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Abstract

It has now been 50 years since the publication of Luhn’s seminal paper
on automatic summarization. During these years the practical need for
automatic summarization has become increasingly urgent and numer-
ous papers have been published on the topic. As a result, it has become
harder to find a single reference that gives an overview of past efforts
or a complete view of summarization tasks and necessary system com-
ponents. This article attempts to fill this void by providing a com-
prehensive overview of research in summarization, including the more
traditional efforts in sentence extraction as well as the most novel recent
approaches for determining important content, for domain and genre
specific summarization and for evaluation of summarization. We also
discuss the challenges that remain open, in particular the need for lan-
guage generation and deeper semantic understanding of language that
would be necessary for future advances in the field.
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1

Introduction

Today’s world is all about information, most of it online. The World
Wide Web contains billions of documents and is growing at an expo-
nential pace. Tools that provide timely access to, and digest of, various
sources are necessary in order to alleviate the information overload peo-
ple are facing. These concerns have sparked interest in the development
of automatic summarization systems. Such systems are designed to take
a single article, a cluster of news articles, a broadcast news show, or an
email thread as input, and produce a concise and fluent summary of the
most important information. Recent years have seen the development
of numerous summarization applications for news, email threads, lay
and professional medical information, scientific articles, spontaneous
dialogues, voicemail, broadcast news and video, and meeting record-
ings. These systems, imperfect as they are, have already been shown to
help users and to enhance other automatic applications and interfaces.

1.1 Types of Summaries

There are several distinctions typically made in summarization and here
we define terminology that is often mentioned in the summarization
literature.

1
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2 Introduction

Extractive summaries (extracts) are produced by concatenating
several sentences taken exactly as they appear in the materials being
summarized. Abstractive summaries (abstracts), are written to convey
the main information in the input and may reuse phrases or clauses
from it, but the summaries are overall expressed in the words of the
summary author.

Early work in summarization dealt with single document summa-
rization where systems produced a summary of one document, whether
a news story, scientific article, broadcast show, or lecture. As research
progressed, a new type of summarization task emerged: multi-document
summarization. Multi-document summarization was motivated by use
cases on the web. Given the large amount of redundancy on the web,
summarization was often more useful if it could provide a brief digest
of many documents on the same topic or the same event. In the first
deployed online systems, multi-document summarization was applied
to clusters of news articles on the same event and used to produce
online browsing pages of current events [130, 171].1 A short one-
paragraph summary is produced for each cluster of documents per-
taining to a given news event, and links in the summary allow the
user to directly inspect the original document where a given piece of
information appeared. Other links provide access to all articles in the
cluster, facilitating the browsing of news. User-driven clusters were also
produced by collecting search engine results returned for a query or by
finding articles similar to an example document the user has flagged as
being of interest [173].

Summaries have also been distinguished by their content. A sum-
mary that enables the reader to determine about-ness has often been
called an indicative summary, while one that can be read in place of the
document has been called an informative summary [52]. An indicative
summary may provide characteristics such as length, writing style, etc.,
while an informative summary will include facts that are reported in
the input document(s).

1 %%%%http://lada.si.umich.edu:8080/clair/nie1/nie.cgi, %%%%http:
//newsblaster.columbia.edu.
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1.1 Types of Summaries 3

Most research in summarization deals with producing a short,
paragraph-length summary. At the same time, a specific application
or user need might call for a keyword summary, which consists of a set
of indicative words or phrases mentioned in the input, or headline sum-
marization in which the input document(s) is summarized by a single
sentence.

Much of the work to date has been in the context of generic
summarization. Generic summarization makes few assumptions about
the audience or the goal for generating the summary. Typically, it is
assumed that the audience is a general one: anyone may end up read-
ing the summary. Furthermore, no assumptions are made about the
genre or domain of the materials that need to be summarized. In this
setting, importance of information is determined only with respect to
the content of the input alone. It is further assumed that the summary
will help the reader quickly determine what the document is about,
possibly avoiding reading the document itself.

