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Abstract

Recently, the focus of many novel search applications has shifted from
short keyword queries to verbose natural language queries. Examples
include question answering systems and dialogue systems, voice search
on mobile devices and entity search engines like Facebook’s Graph
Search or Google’s Knowledge Graph. However the performance of text-
book information retrieval techniques for such verbose queries is not as
good as that for their shorter counterparts. Thus, effective handling of
verbose queries has become a critical factor for adoption of information
retrieval techniques in this new breed of search applications.

Over the past decade, the information retrieval community has
deeply explored the problem of transforming natural language verbose
queries using operations like reduction, weighting, expansion, reformu-
lation and segmentation into more effective structural representations.
However, thus far, there was not a coherent and organized survey on
this topic. In this survey, we aim to put together various research pieces
of the puzzle, provide a comprehensive and structured overview of vari-
ous proposed methods, and also list various application scenarios where
effective verbose query processing can make a significant difference.

M. Gupta and M. Bendersky. Information Retrieval with Verbose Queries.
Foundations and TrendsR© in Information Retrieval, vol. 9, no. 3-4, pp. 209–354,
2015.
DOI: 10.1561/1500000050.
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Preface

Information retrieval with verbose natural language queries has gained
a lot of interest in recent years both from the research community and
the industry. Search with verbose queries is one of the key challenges for
many of the current most advanced search platforms, including ques-
tion answering systems (Watson or Wolfram Alpha), mobile personal
assistants (Siri, Cortana and Google Now), and entity-based search en-
gines (Facebook Graph Search or Knowledge Graph). Therefore, we
believe that this survey is very timely and should be interesting to
readers from both academia as well as industry.

Scope of the Survey

We cover an exhaustive list of techniques to handle verbose queries.
Intuitively verbose queries are long. Also empirical observations show
that often times long queries are verbose in nature. We use the terms
“verbose” queries and “long” queries interchangeably in this survey.

In order to stay focused, following is a list of related topics that we
do not cover as part of this survey.

• Automatic Speech Recognition (ASR)

• Processing null queries other than verbose queries

2
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Preface 3

• Methods (e.g., [Yang et al., 2009] and [Tsagkias et al., 2011]) and
applications (e.g., [Yih et al., 2006]) which consider documents
as queries

• Query processing tasks for short queries which do not need any
non-trivial modification to be applicable to long queries

• Community-based question-answering systems

Development of the Survey

Many tutorials and surveys dedicated to general query handling or
query log analysis have been conducted by researchers in information
retrieval and web mining. However, all of them focus on short queries;
none of these have explicitly focused on long verbose queries. This
survey is based on a full-day tutorial offered by the authors at the
38th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2015). The slides for the tu-
torial can be obtained from http://research.microsoft.com/pubs/
241895/gupta15_verbose.pptx.

This survey is entirely based on previously published research and
publicly available datasets, rather than the internal practices of the
respective employers of the authors. As such, it should prove useful for
both practitioners and academic researchers interested in reproducing
the reported results.

Audience

Researchers in the field of information retrieval will benefit the most,
as this survey will give them an exhaustive overview of the research
in the direction of handling verbose web queries. We believe that the
survey will give the newcomers a complete picture of the current work,
introduce important research topics in this field, and inspire them to
learn more. Practitioners and people from the industry will clearly
benefit from the discussions both from the methods perspective, as
well as from the point of view of applications where such mechanisms
are starting to be applied.
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4 Preface

After reading the survey, the audience will be able to appreciate
and understand the following.

• What are the interesting properties of complex natural language
verbose queries

• Challenges in effective information retrieval with verbose queries

• State-of-the-art techniques for verbose query transformations
that yield better expected search performance

• State-of-the-art ranking methods for verbose queries, including
supervised learning-to-rank methods

• What user/industry segments can be affected by better retrieval
with verbose queries and what are the possible applications

Writing Style

We have tried to make the survey as self-contained as possible. How-
ever, for some sections, we have deliberately adopted a reference paper
writing style, to enable a holistic overview of the research field. In such
cases, we discuss those pieces of work from a more general and abstract
standpoint, and advise the readers to go through the referenced papers
for details. We provide a basic introduction to preliminary informa-
tion retrieval concepts, graphical models and dependency parsing in
the Appendices.

Full text available at: http://dx.doi.org/10.1561/1500000050



1
Introduction

Web search has matured significantly in the past two decades. Beyond
the ten blue links, search engines display a large amount of heteroge-
neous information including direct factual answers, task panes, image
answers, news answers, video answers, social results, related searches,
etc. Broadly, queries to a search engine can be divided into two parts:
head and tail. Head queries are the highly popular queries while the
tail queries occur with a low frequency in the query log. Although the
head queries are handled very elegantly by the popular search engines,
there is a large room for improvement when handling the tail queries,
a part of which return no results.

