic alerts of the patient’s vital signs, enhancing the level
of attention and care of high-risk patients while averting fatal incidents.

IoE/IoT applications can transform reactive medical-based systems
into proactive wellness-based systems. For example, embedding the
technology into hospital beds allows the emergence of smart beds
provided with special sensors to keep track of lively signals, like the
heart rate and pulse, the blood pressure, the level of oxygen in the
blood, the body temperature, etc. Besides, IoE/IoT allows the access
to an immense quantity of data with inestimable value obtained from
archiving, focused analysis, real-time field information, examination,
and trial. It also enlarges the capability of the existing equipment in
terms of power, performance, precision, and availability, focusing on
the creation of overall integrated systems instead of just independent
equipment. Subsequently, areas like E-health, telehealth or telemedicine,
although not yet completely developed, already present a growing future
potential, with the possibility of offering health information online for

Full text available at: http://dx.doi.org/10.1561/3500000007



1.3. IoE/IoT Major Areas of Applications 9

consumers and professionals, as well as health education and training
courses, the digital transference of medical images through the Internet,
remote medical diagnosis, video-conference consultations with doctors
and specialists, and even the emerging area of remote medical surgery.

Smart City (Traffic Monitoring, Fleet Management and Self-Driven
Cars): One of the most important components composing a smart
city is the intelligent control and optimization of its overall traffic
system. Other crucial aspects comprise, for example, the smart-grid
leading to energy saving, the monitoring of clean drinking water and
air quality, increasing urban density, and they differ in intensity across
cities, affecting each city in a diverse way. The municipal governments,
urban planners, engineers, and architects can utilize IoE/IoT to analyze,
design, and manage the often-complex factors of town planning specific
to each city aiding in many areas like water and electricity distribution
management, waste management, and emergencies, allowing the access
by Internet to people and devices throughout the city, eliminating
challenges and adding convenience. An interesting example, usually
in many cities around the world most cars drive around looking for
parking spaces leading to traffic congestion, then; one solution consists
in the installation of sensors in all the parking spots in the city. The
sensors pass the information about the occupancy status of each spot
to the Internet Cloud that then shares it with any type of application
available in a mobile phone guiding the drivers to find the shortest
route to a vacant place. Another case is the management of the different
urban service fleets that have their vehicles installed with sensors, like
the buses, the taxis or the garbage collectors. The IoE/IoT networks
allow constant interconnectivity between drivers and the corresponding
managers of the service provider permitting an efficient management
of the fleet with continuous monitoring of the status and operation
of all vehicles. Another future urban equipment is the self-driven car
already tried by Tesla and Google, which need to ensure increased safety
for passengers and people on the roads. They use several sensors and
embedded systems connected again to the Cloud continuously generating
and analyzing data that assists conscious decision-making. Although
it will take a few more years for the technology to evolve completely
and for countries to amend their national regulations publishing new

Full text available at: http://dx.doi.org/10.1561/3500000007



10 Introduction

laws and policies, what is happening already is one of the remarkable
applications of IoE/IoT.

Smart-Grid/Energy Saving and Water Supply: An important com-
ponent of the electrical distribution grid is the energy meter in each
consumer’s place, and it becomes intelligent when it embeds sensors
that allow bidirectional communication between the service provider
and the user. Furthermore, the installation of sensors in the production
plants and the distribution centers allows closer monitoring and con-
trol of the electrical network. Information of significant value usually
obtained through the previous referred communication leads to informed
knowledge about consumption patterns allowing energy saving with its
eventual cost reduction, wise decision-making, detection of faults, and
the necessary repairs. On the other hand, the installation of a smart-
grid will enhance operation efficiency, network reliability, and intelligent
management of electricity costs. The same strategy applied to the water
supply network with sensors embedded in water meters, connected to the
Internet and managed by the adequate software, allows the acquisition
of information, the processing and analysis of data, understanding and
aiding again the consumer behavior, detecting faults in the service
supply, and subsequently leading to repairs by the company provider.
The complete information available in real-time in the Internet helps
to monitor the consumption according to the average record and even
detect possible failures and leaks of the water network.

Smart-Home: Another interesting and practical application of
IoE/IoT is the Smart-Home, combining into a higher-level of comfort
both satisfaction and security, and blending in intelligent utility systems
with home management and entertainment. Some examples include the
intelligent electricity and water meters, a control box for the automatic
remote management of illumination, advanced locking, and connected
surveillance. In the future, more innovative devices will enable a further
integrated environment with enlarged security.

The key subsystems in the IoE/IoT with energy-autonomous chips
are the sensor, the wireless transceiver, the clock and frequency genera-
tor, plus the power management for harvesting energy. Furthermore, in
wireline and wireless communications, one of the main components is
the high-speed/wide-band analog-to-digital converter (ADC). Besides,

Full text available at: http://dx.doi.org/10.1561/3500000007



1.3. IoE/IoT Major Areas of Applications 11

the requirements and challenges of wide-band ADCs become more
critical especially when they operate at low power. Then, high-efficiency
fully integrated power solutions need advanced and adaptable switched-
capacitor (SC) DC–DC converters, or when extremely small solutions
not requiring energy storage are necessary the low-dropout (LDO) linear
regulator becomes the most appropriate choice for providing power.

This paper presents various innovative architectures and circuits for
the different subsystems described above, namely, the capacitive sensor
interfaces (Section 2), ultra-low-power wireless transceivers (Section 3),
key technologies for wireline transceivers (Section 4), oscillators and
frequency generators (Section 5), integrated energy harvesting (EH)¸
interfaces (Section 6), in-memory processing (Section 7), data converters
(Section 8), and power converters (Section 9), consuming low power, but
leading to solutions that reveal record performances in energy-efficiency
and/or high-speed among the state-of-the-art. Finally, Section 10 draws
the conclusions.

Full text available at: http://dx.doi.org/10.1561/3500000007
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