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Abstract

The goal of aggregated search is to provide integrated search across
multiple heterogeneous search services in a unified interface—a single
query box and a common presentation of results. In the web search
domain, aggregated search systems are responsible for integrating re-
sults from specialized search services, or verticals, alongside the core
web results. For example, search portals such as Google, Bing, and
Yahoo! provide access to vertical search engines that focus on differ-
ent types of media (images and video), different types of search tasks
(search for local businesses and online products), and even applications
that can help users complete certain tasks (language translation and
math calculations).

Aggregated search systems perform two mains tasks. The first task
(vertical selection) is to predict which verticals (if any) to present in
response to a user’s query. The second task (vertical presentation) is to
predict where and how to present each selected vertical alongside the
core web results.

The goal of this work is to provide a comprehensive summary of pre-
vious research in aggregated search. We first describe why aggregated
search requires unique solutions. Then, we discuss different sources of
evidence that are likely to be available to an aggregated search system,
as well as different techniques for integrating evidence in order to make
vertical selection and presentation decisions. Next, we survey differ-
ent evaluation methodologies for aggregated search and discuss prior
user studies that have aimed to better understand how users behave
with aggregated search interfaces. Finally, we review different advanced
topics in aggregated search.

J. Arguello. Aggregated Search. Foundations and TrendsR© in Information
Retrieval, vol. 10, no. 5, pp. 365–502, 2016.
DOI: 10.1561/1500000052.
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1
Introduction

In recent years, the field of information retrieval (IR) has broadened its
scope to address a wide range of information-seeking tasks. Examples
include search for images, video, news, digitized books, items for sale,
local businesses, scholarly articles, and even social media updates such
as tweets. A common finding in empirical IR research is that different
information-seeking tasks require different solutions. Specifically, differ-
ent tasks require different ways of representing items in the index, dif-
ferent retrieval algorithms for predicting relevance, and different ways
of displaying search results to users.

Different types of media may require different representations. For
example, images may need to be represented using text from the sur-
rounding context in the originating page [Feng and Lapata, 2010], social
media updates may need to be represented using text obtained from
the link-to URL (if one is available) [McCreadie and Macdonald, 2013],
and books may need to be represented using text from an external sum-
mary page [Koolen et al., 2009]. Different search tasks may also require
customized retrieval algorithms. For example, news search may require
favoring recently published articles [Diaz, 2009], local business search
may require favoring businesses that are geographically close [Abou-

2
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3

Assaleh and Gao, 2007], and scholarly article search may require fa-
voring articles with many citations [Lawrence et al., 1999]. Finally, dif-
ferent search tasks may require different ways of presenting the search
results to users, by highlighting the most important attributes of the
underlying item. In current systems, for example, webpage results are
typically displayed using the webpage title and a summary snippet
showing the context where the query terms appear on the page; items
for sale are typically displayed using a thumbnail image of the product,
a description, and the price; and videos are typically displayed using a
stillframe of the video, a description, and the duration.

Search systems today are more diverse and specialized than ever
before. In fact, search portals that aim to support different information-
seeking tasks typically develop and maintain specialized search systems
for different task types. Rather than attempt to address all task types
with a single monolithic system, the current trend is towards a “divide
and conquer” approach. Naturally, this gives rise to a new challenge:
How do we provide integrated search across these widely different sys-
tems? This is the goal of aggregated search. The aim of aggregated
search technology is to provide integrated search across a wide range of
highly specialized search systems in a unified interface—a single search
query box and a common presentation of results.

To date, most research in aggregated search has focused on the web
search domain. For this reason, most of the research reviewed in this ar-
ticle will also focus on the web search domain. Commercial web search
portals such as Google, Bing, and Yahoo! provide access to a wide
range of specialized search services besides web search. These special-
ized search services are referred to as vertical search services or simply
verticals. Example verticals include search engines for different types
of media (e.g., images, video, news) and search services for different
types of search tasks (e.g., search for local business, products for sale,
scientific articles). In some cases, search portals even provide access
to verticals that help users accomplish specific tasks such as language
translation, unit conversation, and math calculations.

There are currently two ways that users can access vertical content.
If the user wants results from a specific vertical, and if the vertical has

Full text available at: http://dx.doi.org/10.1561/1500000052



4 Introduction

direct search capabilities, then the user can issue the query directly to
the vertical. In other cases, however, the user may not know that a
vertical has relevant content, or may want results from multiple verti-
cals at once. For this reason, an important task for commercial search
providers has become the prediction and integration of relevant vertical
content alongside the core web search results.

Figure 1.1 shows an example aggregated search results page (SERP)
in the web domain. In response to the query “saturn”, an aggregated
search system decided to display news, image, and video vertical re-
sults in addition to the core web results. The most confidently relevant
verticals are displayed higher on the SERP. In this case, the system
predicted that the most relevant verticals were the news, images, and
video verticals, respectively.

