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ABSTRACT
The increasing demand for high performance and energy ef-
ficiency in Artificial Neural Networks (ANNs) and Deep
Learning (DL) accelerators has driven a wide range of
application-specific integrated circuits (ASICs). In recent
years, this field has started to deviate from the conventional
digital implementation of machine learning-based (ML) ac-
celerators; instead, researchers have started to investigate
implementation in the analog domain. This is due to two
main reasons: (a) better performance, and (b) lower power
consumption. Analog processing has become more efficient
than its digital counterparts, especially for Deep Neural
Networks (DNNs), partly because emerging analog mem-
ory technologies have enabled local storage and processing
known as compute-in-memory (CIM), thereby reducing the
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amount of data movement between the memory and the pro-
cessor. However, there are a lot of challenges in the analog
domain approach, such as the lack of a capable commer-
cially available non-volatile analog memory, and the analog
domain is susceptible to variation and noise. Additionally,
analog cores involve digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs), which consume up to
64% of total power consumption. An emerging trend has
been to employ time-domain (TD) circuits to implement
the multiply-accumulate (MAC) operation. TD cores re-
quire time-to-digital converters (TDCs) and digital-to-time
converters (DTCs).

However, DTC and TDC can be more energy and area effi-
cient than DAC and ADC. TD accelerators leverage both
digital and analog features, thereby enabling energy-efficient
computing and scaling with complementary metal–oxide–
semiconductor (CMOS) technology. The performance of
TD accelerators can be substantially improved if custom-
designed analog delay cells, DTC, and TDC are used. This
work reviews state-of-the-art TD accelerators and discusses
system considerations and hardware implementations. Addi-
tionally, the work analyzes the energy and area efficiency of
the TD architectures, including spatially unrolled (SU) and
recursive (REC) architectures, for varying input resolutions
and network sizes to provide insight for designers into how to
choose the appropriate TD approach for a particular appli-
cation. Furthermore, it discusses our implemented scalable
SU-TD accelerator synthesized in 65 nm CMOS technol-
ogy with an efficient DTC circuit that utilizes a laddered
inverter (LI) circuit that consumes 3× less power than the
inverter-based DTC and achieves 116 TOPS/W. Finally,
we discuss the limitations of time-domain computation and
future work.

Full text available at: http://dx.doi.org/10.1561/3500000013



1
Introduction to Efficient Computing

1.1 Introduction

Deep Neural Networks (DNNs) have become the cornerstone for modern
artificial intelligence (AI) applications due to the unprecedented achieved
accuracy in image classification [47], [76], object recognition/detection
[35], [77], [82], speech recognition [21], [22], [24], [40], [71], [74], [86], game
playing [17], [65], [83], [84], healthcare [6], [30], [99], [102], [104], and
robotics [51], [73], [81], [103]. As DNNs require significant computational
resources, energy, and memory bandwidth to process huge amounts
of data with small latency and high accuracy [88], they are typically
implemented on the cloud using GPUs. Moving DNNs, however, out of
the cloud into the edge devices provides key benefits, including improving
privacy in some applications, such as healthcare, and reducing latency,
which is critical in modern applications like autonomous driving.

Over the last 50 years, Moore’s law and Dennard scaling have helped
build faster, smaller, and energy-efficient transistors, but this trend
has slowed down during the last decade due to the physical limits of
the transistors [25], [96]. To overcome this limitation, various levels of
research have built specialized computing hardware that can deliver
high performance with high energy efficiency. Digital accelerators can

3
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4 Introduction to Efficient Computing

be custom-made specifically for DNNs and thus can provide higher
throughput, shorter latency, lower energy, and higher area efficiency
[9], [18], [19], [23], [26], [29], [43], [55], [66], [67], [87], [88], [92], [94].
Although digital accelerators provide better performance compared to
GPUs, digital systems (including both GPUs and digital accelerators)
are fundamentally limited in handling big data efficiently due to the
separation of logic and memory (referred to as von Neumann bottle-
neck). Consequently, the system bandwidth is limited by the speed of
accessing the data in the memory. Moreover, memory access requires
at least 10x more energy/delay compared to the multiply-accumulate
(MAC) operation [41], [88]. Hence, data movement in GPUs and digital
accelerators dominates energy consumption and bandwidth.