In contrast, in query focused summarization, the goal is to sum-
marize only the information in the input document(s) that is relevant
to a specific user query. For example, in the context of information
retrieval, given a query issued by the user and a set of relevant doc-
uments retrieved by the search engine, a summary of each document
could make it easier for the user to determine which document is rel-
evant. To generate a useful summary in this context, an automatic
summarizer needs to take the query into account as well as the docu-
ment. The summarizer tries to find information within the document
that is relevant to the query or in some cases, may indicate how much
information in the document relates to the query. Producing snippets
for search engines is a particularly useful query focused application
[207, 213]. Researchers have also considered cases where the query is
an open-ended question, with many different facts possibly being rel-
evant as a response. A request for a biography is one example of an
open-ended question as there are many different facts about a person
that could be included, but are not necessarily required.

Update summarization addresses another goal that users may
have. It is multi-document summarization that is sensitive to time; a

Full text available at: http://dx.doi.org/10.1561/1500000015



4 Introduction

summary must convey the important development of an event beyond
what the user has already seen.

The contrast between generic, query-focused, and update summa-
rization is suggestive of other issues raised by Sparck Jones in her 1998
call to arms [194]. Sparck Jones argued that summarization should
not be done in a vacuum, but rather should be viewed as part of a
larger context where, at the least, considerations such as the purpose
of summarization (or task which it is part of), the reader for which it
is intended, and the genre which is being summarized, are taken into
account. She argued that generic summarization was unnecessary and
in fact, wrong-headed. Of course, if we look at both sides of the ques-
tion, we see that those who write newspaper articles do so in much the
same spirit in which generic summaries are produced: the audience is a
general one and the task is always the same. Nonetheless, her arguments
are good ones as they force the system developer to think about other
constraints on the summarization process and they raise the possibility
of a range of tasks other than to simply condense content.

1.2 How do Summarization Systems Work?

Summarization systems take one or more documents as input and
attempt to produce a concise and fluent summary of the most impor-
tant information in the input. Finding the most important information
presupposes the ability to understand the semantics of written or spo-
ken documents. Writing a concise and fluent summary requires the
capability to reorganize, modify and merge information expressed in
different sentences in the input. Full interpretation of documents and
generation of abstracts is often difficult for people,2 and is certainly
beyond the state of the art for automatic summarization.

How then do current automatic summarizers get around this conun-
drum? Most current systems avoid full interpretation of the input
and generation of fluent output. The current state of the art in the
vast majority of the cases relies on sentence extraction. The extractive
approach to summarization focuses research on one key question: how

2 For discussion of professional summarization, see [114].
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1.2 How do Summarization Systems Work? 5

can a system determine which sentences are important? Over the years,
the field has seen advances in the sophistication of language processing
and machine learning techniques that determine importance.

At the same time, there have been recent advances in the field which
move toward semantic interpretation and generation of summary lan-
guage. Semantic interpretation tends to be done for specialized summa-
rization. For example, systems that produce biographical summaries or
summaries of medical documents tend to use extraction of information
rather than extraction of sentences. Research on generation for sum-
marization uses a new form of generation, text-to-text generation and
focuses on editing input text to better fit the needs of the summary.

1.2.1 Early Methods for Sentence Extraction

Most traditional approaches to summarization deal exclusively with
the task of identifying important content, usually at the sentence level.
The very first work on automatic summarization, done by Luhn [111]
in the 1950s, set the tradition for sentence extraction.