1.1 Aggregated Search Tasks

Most aggregated search systems follow a pipeline architecture with
three subsequent sub-tasks (Figure 1.2). The first sub-task (vertical se-
lection) is to predict which verticals (if any) are relevant to the query.
One can view the vertical selection task as that of deciding which verti-
cals should be displayed on the SERP regardless of their position. It is
impractical, if not impossible, to issue the query to every available ver-
tical. For this reason, most approaches to vertical selection base their
predictions using pre-retrieval evidence (e.g., the query contains the
term “news”, the query is related to the health domain, or the query
contains the name of a location).

The second sub-task (vertical results selection) is to predict which
results from a particular vertical to present on the aggregated SERP.
This sub-task has received the least attention in the research com-
munity. The vertical results selection task has a dual objective. The
primary objective is to satisfy the user directly with the vertical results
that are aggregated on the SERP. The secondary objective is more
nuanced. Some verticals have direct search capabilities. If the user re-
alizes that the vertical may have relevant information, he or she can
navigate to the vertical, examine more vertical results, and even issue

Full text available at: http://dx.doi.org/10.1561/1500000052



1.1. Aggregated Search Tasks 5

news

web

images

query

videos

...

Figure 1.1: Aggregated SERP in the web domain (truncated). In response to the
query “saturn”, the aggregated search system decides to display news, image, and
video vertical results in addition to the core web results. The most confidently
relevant verticals are displayed higher on the SERP.

new queries to the vertical search engine. In this respect, the secondary
objective of vertical results selection is to convey how the underlying
vertical may have relevant content. Most aggregated search systems
described in the published literature do not perform vertical results se-
lection and simply display the top few results returned by the vertical
in response to the query.

The third and final sub-task (vertical presentation) is to decide
where to present each selected vertical. Different verticals are typically
associated with different surrogate representations. For example, image
results are displayed using thumbnails, while news results are displayed
using the article title, source, publication date, and may include an op-
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6 Introduction

web

maps

images

news

videos

shop

...

“saturn”

vertical presentation

vertical selection

Figure 1.2: Aggregated search pipeline.

tional image from the underlying article. For aesthetic reasons and to
better convey how the vertical may have relevant content for the cur-
rent user, vertical results are typically grouped together (either stacked
horizontally or vertically) on the aggregated SERP.

The goal of vertical presentation is to display the most relevant
verticals in a more salient way. One common approach is to display
them higher on the SERP (e.g., above the first web result). Vertical
presentation happens after the query has been issued to the vertical.
Thus, approaches for vertical presentation can base their predictions
using pre-retrieval as well as post-retrieval evidence (e.g., the number of
results returned by the vertical, the top retrieval scores, or the number
of query-terms appearing in the top results).

1.2 Relation to Federated Search

While aggregated search may seem like a new technology, it is rooted
in a fairly mature subfield in information retrieval known as federated
search or distributed information retrieval. The goal of federated search
is to provide integrated search across multiple collections of textual
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1.2. Relation to Federated Search 7

documents, also referred to as resources. Similar to aggregated search,
federated search is typically decomposed into three sub-tasks.

The first sub-task (resource representation) is to construct a de-
scription of each distributed resource that can be used to predict which
ones to search in response to a query. Approaches for resource represen-
tation differ greatly depending on whether they assume a cooperative or
uncooperative environment. In a cooperative environment, resources are
assumed to readily publish term statistics that can be used to model
the contents of each collection [Gravano et al., 1997]. On the other
hand, in an uncooperative environment, resources are assumed to only
provide a search interface. In this case, resource descriptions must be
constructed from sampled documents obtained via query-based sam-
pling. In general, query-based sampling involves issuing queries to each
resource and downloading results [Callan and Connell, 2001; Caverlee
et al., 2006; Shokouhi et al., 2006a].

The second sub-task (resource selection) is to predict which re-
sources to search in response to a query. Typically, the relevant doc-
uments are concentrated in only a few of the available resources. Re-
source selection approaches tend to cast the task as resource ranking—
ranking resources based on the likelihood that they will return relevant
results for the query. Existing approaches can be categorized into two
types: large document and small document models. Large document
models select resources based on the similarity between the query and
a virtual concatenation of all the documents in the resource (or its
samples). These methods treat each collection as a large document
and adapt document-ranking algorithms for the purpose of ranking
collections. In contrast, small document models typically proceed in
two steps. First, they combine documents (or samples) from the differ-
ent resources in a centralized sample index (CSI). Then, at query-time,
they rank resources based on the top-ranked CSI results [Si and Callan,
2003a; Shokouhi, 2007; Thomas and Shokouhi, 2009].