To overcome the fundamental challenges in digital systems, analog
and mixed-signal hardware accelerators have been explored to build
artificial neural networks (ANNs) that can outperform the digital-based
ones by several orders of magnitudes in energy efficiency, computation,
and training time [11], [12], [16], [27], [28], [32], [45], [49], [54], [58],
[75], [89], [91], [98], [100]. Analog computations promise simplicity and
energy efficiency with real-time parallel processing and learning. Analog
processing has become more efficient than the digital counterparts, espe-
cially for DNNs, partly because emerging analog memory technologies
have enabled local storage and processing as shown in Figure 1.1(c),
thereby reducing the amount of data movement between the memory
and the processor. Besides, the MAC operations can be performed
more efficiently in the analog domain. An ultimate example of analog
computation is the human brain, which can perform more than 1016
operations/second while consuming 20 Watts [61]. Although analog
computation is efficient in terms of energy and area [91], [98], it has
limited accuracy and technology scaling [7]. Additionally, the need for
Analog-to-Digital converters (ADCs) and Digital-to-Analog converters
(DACs) limits the efficiency and scalability of the analog cores.

An emerging trend is to utilize time-domain (TD) to perform MAC
operations by representing the data as pulses with modulation, as
depicted in Figure 1.1(d) [3], [7], [20], [31], [56], [64], [79]. The goal is to
perform the MAC operations in TD by producing proportional delays to
inputs and weights. These delays are accumulated and then converted

Full text available at: http://dx.doi.org/10.1561/3500000013



1.2. Background and Prior Work 5

back to digital. TD cores require time-to-digital converters (TDCs) and
digital-to-time converters (DTCs). However, DTC and TDC can be
more energy and area efficient than DAC and ADC, respectively [63].
Time-based accelerators can achieve superior performance while being
energy efficient [2], [7], [20], [31], [56], [64], [79]. It has been shown
that TD-ANN can achieve superior performance with excellent energy
and hardware efficiency [2], [7], [20], [31], [56], [64], [79]. The digital
approach has the best use of technology scaling, but it is not as efficient
as the analog approach [7], [91], [98]. Time-based computation can take
advantage of both approaches, analog and digital, as it is energy efficient
and can be scaled with CMOS technology.

1.2 Background and Prior Work

The concept of neural networks was inspired by the biological neural
system and was first conceived in 1943 [60]. Fully connected DNNs
(FC-DNN) consist of multiple layers, an input layer that matches the
width of the input data, an output layer that depends on the specific
inference task and hidden layers. Figure 1.1(a) shows a feedforward FC-
DNN architecture that is based on MAC or vector-matrix multiplication
(VMM), where a vector of n neuron excitations, xi, is multiplied by a
vector of weights, wij , generating a new vector of neuron excitations
for the next layer, yj , and then followed by a nonlinear function, f .

yi = f

(
n∑
i

wijxi

)
. (1.1)

In the digital domain, Figure 1.1(b) shows how a GPU implements
the MAC operations, by using a large number of Arithmetic Logic
Units (ALU) with the help of memory (DRAM) that stores the weights.
Figure 1.1(c) shows an example of analog domain implementation
where memory technologies have enabled local storage and processing.
Figure 1.1(d) represents the basic implementation of TD neuron. As
depicted in the figure, a chain of variable delay elements are cascaded
where each element has a delay value that depends on the dot product
between the corresponding input and weight. An input pulse is applied at
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6 Introduction to Efficient Computing

Figure 1.1: (a) DNN with basic mathematical operations, (b) GPU architecture,
(c) analog computation, (d) time-domain computation.

the first element where the output pulse width will eventually represent
the MAC result for the neuron.