His approach was implemented to work on technical papers and
magazine articles. Luhn put forward a simple idea that shaped much
of later research, namely that some words in a document are descriptive
of its content, and the sentences that convey the most important infor-
mation in the document are the ones that contain many such descriptive
words close to each other that. He also suggested using frequency of
occurrence in order to find which words are descriptive of the topic of
the document; words that occur often in the document are likely to be
the main topic of this document. Luhn brought up two caveats: some
of the most common words in a technical paper or a magazine arti-
cle, and in fact in any type of document, are not at all descriptive of
its content. Common function words such as determiners, prepositions
and pronouns do not have much value in telling us what the document
is about. So he used a predefined list, called a stop word list, consist-
ing of such words to remove them from consideration. Another class
of words that do not appear in the stop word list but still cannot be
indicative of the topic of a document are words common for a par-
ticular domain. For example, the word “cell” in a scientific paper in

Full text available at: http://dx.doi.org/10.1561/1500000015



6 Introduction

cell biology is not likely to give us much idea about what the paper is
about. Finally, words that appear in the document only a few times are
not informative either. Luhn used empirically determined high and low
frequency thresholds for identifying descriptive words, with the high
thresholds filtering out words that occur very frequently throughout
the article and the low thresholds filtering out words that occur too
infrequently. The remaining words are the descriptive words, indicative
of the content that is important. Sentences characterized by high den-
sity of descriptive words, measured as clusters of five consecutive words
by Luhn, are the most important ones and should be included in the
summary.

In the next section we discuss how later work in sentence extraction
adopted a similar view of finding important information but refined the
ideas of using raw frequency by proposing weights for words, such as
TF∗IDF, in order to circumvent the need for coming up with arbitrary
thresholds in determining which words are descriptive of a document.
Later, statistical tests on word distributions were proposed to decide
which words are topic words and which are not. Other approaches
abandoned the idea of using words as the unit of operation, and used
word frequency indirectly to model the similarity between sentences
and derive measures of sentence importance from these relationships.
We present these approaches in greater detail in Section 2, as they have
proven to be highly effective, relatively robust to genre and domain, and
are often referenced in work on automatic summarization.

There are some obvious problems with Luhn’s approach. The same
concept can be referred to using different words: consider for exam-
ple “approach”, “method” “algorithm”, and “it”. Different words may
indicate a topic when they appear together; for example “hurricane”,
“damage”, “casualties”, “relief” evoke a natural disaster scenario. The
same word can appear in different morphological variants — “show”,
“showing”, “showed” — and counts of words as they appear in the text
will not account for these types of repetition. In fact, Luhn was aware
of these problems and he employed a rough approximation to morpho-
logical analysis, collapsing words that are similar except for the last
six letters, to somewhat address this problem. After our presentation
of word frequency-driven approaches in Section 2.1, we briefly discuss

Full text available at: http://dx.doi.org/10.1561/1500000015



1.2 How do Summarization Systems Work? 7

work based on the use of coreference systems and knowledge sources
that perform input analysis and interpretation. These methods can bet-
ter address these challenges and are discussed in Section 3. In essence
these are still frequency approaches, but counting is performed in a
more intelligent manner. Such approaches incur more processing over-
head, which is often undesirable for practical purposes, but comes closer
to the ideal of developing systems that are in fact interpreting the input
before producing a summary.

Edmundson’s [52] work was the foundation of several other trends
in summarization research which eventually led to machine learning
approaches in summarization. He expanded on Luhn’s approach by
proposing that multiple features may indicate sentence importance. He
used a linear combination of features to weight sentences in a scien-
tific article. His features were: (1) number of times a word appears in
the article, (2) the number of words in the sentence that also appear
in the title of the article, or in section headings, (3) position of the
sentence in the article and in the section, (4) the number of sen-
tence words matching a pre-compiled list of cue words such as “In
sum”. A compelling aspect of Edmundson’s work that foreshadows
today’s empirically based approaches, was the creation of a document/
extractive summary corpus. He used the corpus both to determine
weights on the four features and to do evaluation. His results inter-
estingly suggest that word frequency is the least important of the four
classes of features, for his specific task and corpus. His other features
take advantage of knowledge of the domain and genre of the input
to the summarizer. We discuss such domain dependent approaches,
which make use of domain-dependent knowledge sources and of specific
domain characteristics, for summarization of scientific articles, medical
information and email in Section 5.