1.1 Null Queries

Null queries are queries for which the search engine returns zero results.
This could be because of the following reasons.

• Query verbosity

• Mismatch between the searcher and the publisher vocabulary

5
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6 Introduction

• Unavailability of relevant documents (temporally, or general rar-
ity)

• Inability of the naïve users to formulate appropriate queries

In this survey, we focus on the verbosity aspect of such “null” or diffi-
cult to handle queries. We use the terms “verbose” queries and “long”
queries interchangeably. This work focuses on verbose queries as well
as on long queries which may or may not be verbose.

1.2 Verbose Queries are Frequent

As shown in Figure 2.1, the percentage of the total query traffic follows
a power law distribution with respect to the query length [Arampatzis
and Kamps, 2008, Bailey et al., 2010], i.e., for a query Q,

p(|Q|) = C|Q|−s, for |Q| ≥ k0 (1.1)

where |Q| is the query length in words, C is a normalizing constant, s
is the slope, k0 is the lower bound from which the power law holds.

We consider queries with five or more words as verbose or long
queries. In 2006, Yahoo! claimed that 17% of the queries contained five
or more words.1. Figure 2.1 shows that ∼15% queries contain five or
more words.

Popular usage of speech-based personal assistants like Cortana,
Siri, and Google Now attract an even higher percentage of verbose
queries. Crestani and Du [2006] and Yi and Maghoul [2011] analyzed
the properties of written versus spoken queries which were manually
generated by participants to satisfy TREC topic information needs.
They found that while written queries had an average length of 9.54 and
7.48 words with and without stop words respectively, spoken queries
had an average length of 23.07 and 14.33 words respectively. Voice
queries were considerably longer than the typed mobile queries.

While most of the verbose queries are explicitly asked by the users,
some of them are implicit. Users ask verbose queries explicitly in a large

1http://www.zdnet.com/blog/micro-markets/yahoo-searches-more-
sophisticated-and-specific/27
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1.3. Search Engine Performance for Verbose Queries 7

number of scenarios. Advanced users searching for an exhaustive list of
relevant documents in medical literature or patent documents often use
verbose comprehensive queries. Naïve users like children or the elderly
are not trained to ask short queries to search engines and hence end
up using full sentence queries. Community-based question answering
platforms also attract long queries. Sometimes users end up using long
queries implicitly. Long queries could be an outcome of cut-and-paste
behavior. For example, a user just found some text on some topic (say
a news headline) and fires it as a query to find related news articles.
Similarly, to find a relevant image for a paragraph in a textbook, one
may fire the entire paragraph as a query to the search engine. We
discuss both the implicit and explicit examples of verbose queries in
more details in §9.

1.3 Search Engine Performance for Verbose Queries

Past research in information retrieval found that long queries increase
the retrieval performance. However, for web search queries, many re-
searchers have observed that search engines perform poorly on verbose
queries. The reasons for poor performance are as follows.

• High degree of query specificity. To satisfy their specific (or nar-
row) needs, users put additional non-redundant information in
verbose queries. But since there are not many web-pages to sat-
isfy such highly specific information needs, it is difficult for search
engines to surface the right results.

• Term redundancy or extraneous terms (lot of noise). Often times,
verbose queries contain a lot of noise, such as extraneous terms
that users believe are important to conveying their information
needs, but in fact are confusing to automatic systems.

• Rarity of verbose queries. Most search engines optimize for highly
popular (or head) queries. Since verbose queries are rare, search
engine algorithms are not tweaked to always perform well for
them.

Full text available at: http://dx.doi.org/10.1561/1500000050



8 Introduction

• Lack of sufficient natural language parsing. Longer queries can be
answered more effectively if the semantics can be understood us-
ing natural language understanding techniques. However, search
engines currently do not perform such deep parsing because (a)
they are optimized for short queries for which deep natural lan-
guage parsing is not required, and (b) such deep parsing has per-
formance implications.

• Difficulty in distinguishing between the key and complementary
concepts. A verbose query can have multiple concepts. The per-
formance can be improved if the results that contain key concepts
are shown at the top. However, identifying key concepts from a
verbose query is challenging.

Hence, a large number of efforts have been made to understand such
long queries in a more effective manner.