1.3 Introduction to Analog Computing

To overcome the fundamental challenges in digital systems, analog and
mixed-signal hardware accelerators have been explored to build artificial
neural networks (ANNs) that can outperform the digital-based ones
by several orders of magnitudes in energy efficiency, computation, and
training time [11], [12], [16], [27], [28]. Analog computations promise
simplicity and energy efficiency with real-time parallel processing and
learning. Analog processing has become more efficient than its digital
counterparts, especially for DNNs, partly because emerging analog
memory technologies have enabled local storage and processing, thereby
reducing the amount of data movement between the memory and
the processor. Analog computing provides the ultimate in-memory
computing (IMC) as it can be implemented in crossbar architecture.
Besides, the MAC operations can be performed more efficiently in the
analog domain. An ultimate example of analog computation is the
human brain, which can perform more than 1016 operations/second
while consuming 20 Watts [61]. The 2018 IBM Summit, one of the world’s
fastest supercomputers, may have a computing capacity comparable
to that of the human brain [48], but it consumes 13 MegaWatts, with
an area of two basketball courts. Hence, to explore the capabilities of
future computing, the human brain can potentially offer design tricks to
implement non-von Neumann architectures toward highly efficient and
massively parallel computing platforms [62]. The advantages of analog
computation are (a) its superior energy efficiency as it mitigates data
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1.3. Introduction to Analog Computing 7

movement and memory access for the neural network weights, and (b)
its extremely high throughput as the current passes through the PEs in
every column of the crossbar to get the MAC output.

1.3.1 Hardware Implementation of Analog Computation

Analog hardware accelerators utilize crossbar-based architectures and
emerging non-volatile memories (NVM), such as Resistive RAM (RRAM)
[5], [10], [15], [42], [46], [52], [53], [72], [97], Phase-Change RAM
(PCRAM) [8], [14], [33], [80], [95], and Magnetic RAM (MRAM) [13], are
commonly used to build DNN systems. The crossbar architecture has
rows and columns, where the NVM memory resides at the intersection
between each row and column. This enables local storage and processing
in a highly parallel and energy-efficient manner [11], [12], [16], [27], [28].

A key component in DNNs is the memory to store the value of
the weights [44]. Analog memory technologies can be divided into two
categories: charge-storage and non-charge-storage memories. Charge-
storage memories depend on storing electric charges for an extended
period of time. Floating-gate or embedded flash memory (eFM) is a
NVM, charge-type memory that is used in DNNs [27], [39], [70]. eFM
has a tunnel gate oxide at the channel interface, but due to the stringent
requirement of long retention time, this tunnel oxide is already at its
minimum thickness and is no longer scalable [13]. Furthermore, eFM
requires high voltage pulses for programming and erasing, thereby
potentially leading to high power consumption and long training times.
Non-charge-storage memories are typically two-terminal, NVM devices,
including RRAM, PCRAM, and MRAM.

1.3.2 Limitations of Analog Accelerators

In addition to the storage elements challenges in IMC architecture
mentioned previously, analog accelerators are sensitive to noise, not like
their digital counterpart which deals with two levels; 0 s and 1 s. The
major sources of noise are thermal noise from electronic devices and
quantization noise that comes from the crossbar interface circuits which
are the data converters that convert the data from digital to analog
and then from analog to digital [37], [68]. The issue becomes more
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8 Introduction to Efficient Computing

challenging for higher precision as it is well known that the thermal
noise is proportional to

√
kT/C, and thus to achieve an extra bit, the

capacitance needs to be increased fourfold and as a result, the energy
will be increased 4 times [68]. So it is very challenging to design a
high-precision analog core while being more efficient than digital cores.
It has been shown that analog accelerators can be more energy-efficient
than digital for low-bit precision, i.e., below 6–7 bits, otherwise digital
will outperform the analog core [37], [68], [69], [78], [93].

In IMC architecture, the cost of accumulation operation is directly
related to the conversion from analog to digital using an analog-to-
digital converter (ADC). One ADC can be used for each column at the
crossbar architecture, or multiple columns can share a high-speed ADC
by using the means of reusing and time-multiplexing. The energy per
MAC operation can be expressed as follows [68]

EMAC = EADC/N + ECAP + ELogic (1.2)

Where EADC is the ADC’s conversion energy, and N is the number
of rows. ECAP and ELogic are the energy consumption due to the unit
capacitances (Cu) and logic gates in each processing element. It has
been shown that for higher bit precision (greater than 7 bits), the ADC
energy will dominate [34], [37], [68]. Other works reported that the
ADC consumes 64% of total energy in [59], and 50% of total core power
in [36], which urges the need for energy and area-efficient ADC designs.

1.4 Digital vs. Analog vs. Time-Domain Computing

The adaptable nature of the digital implementation allows for scalability
using CMOS technology. However, due to data representation as a multi-
bit digital vector, as the number of bits increases, so does the quantity of
MAC units and operations. This leads to heightened dynamic switching
capacitance, resulting in increased power consumption and additional
area overhead [7], [9], [18], [19], [23], [26], [29], [43], [55], [66], [67], [87],
[88], [92], [94].