In other relatively early and seminal work, Paice [164, 165] shifted
the research focus toward the need for language generation techniques
in summarization. He focused on the problem in extractive summa-
rization of accidentally selecting sentences that contain unresolved ref-
erences to sentences not included in the summary or not explicitly
included in the original document. The problem can arise not only
because of the presence of a pronouns but also because of a wide variety

Full text available at: http://dx.doi.org/10.1561/1500000015



8 Introduction

of other phrases (exophora) such as “Our investigations have shown this
to be true.” and “There are three distinct methods to be considered.”
Paice built an extractive summarizer which uses the presence of phrases
from a list that he compiled, such as “The main goal of our paper . . . ”,
to determine an initial set of seed sentences that should be selected.
Then an aggregation procedure adds sentences preceding or following
the seed until all exophora are resolved. Paice also suggested modifying
sentences to resolve exophora when the reference can be found but did
not implement an actual system for doing this. Paice’s research was
the first to point out the problem of accidentally including exophora
in extractive summaries, but the solution of simply adding more sen-
tences until the antecedent is found is not satisfactory and much later
research on using language generation for summarization has revisited
the problem as we discuss in Section 4.

1.2.2 Non-extractive Approaches

The current state of the art in the vast majority of the cases completely
ignores issues of language generation and relies on sentence extrac-
tion, producing extractive summaries composed of important sentences
taken verbatim from the input. The sole emphasis in such systems is to
identify the important sentences that should appear in the summary.
Meanwhile, the development of automatic methods for language gen-
eration and text quality has become somewhat independent subfields
of research motivated but not directly linked to the field of summa-
rization. Below we briefly introduce some of the main areas of research
that are needed for enhancing current summarization systems.

Sentence ordering. This is the problem of taking several sentences,
such as those deemed to be important by an extractive summarizer,
and presenting them in the most coherent order.

Below we reproduce an example from [9], that shows two different
orderings of the same content. The first example is one rated as poor
by readers, and the second is one rated as good. The examples make
it clear that the order of presentation makes a big difference for the
overall quality of the summary and that certain orderings may pose

Full text available at: http://dx.doi.org/10.1561/1500000015



1.2 How do Summarization Systems Work? 9

problems for the reader trying to understand the gist of the presented
information.

Summary 1; rated poor

P1 Thousands of people have attended a ceremony in Nairobi commemorating the
first anniversary of the deadly bombings attacks against U.S. Embassies in
Kenya and Tanzania.

P2 Saudi dissident Osama bin Laden, accused of masterminding the attacks, and
nine others are still at large.

P3 President Clinton said, The intended victims of this vicious crime stood for
everything that is right about our country and the world.

P4 U.S. federal prosecutors have charged 17 people in the bombings.
P5 Albright said that the mourning continues.
P6 Kenyans are observing a national day of mourning in honor of the 215 people

who died there.

Summary 2; rated good

P1 Thousands of people have attended a ceremony in Nairobi commemorating the
first anniversary of the deadly bombings attacks against U.S. Embassies in
Kenya and Tanzania. Kenyans are observing a national day of mourning
in honor of the 215 people who died there.

P2 Saudi dissident Osama bin Laden, accused of masterminding the attacks, and
nine others are still at large. U.S. federal prosecutors have charged 17 people
in the bombings.

P3 President Clinton said, “The intended victims of this vicious crime stood for
everything that is right about our country and the world”. Albright said
that the mourning continues.

Sentence revision. Sentence revision was historically the first lan-
guage generation task attempted in the context of summarization
[89, 116, 146, 147, 162]. Sentence revision involves re-using text col-
lected from the input to the summarizer, but parts of the final summary
are automatically modified by substituting some expressions with other
more appropriate expressions, given the context of the new summary.
Types of revisions proposed by early researchers include elimination

of unnecessary parts of the sentences, combination of information
originally expressed in different sentences and substitution of a pro-
noun with a more descriptive noun phrase where the context of the
summary requires this [116]. Given that implementation of these revi-
sion operations can be quite complex, researchers in the field eventually

Full text available at: http://dx.doi.org/10.1561/1500000015



10 Introduction

established largely non-overlapping sub-fields of research, each concen-
trating on only one type of revision.