The third sub-task (results merging) is to interleave the results
from the different selected resources into a single ranking. Typically,
this is cast as a score normalization problem [Si and Callan, 2003b].
Because different resources have different collection statistics and per-
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8 Introduction

haps use different ranking algorithms, their retrieval scores may not
be directly comparable. Thus, results merging requires transforming
resource-specific scores into resource-agnostic scores that can be used
to produce a single merged ranking. Results merging approaches typ-
ically assume that documents can be interleaved in an unconstrained
fashion. The only goal is to rank the relevant documents higher on the
list, irrespective of the originating resource(s).

Most federated search approaches make assumptions that do not
hold true in an aggregated search environment. Thus, while there are
similarities between aggregated and federated search, aggregated search
requires unique solutions. Next, we discuss some of the main difference
between the aggregated and federated search.

1.3 Differences between Aggregated and Federated Search

Cooperative vs. uncooperative environment. Most federated
search approaches assume an uncooperative environment in which the
different resources provide the system no more than the same func-
tionality they provide their human users—a search interface. For this
reason, most resource selection approaches base their predictions solely
on the similarity between the input query and the documents sampled
from each resource. In contrast, most aggregated search approaches
assume a cooperative environment in which the different verticals are
developed and maintained by the same organization. In a coopera-
tive environment, the aggregated search system may have access to
sources of evidence beyond sampled documents. For example, for ver-
ticals with direct search capabilities, alternative sources of evidence
may include vertical-specific query-traffic data, click-through data, and
query-reformulation data. This type of evidence conveys how users in-
teract directly with the vertical search engine and may be helpful in
predicting vertical relevance. A vertical selection system should be ca-
pable of incorporating these various sources of evidence into selection
decisions.

Heterogeneous vs. Homogeneous Content. Most federated
search approaches assume that all the distributed resources contain

Full text available at: http://dx.doi.org/10.1561/1500000052



1.3. Differences between Aggregated and Federated Search 9

textual documents. For example, small document approaches for re-
source selection assume that samples from different resources can be
combined in a centralized sample index (CSI), and that resources can
be selected based on the top-ranked CSI results. In contrast, approaches
for vertical selection need to accommodate the fact that different verti-
cals may contains very different types of items that can not be centrally
indexed and searched (e.g., news articles, images, videos, items for sale,
digitized books, social media updates, etc.).

Heterogeneous vs. Homogeneous Relevance Prediction.
Most federated search approaches apply the same scoring function to
every available resource in order to predict its relevance to a query.
For example, small document approaches score every resource based
on the top CSI results. Similarly, large document models score every
resource based on the similarity between the query and a virtual con-
catenation of those documents sampled from the resource. In contrast,
approaches for vertical selection and presentation must be able to learn
a vertical-specific relationship between different types of evidence and
a particular vertical’s relevance to a query.

To illustrate, let us consider two examples. First, certain key words
are likely to predict that a particular vertical is relevant to the query.
For example, the query term “news” suggests that the news vertical is
relevant, while the query term “pics” suggests that the images vertical
is relevant. Second, some verticals tend to be topically focused (e.g.,
health, auto, travel, movies). Thus, in some cases, it may be possible
to predict that a particular vertical is relevant based on the general
topic of the query. For example, we can predict that the health vertical
is relevant to the query “swine flu” because the query is related to the
health domain. Both of these examples suggest that aggregated search
approaches must be able to learn a vertical-specific relation between
certain types of evidence and the relevance of a particular vertical.

Selection vs. Ranking. Most federated search approaches treat
resource selection as resource ranking. The goal for the system is to
prioritize resources in response to a query, and to select as many or
as few resource as possible given the current computational resources
available. Implicit in this formulation of the resource selection task is

Full text available at: http://dx.doi.org/10.1561/1500000052



10 Introduction

the assumption that exhaustive search produces a good retrieval and
that the goal for the system is to approximate this retrieval by selecting
only a few resources. In contrast, vertical selection requires predicting
which verticals are relevant to the query and which verticals are not. In
some cases, the system may decide that none of the available verticals
are relevant. Thus, vertical selection requires approaches that can make
binary predictions for each candidate resource.

Constrained vs. Unconstrained Results Presentation. Fi-
nally, most federated search approaches assume that the results from
the different selected resources can be interleaved in an unconstrained
fashion. In contrast, most aggregated search approaches assume that
the results from the same vertical must be presented together on the
SERP in the form of a vertical block. This is mostly done for aes-
thetic reasons and to provide an easy-to-parse overview of how the
vertical may have relevant content for the query. Vertical presentation
approaches must address the unique challenge of deciding where to
present each selected vertical on the SERP.