1.4 Datasets

Most of the papers in this area have used the TREC datasets for eval-
uating their approaches. ROBUST04, W10g, GOV2, ClueWeb-09-Cat-
B, TREC123, and CERC are the most popular TREC2 datasets. RO-
BUST04 is a Newswire collection, while W10g, GOV2 and ClueWeb-
09-Cat-B are web collections. TREC123 is a collection of documents
from TREC disks 1 and 2. CERC is the CSIRO Enterprise Research
Collection (CERC), a crawl of *.csiro.au (public) web sites conducted
in March 2007 and used in the 2007 edition of the TREC Enterprise
track. Table 1.1 gives a summary of the dataset statistics. Each of these
datasets contain relevance judgments for multiple topics (or queries).
The judgments are for multiple documents and are binary or graded
(e.g., non-relevant, relevant, highly relevant). TREC topics illustrate
the difference between a keyword query and a description query. A
TREC topic consists of several parts, each of which corresponds to a
certain aspect of the topic. In the example at Figure 1.1, we consider
the title (denoted 〈title〉) as a keyword query on the topic, and the de-

2http://trec.nist.gov
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1.5. Metrics 9

Collection Content #Docs Topics
Robust04 Newswire 528155 250
W10g Web 1692096 100
GOV2 Web 25205179 150
ClueWeb-09-Cat-B Web 50220423 150
TREC123 TREC disks 1 and 2 742611 150
CERC Enterprise Documents

from *.csiro.au
370715 50

Table 1.1: Statistics for TREC Datasets

scription of the topic (denoted 〈desc〉) as a natural language description
of the information request. In general, the description field is intended
to model what a searcher might first say to someone who will actually
help them with their search. The verbose description is therefore of-
ten used as the verbose query. Another popular similar dataset is the
NTCIR-4/5 English-English ad-hoc IR tasks dataset with an average
length of 14 query words for description queries.

Some of the recent papers have also used real web query logs [Bala-
subramanian et al., 2010, Parikh et al., 2013, Yang et al., 2014]. A few
researchers have also used document paragraphs or passages as verbose
queries [Agrawal et al., 2011, Lee and Croft, 2012, Gupta, 2015].

1.5 Metrics

A variety of standard information retrieval metrics have been used to
evaluate the methods for verbose query processing. Most of the re-
searchers that use TREC datasets evaluate their methods using Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR), and Preci-
sion@K measures against the relevance judgments. Researchers using
query logs also use Normalized Discounted Cumulative Gain (NDCG)
with respect to the original long query as a metric. We provide a short
description of these metrics in §A.6.

Full text available at: http://dx.doi.org/10.1561/1500000050
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Discovering Key Concepts in Verbose Queries

Michael Bendersky
bemike@cs.umass.edu

W. Bruce Croft
croft@cs.umass.edu

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

ABSTRACT
Current search engines do not, in general, perform well with
longer, more verbose queries. One of the main issues in pro-
cessing these queries is identifying the key concepts that will
have the most impact on effectiveness. In this paper, we de-
velop and evaluate a technique that uses query-dependent,
corpus-dependent, and corpus-independent features for au-
tomatic extraction of key concepts from verbose queries. We
show that our method achieves higher accuracy in the iden-
tification of key concepts than standard weighting methods
such as inverse document frequency. Finally, we propose a
probabilistic model for integrating the weighted key concepts
identified by our method into a query, and demonstrate that
this integration significantly improves retrieval effectiveness
for a large set of natural language description queries derived
from TREC topics on several newswire and web collections.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms
Algorithms, Experimentation, Theory

Keywords
Information retrieval, verbose queries, key concepts extrac-
tion

1. INTRODUCTION
Automatic extraction of concepts of interest from a larger

body of text have proved to be useful for summarization
[16], keyword extraction [15], content-targeted advertising
[33], named entity recognition [4] and document clustering
[11]. In this paper, we describe an extension of automatic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08, July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

concept extraction methods for the task of extracting key
concepts from verbose natural language queries.

Information retrieval research is generally more focused
on keyword queries: terse queries that contain only a small
selection of key words from a more verbose description of
the actual information need underlying the query. TREC
topics illustrate the difference between a keyword query and
a description query. A TREC topic consists of several parts,
each of which corresponds to a certain aspect of the topic.
In the example at Figure 1, we consider the title (denoted
<title>) as a keyword query on the topic, and the descrip-
tion of the topic (denoted <desc>) as a natural language
description of the information request.

<num> Number 829

<title> Spanish Civil War support

<desc> Provide information on all kinds of material

international support provided to either side in the

Spanish Civil War.

Figure 1: An example of <title> and <desc> parts
of a TREC topic.

It might appear obvious to the reader that the key con-
cept of the topic in Figure 1 is Spanish Civil War, rather
than, say, material international support, which only serves
to complement the key concept. However, there is no ex-
plicit information in the description itself to indicate which
of these concepts is more important.