Sentence fusion. Sentence fusion is the task of taking two sentences
that contain some overlapping information, but that also have frag-
ments that are different. The goal is to produce a sentence that con-
veys the information that is common between the two sentences, or a
single sentence that contains all information in the two sentences, but
without redundancy.

Here we reproduce two examples of fusion from [96]. The first one
conveys only the information that is common to two different sentences,
A and B, in the input documents to be summarized (intersection), while
the second combines all the information for the two sentences (union).

Sentence A Post-traumatic stress disorder (PTSD) is a psychological disorder
which is classified as an anxiety disorder in the DSM-IV.

Sentence B Post-traumatic stress disorder (abbrev. PTSD) is a psychological dis-
order caused by a mental trauma (also called psychotrauma) that can
develop after exposure to a terrifying event.

Fusion 1 Post-traumatic stress disorder (PTSD) is a psychological disorder.
Fusion 2 Post-traumatic stress disorder (PTSD) is a psychological disorder, which

is classified as an anxiety disorder in the DSM-IV, caused by a mental
trauma (also called psychotrauma) that can develop after exposure to a
terrifying event.

Sentence compression. Researchers interested in sentence compres-
sion were motivated by the observation that human summaries often
contain parts of sentences from the original documents which are being
summarized, but some portions of the sentence are removed to make it
more concise.

Below we reproduce two examples from the Ziff-Davis corpus of
sentence compression performed by a person, alongside the original
sentence from the document. It is clear from the examples that com-
pression not only shortens the original sentences but also makes them
much easier to read.

Comp1 The Reverse Engineer Tool is priced from $8,000 for a single user to $90,000
for a multiuser project site.

Orig1 The Reverse Engineer Tool is available now and is priced on a site-licensing
basis, ranging from $8,000 for a single user to $90,000 for a multiuser project
site.

Full text available at: http://dx.doi.org/10.1561/1500000015



1.3 Evaluation Issues 11

Comp2 Design recovery tools read existing code and translate it into definitions
and structured diagrams.

Orig2 Essentially, design recovery tools read existing code and translate it into
the language in which CASE is conversant — definitions and structured
diagrams.

We discuss sentence ordering and language generation approaches
in Section 4. The examples above clearly demonstrate the need for
such approaches in order to build realistic, human-like, summarization
systems. Yet the majority of current systems rely on sentence extraction
for selecting content and do not use any of the text-to-text generation
techniques, leaving the opportunity for significant improvements with
further progress in language generation.

1.3 Evaluation Issues

The tension between generic and query-focused summarization,
sentence-extraction and more sophisticated methods was also apparent
in the context of the DUC (Document Understanding Conference) Eval-
uation Workshops [163]. Despite its name, DUC was initially formed
in 2001 to evaluate work on summarization and was open to any group
interested in participating. Its independent advisory board was charged
with identifying tasks for evaluation. Generic summarization was the
initial focus, but in later years it branched out to cover various task-
based efforts, including a variation on query-focused summarization,
topic-based summarization. The first of the topic-based tasks was to
provide a summary of information about a person (similar to a biog-
raphy), given a set of input documents on that person, while later on,
a system was provided with a paragraph-length topic and a set of doc-
uments and was to use information within the documents to create a
summary that addressed the topic.

Generic single document summarization of news was discontinued
as a task at DUC after the first two years of the evaluations because no
automatic summarizer could outperform the simple baseline consist-
ing of the beginning of the news article, when using manual evaluation
metrics. Similarly, for the task of headline generation — creating a
10-word summary of a single news article — no automatic approach
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12 Introduction

outperformed the baseline of using the original headline of the article.
For both tasks, human performance was significantly higher than that
of the baselines, showing that while not yet attainable, better perfor-
mance for automatic systems is possible [148].

