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ABSTRACT
This monograph presents the emerging field of second-gene-
ration quantum sensing, which leverages phenomena such
as superposition and entanglement, thereby offering mea-
surement sensitivities far surpassing classical methods. In
our discussion, we emphasize its potential to revolutionize
various scientific and technological domains. Starting with
a foundational overview of quantum sensors, distinguishing
them from quantum computing and communication tech-
nologies, we then highlight the relative maturity of quantum
sensing, especially in room-temperature operations, which
positions it closest to market adoption.
The main part of the monograph is dedicated to solid-state
defects, particularly nitrogen-vacancy (NV) centers in di-
amond, which have emerged as promising candidates for
scalable quantum sensors. The unique optical and spin prop-
erties of NV centers are explored in detail, emphasizing their
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possible applications in fields such as biomedical imaging,
materials science, and semiconductor inspection. We delve
into the technical aspects of integrating NV centers with
conventional electronic and photonic systems, discussing the
challenges and innovations in electronic interface circuits,
photonic integration, and system-level integration technolo-
gies.

Additionally, we examine gas-based quantum sensors, par-
ticularly those utilizing Rydberg atoms, which offer high
precision due to their long coherence times. The challenges of
integrating gas-based sensors, compared to their solid-state
counterparts, are also briefly discussed.

Overall, the monograph underscores the potential of second-
generation quantum sensors, particularly those based on
NV centers, to be the first scalable, high-volume quantum
devices on the market, with applications spanning various
fields due to their high sensitivity and room-temperature
operation.
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1
Introduction and Motivation

Quantum technology is a young, thriving field of research that com-
bines fundamental concepts of quantum physics with practical aspects
of engineering to develop novel technologies. Quantum effects such as
entanglement between photons or the discrete energy states of atoms
are used to develop innovative approaches to communication, sensor
technology, simulation, or computing that have no equivalent in the
realm of classical physics. Quantum technologies, therefore, offer nu-
merous opportunities for new applications in industry and society. The
immense potential of quantum technologies is undisputed and quantum
technologies are classified as one of the technologies of the future by
both leading companies and political decision-makers [35]–[37].

The term quantum technologies generally covers the areas of quan-
tum computing – including quantum simulation – quantum communi-
cation, and quantum sensing. These three areas are at very different
stages of development, as outlined in the following paragraphs.

Quantum computing harnesses the principles of superposition and
entanglement to perform certain computations at speeds unattainable
by classical computers [28]. This paradigm shift is poised to revolutionize
fields such as cryptography, optimization, and complex system simula-
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4 Introduction and Motivation

tions. Quantum computers can solve specific problems exponentially
faster than their classical counterparts, potentially breaking crypto-
graphic codes and simulating quantum systems for drug discovery and
material science. However, the realization of scalable, fault-tolerant
quantum computers remains a significant challenge, with practical,
widespread deployment still years, if not decades, away [7].

Quantum communication utilizes quantum entanglement and quan-
tum key distribution (QKD) to enable ultra-secure communication
channels. By leveraging the fundamental properties of quantum physics,
it ensures that any eavesdropping on the communication can be de-
tected, providing an unprecedented level of security. This technology
holds immense promise for safeguarding sensitive information for govern-
mental applications as well as the finance and healthcare sectors. While
significant strides have been made, including the successful demon-
stration of satellite-based QKD [9], the infrastructure required for a
global quantum communication network is still under development. Here,
one major challenge is the realization of so-called quantum repeaters.
While in classical communication systems, a repeater is essentially an
amplifier that boosts the signal strength, the non-cloning principle of
quantum mechanics prevents a straightforward signal amplification.
Instead, quantum repeaters are small quantum computers (so-called
quantum registers) implementing a quantum memory and the possi-
bility to perform quantum operations on the quantum states in the
memory. The message is then transmitted by entangling quantum states
of the quantum memories of neighboring quantum repeaters. Since the
quantum registers require only a small number of qubits (around ten),
it is currently believed that quantum communications can find its way
into the market at a shorter time scale than quantum computing.

Quantum sensing employs quantum physics to achieve measure-
ment sensitivities far beyond classical capabilities. Utilizing quantum
phenomena such as squeezed states, entangled photons, and superposi-
tion, quantum sensors can detect minute changes in physical quantities
with extraordinary precision. Importantly, virtually all quantities are
accessible via suitable quantum sensors, rendering quantum sensing an
interesting alternative for various fields, including medical imaging, navi-
gation, environmental monitoring, and fundamental science experiments.

Full text available at: http://dx.doi.org/10.1561/3500000015
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Unlike quantum computing and quantum communications, quantum
sensing devices can provide a quantum advantage using a single qubit
and are, in general, easier to develop and deploy, with several practical
applications already approaching market readiness. Here, one key ad-
vantage of quantum sensors is the fact that – depending on the quantum
sensor – a quantum advantage can be achieved at room temperature,
removing the need for cryogenic cooling and, thereby, providing much
faster entries to (potentially) much larger markets.

Among the three quantum applications explained above, quantum
sensing stands out as the closest to market adoption. The relatively
lower complexity and immediate applicability of quantum sensors make
them a tangible option for near-term integration into existing tech-
nologies and systems. The rapid progress in this field, in combination
with the substantial benefits of enhanced sensitivity and precision, posi-
tions quantum sensing as the quantum technology most likely to see
widespread commercial use in the near future.

Therefore, this monograph will primarily focus on quantum sensing,
providing a self-contained overview from its principles to state-of-the-art
implementations of scalable quantum sensors. Here, we will focus on the
integration technologies that are required to design and manufacture
such scalable quantum devices, placing our main emphasis on the
electronic integration of quantum sensors.
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