In the analog domain, data are depicted through continuously vary-
ing voltage signals. Various analog-based accelerators have been sug-
gested to execute MAC operations by employing charge manipulation
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1.4. Digital vs. Analog vs. Time-Domain Computing 9

techniques and Analog-to-Digital Converters (ADCs) [11], [12], [16],
[27], [28], [32], [45], [49], [54], [58], [75], [89], [91], [98], [100]. Ana-
log methodologies execute MAC operations within the analog voltage
domain utilizing a Static Random Access Memory (SRAM) array, capac-
itors, and data converters. In these methodologies, input pixel data are
encoded either as a Pulse-Width Modulation (PWM) signal or a Pulse-
Amplitude-Modulated (PAM) signal. The MAC operation is carried out
by summing the read current of simultaneously accessed bit-cells. How-
ever, this approach is vulnerable to process variations, noise, bit-flips,
and weak line corruption. Despite analog computations demonstrating
efficiency in terms of energy (OPS/W) and area (OPS/mm2), they
exhibit limited accuracy and technology scaling due to finite voltage
headroom [7].

In Time-Domain (TD) representation, data are depicted as pulses
with variable widths or time differences in rising/falling edges, thereby
generating variable delays. The TD methodology amalgamates the ben-
efits of both digital and analog approaches; it can scale effectively with
technology and offers energy-efficient computation. Furthermore, unlike
analog-based computation, which necessitates an analog circuit design
flow, TD circuits can employ the digital Integrated Circuit (IC) design
flow, facilitating large-scale integration. Prior research indicates that
TD cores can outperform digital implementations of Artificial Neural
Networks (ANNs) only when the number of input bits is relatively
low [2], [7]. In Time-Domain (TD) Artificial Neural Networks (ANNs),
calibration becomes necessary due to the analog nature of the delay
signal, which is more susceptible to noise and process variation. Ad-
ditionally, the TD approach necessitates the inclusion of additional
components like time-to-digital converters (TDCs) and digital-to-time
converters (DTCs). Nonetheless, DTCs and TDCs remain more energy-
and area-efficient compared to Digital-to-Analog Converters (DACs)
and Analog-to-Digital Converters (ADCs) [63]. TD computing is partic-
ularly well-suited for applications requiring low resolution and stringent
power constraints, such as edge devices. Phase-Domain (PD) ANN
operates similarly to TD, but it employs phase shifts to execute the dot
product [90]. The main issues are requiring multiple clock sources and
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10 Introduction to Efficient Computing

Table 1.1: Comparing different accelerators

Approach Digital Analog Time

Data representation Multi-bit digital Continuous voltage Pulse width
vector signal modulation

Technology scaling Yes No Yes
Immunity to noise High Low/moderate Moderate
Input resolution High Low/moderate Low/moderate
Energy efficiency Low/moderate Very high High
Throughput High Very high Moderate
Area Moderate Moderate/large Moderate/large

the dependence of the toggle activity on the input magnitude. Table 1.1
summarizes the aforementioned approaches.

1.5 Motivation and Scope of the Study

Due to the tremendous number of IoT applications and edge computing
where stringent power constraints are required, the need for highly effi-
cient ultra-low-power computing is essential. This work aims to explore
and analyze energy-efficient accelerators for edge computing; specifically
time-domain and mixed-signal domain cores. Analog computations offer
outstanding energy efficiency with real-time parallel processing and
learning. This is mainly due to the emerging analog memory technolo-
gies which have enabled local storage and processing. Although analog
computation is efficient in terms of energy, it has limited accuracy and
technology scaling [7]. Additionally, the need for average resolution
(e.g., 8 bits) ADCs and DACs limits the efficiency and scalability of
the analog cores. Reported works in the literature show that ADCs can
contribute up to 64% of total energy consumption [59], which makes it
hard to compete against digital accelerators. An emerging trend is to
utilize time-domain (TD) to perform MAC operations by representing
the data as pulses with modulation, Time-based computation can take
advantage of both approaches, analog and digital, as it is energy efficient
and can be scaled with CMOS technology.
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