DUC, which was superseded by the Text Analysis Conference
(TAC) in 2007, provided much needed data to the research community,
allowing the development of empirical approaches. Given the difficulty
of evaluation, DUC fostered much research on evaluation. However,
because the metrics emphasized content selection, research on the lin-
guistic quality of a summary was not necessary. Furthermore, given the
short time-frame within which tasks were introduced, summarization
researchers who participated in DUC were forced to come up with a
solution that was quick to implement. Exacerbating this more, given
that people like to win, researchers were more likely to try incremen-
tal, safe approaches that were likely to come out on top. Thus, DUC
in part encouraged the continuation of the “safe” approach, sentence
extraction, even while it encouraged research on summarization and
evaluation.

1.4 Where Does Summarization Help?

While evaluation forums such as DUC and TAC enable experimental
setups through comparison to a gold standard, the ultimate goal in
development of a summarization system is to help the end user perform
a task better. Numerous task-based evaluations have been performed to
establish that summarization systems are indeed effective in a variety of
tasks. In the TIPSTER Text Summarization Evaluation (SUMMAC),
single-document summarization systems were evaluated in a task-based
scenario developed around the tasks of real intelligence analysts [113].
This large-scale study compared the performance of a human in judging
if a particular document is relevant to a topic of interest, by reading
either the full document or a summary thereof. It established that
automatic text summarization is very effective in relevance assessment
tasks on news articles. Summaries as short as 17% of the full text length
sped up decision-making by almost a factor of two, with no statistically
significant degradation in accuracy. Query-focused summaries are also
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very helpful in making relevance judgments about retrieved documents.
They enable users to find more relevant documents more accurately,
with less need to consult the full text of the document [203].

Multi-document summarization is key for organizing and present-
ing search results in order to reduce search time, especially when the
goal of the user is to find as much information as possible about a
given query [112, 131, 181]. In McKeown et al. [131], users were given a
task of writing reports on specified topics, with an interface containing
news articles, some relevant to the topic and some not. When articles
were clustered and summaries for the related articles were provided,
people tended to write better reports, but moreover, they reported
higher satisfaction when using the information access interface aug-
mented with summaries; they felt they had more time to complete the
task. Similarly, in the work of Mana-López et al. [112], users had to
find as many aspects as possible about a given topic. Clustering simi-
lar articles returned from a search engine together proved to be more
advantageous than traditional ranked list presentation, and consider-
ably improved user accuracy in finding relevant information. Providing
a summary of the articles in each cluster that conveys the similarities
between them, and single-document summaries highlighting the infor-
mation specific to each document, also helped users in finding informa-
tion, but in addition considerably reduced time as users read fewer full
documents.

In summarization of scientific articles, the user goal is not only to
find articles relevant to their interest, but also to understand in what
respect a scientific paper relates to the previous work it describes and
cites. In a study to test the utility of scientific paper summarization
for determining which of the approaches mentioned in the paper are
criticized and which approaches are supported and extended, automatic
summaries were found to be almost as helpful as human-written ones,
and significantly more useful than the original article abstract [199].

Voicemail summaries are helpful for recognizing the priority of the
message, the call-back number, or the caller [95]; summaries of threads
in help forums are useful in deciding if the thread is relevant [151], and
summaries of meetings are a necessary part of interfaces for meeting
browsing and search [205].
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Numerous studies have also been performed to investigate and con-
firm the usefulness of single document summaries for improvement of
other automated tasks. For example, Sakai and Sparck Jones [182]
present the most recent and extensive study (others include [22] and
several studies conducted in Japan and published in Japanese) on the
usefulness of generic summaries for indexing in information retrieval.
They show that, indeed, indexing for retrieval based on automatic
summaries rather than full document text helps in certain scenarios
for precision-oriented search. Similarly, query expansion in informa-
tion retrieval is much more effective when potential expansion terms
are selected from a summary of relevant documents instead of the full
document [100].