A simple experiment illustrates this point. When running
the <desc> query from Figure 1 on three commercial web
search engines, the first page of the results (top ten retrieved
documents) for each of the search engines contains six, four
and zero documents related to the Spanish Civil War, re-
spectively. Only one of the search engines returns docu-
ments mentioning international support during the war. In
contrast, running the <title> query from Figure 1 results,
for all three search engines, in all the documents returned
on the first page referring to some aspect of Spanish Civil
War, including international support during the war.

A verbose query could also potentially contain two or
more equally essential key concepts. For example, consider
a query What did Steve Jobs say about the iPod? 1, which
contains two key concepts, Steve Jobs and iPod, that must

1This example originally appeared on the Powerset blog:
http://blog.powerset.com/

Figure 1.1: An Example of 〈title〉 and 〈desc〉 Parts of a TREC Topic

1.6 Organization of the Survey

In this survey we present an organized summary of efforts towards
improved information retrieval for verbose queries. We begin with a
study of the specific properties of verbose queries (§2) which makes
them especially challenging in information retrieval applications. Next,
we discuss six main ways of handling long queries – query reduction
to a single sub-query, query reduction to multiple sub-queries, query
weighting, query expansion, query reformulation, and query segmenta-
tion in §3 to §8. Table 1.2 shows examples of each of the techniques.

Long verbose queries can be reduced to a single sub-query which
could be, for example, the most important noun phrase in the query
(§3). Or the long query could be processed to extract multiple short
queries (§4). Rather than reducing queries by dropping terms from long
queries, each term could be assigned a weight proportional to its impor-
tance (§5). Another way to handle long queries is to add concept words
to the original query to make the intent clearer (§6). If the words used
in the long queries are very specific, they could be completely reformu-
lated to a new query which could potentially match a larger number of
documents (§7). Finally, a verbose query can contain multiple pieces of
the user information need. Such a query could be segmented and then
each such segment can be reduced, weighted, expanded or reformulated
to get desired results (§8). For each of these techniques, we group to-
gether related methods and present comparisons of these methods. We
put together various domains in which verbose queries are frequent,
and also discuss how various verbose query processing techniques have
been used to handle them (§9). We conclude this survey with a brief
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Technique Original Query Modified Query
Query Reduction to
a Single Sub-query
(§3)

ideas for breakfast
menu for a morning
staff meeting

breakfast meeting
menu ideas

Query Reduction
to a Multiple sub-
queries (§4)

identify any efforts
proposed or under-
taken by world gov-
ernments to seek re-
duction of iraqs for-
eign debt

reductions iraqs for-
eign debt, iraqs for-
eign debt

Query Weighting
(§5)

civil war battle reen-
actments

civil:0.0889,
war:0.2795, bat-
tle:0.1310, reenact-
ments:0.5006

Query Expansion
(§6)

staining a new deck staining a new deck
Shopping/Home
and Garden/Home
Improvement

Query Reformulation
(§7)

how far is it from
Boston to Seattle

distance from Boston
to Seattle

Query Segmentation
(§8)

new ac adapter and
battery charger for
hp pavilion notebook

new, ac adapter, and,
battery charger, for,
hp pavilion notebook

Table 1.2: Examples of Various Techniques for Handling Verbose Queries
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Notation Meaning
Q = {q1, q2, . . . , qn} Original verbose query
PQ Power set of Q
P A sub-query of Q
C Collection
|C| Number of words in C
N Number of documents in C
m(P,M) Target measure of effectiveness of ranking func-

tion M for query P
tf(qi) Term frequency of qi in C.
tfd(qi) Term frequency of qi in document or document

collection d.
df(qi) Document frequency of qi in C.
TM (Q) Top M relevant documents for query Q.

Table 1.3: Table of Notations

overview of future research directions (§10). Table 1.3 presents a list of
frequent notations that we use in this survey.

1.7 Summary

Query verbosity is one of the main reasons for zero results returned
by search engines. Verbose queries occur in multiple domains and are
increasing with increase in usage of speech-based personal assistants.
Currently, search engines perform poorly for such long verbose queries.
Hence, a large number of efforts have been made to understand such
long queries in a more effective manner. In this survey we present an
organized summary of efforts towards improved information retrieval
for verbose queries.
Suggested Further Reading: [Arampatzis and Kamps, 2008]: Query
length analysis and distribution fitting for multiple datasets; [Crestani
and Du, 2006]: Comparison between written and spoken queries in
terms of length, duration, part-of-speech, aptitude to describe rele-
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vant documents, and retrieval effectiveness; http://trec.nist.gov/:
Details of the various TREC datasets.
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