Another unexpectedly successful application of summarization for
improvement of an automatic task has been reported by [23]. They
examined the impact of summarization on the automatic topic classifi-
cation module that is part of a system for automatic scoring of student
GMAT essays. Their results show that summarization of the student
essay significantly improves the performance of the topical analysis
component. The conjectured reason for the improvement is that the
students write these essays under time constraints and do not have
sufficient time for revision and thus their writing contains some digres-
sions and repetitions, which are removed by the summarization module,
allowing for better assessment of the overall topic of the essay.

The potential uses and applications of summarization are incredibly
diverse as we have seen in this section. But how do these systems work
and what are the open problems not currently handled by systems? We
turn to this discussion next.

1.5 Article Overview

We begin our summarization overview with a presentation of research
on sentence extraction in Section 2. In that section, we first present
earlier research on summarization that experimented with methods for
determining sentence importance that are based on variants of fre-
quency. Machine learning soon became the method of choice for deter-
mining pertinent features for selecting sentences. From there, we move
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to graph-based approaches that select sentences based on their rela-
tions to other sentences. Finally, we close Section 2 by looking at the
use of sentence extraction for query-focused summarization. One case
of query-focused summarization is the generation of biographical sum-
maries and we see that when the task is restricted (here to one class of
queries), researchers begin to develop approaches that differ substan-
tially from the typical generic extraction based approach.

In Section 3, we continue to survey extractive approaches, but
move to methods that do more sophisticated analysis to determine
importance. We begin with approaches that construct lexical chains
which represent sentence relatedness through word and synonym over-
lap across sentences. The hypothesis is that each chain represents a
topic and that topics that are pursued for greater lengths are likely to
be more salient. We then turn to approaches that represent or compute
concepts and select sentences that refer to salient concepts. Finally, we
turn to methods that make use of discourse information, either in the
form of rhetorical relations between sentences, or to augment graph-
based approaches.

In Section 4, we examine the different sub-fields that have grown
up around various forms of sentence revision. We look at methods that
compress sentences by removing unnecessary detail. We then turn to
methods that combine sentences by fusing together repeated and salient
information from different sentences in the input. Next, we turn to work
that edits summary sentences, taking into account the new context of
the summary. We close with research on ordering of summary sentences.

In the final section on approaches, Section 5, we survey research
that has been carried out for specific genres and domains. We find that
often documents within a specific genre have an expected structure and
that structure can be exploited during summary generation. This is the
case, for example, with journal article summarization. At other times,
we find that while the form of the genre creates problems (e.g., speech
has disfluencies and errors resulting from recognition that cause diffi-
culties), information beyond the words themselves may be available to
help improve summarization results. In speech summarization, acous-
tic and prosodic clues can be used to identify important information,
while in very recent work on web summarization, the structure of the
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web can be used to determine importance. In some domains, we find
that domain dependant semantic resources are available and the nature
of the text is more regular so that semantic interpretation followed by
generation can be used to produce the summary; this is the case in the
medical domain.

Before concluding, we provide an overview in Section 6 on research
in summarization evaluation. Much of this work was initiated with
DUC as the conference made evaluation data available to the commu-
nity for the first time. Methodology for evaluation is a research issue
in itself. When done incorrectly, evaluation does not accurately reveal
which system performs better. In Section 6, we review intrinsic methods
for evaluation. Intrinsic refers to methods that evaluate the quality of
the summary produced, usually through comparison to a gold stan-
dard. This is in contrast to extrinsic evaluation where the evaluation
measures the impact of the summary on task performance such as the
task-based evaluations that we just discussed. We review metrics used
for comparison against a gold standard as well as both manual and
automatic methods for comparison. We discuss the difference between
evaluation of summary content and evaluation of the linguistic quality
of the summary.
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