1.4 Overview of Aggregated Search Algorithms

Most successful approaches for vertical selection and presentation use
machine learning to combine a wide range of evidence as input features
to the model. Features can be generated from the query, from the verti-
cal, or from the query-vertical pair. For example, a type of query feature
might consider whether the query contains the keyword “news”, a type
of vertical feature might consider the number of recent clicks on the
vertical results, and a type of query-vertical might estimate the number
of query-related documents in the underlying vertical collection. The
most effective approaches for vertical selection and presentation make
creative use of the different sources of evidence available to the system,
including vertical-specific query-log data, sampled vertical documents,
and previous user interactions with vertical content.

While evidence integration is key to aggregated search, it also poses
two main challenges. The first challenge is that not all features may be
available for all verticals. For example, some verticals cannot be directly
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1.4. Overview of Aggregated Search Algorithms 11

searched by users. Consider the weather vertical in most commercial
search portals. Users cannot typically go directly to the weather vertical
and issue a query. Thus, features generated from the vertical query-log
will not be available for verticals that are not directly searchable. Simi-
larly, some verticals are not associated with an underlying collection of
documents. Consider the calculator, language translation, and finance
verticals in most commercial search portals. Features that consider the
similarity between the query and the documents in the underlying ver-
tical will not be available for such verticals. In this respect, approaches
for vertical selection and presentation must deal with the fact that
different verticals may require different feature representations.

The second challenge is that, even if a feature is available for all
verticals, it may not be equally predictive across verticals. For exam-
ple, certain verticals are clicked more than others. For example, a news
vertical is likely to have more clicks than a weather vertical, which is
designed to display the necessary information directly on the SERP.
Features derived from click data (e.g., the number of recent clicks on
the vertical results) may be more predictive for verticals that have more
clicks. Alternatively, a feature may be positively predictive for one verti-
cal and negative predictive for another. Consider, for example, a feature
that measures whether the query is related to the travel domain. This
feature is likely to be positively predictive for a travel-related vertical,
but negatively predictive for a vertical that focuses on a different do-
main. In this respect, approaches for vertical selection and presentation
must deal with the fact that different verticals may require learning a
vertical-specific relationship between certain features and a vertical’s
relevance.

Given the two challenges outlined above, approaches for vertical se-
lection typically learn a different model for each candidate vertical. In
this way, each model can adopt a different feature representation and
can learn a vertical-specific relationship between feature values and
the relevance of the particular vertical. Vertical presentation requires
resolving contention between different verticals to be displayed on the
SERP. Put differently, vertical presentation requires predicting the de-
gree of relevance of a vertical relative to the web results and relative

Full text available at: http://dx.doi.org/10.1561/1500000052



12 Introduction

to other verticals to be displayed. Approaches for vertical presentation
can be categorized into two types: pointwise and pairwise interleaving
methods. Pointwise methods learn to predict the degree of relevance of
each vertical block or module in response to a query. Vertical blocks are
positioned according to their predicted relevance to the query. Pairwise
methods learn to predict the relative relevance between pairs of vertical
and/or web blocks or modules. Vertical blocks are positioned such that
they are maximally consistent with the pairwise preferences predicted
by the system.

1.5 Related Topics
In this review, we focus on aggregated search in the web domain, where
systems combine results from heterogeneous sources (or verticals) into
a single presentation. We cover a wide range of topics, including pre-
diction, evaluation, and studies of user behavior.

We focus on the web domain because most of the published re-
search has been done in this domain. However, the task of search-
ing and integrating information from heterogeneous sources happens
in other domains within the broad field of information retrieval. For
example, in desktop search, the system needs to search across different
types of files, which may require different indexing structures, rank-
ing algorithms, and ways of presenting the search results. Similarly,
news aggregators are responsible for combining content from different
input streams, such as news articles, images, videos, and social media
updates.

In this section, we describe related areas of IR research that may
benefit from the algorithms, evaluation methods, and studies described
in this review.

1.5.1 Full-text Search in Peer-to-Peer Networks
A peer-to-peer (P2P) network is defined as a network of independent
computing resources that do not require a centralized authority to co-
ordinate and perform tasks. A hierarchical (P2P) network is one with
three types of peers: (1) peers that provide search for a particular col-
lection, such as a digital library (providers), (2) peers that originate
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1.5. Related Topics 13

information requests for the network (consumers), and (3) peers that
propagate information requests to neighboring peers and send results
back to the corresponding consumer (hubs). Hubs perform the three
main tasks associated with aggregated search: (1) representing the con-
tents of neighboring peers (i.e., direct providers and other hubs), (2)
sending information requests to the neighboring peers most likely to
deliver relevant content, and (3) merging the results returned by the
selected peers and sending these back to the appropriate consumer.
Lu [2007] proposed several approaches for these three different tasks
that build upon traditional federated search techniques (where there
is a centralized federated search system that has direct access to all
available resources).

The techniques discussed in this review might be useful for the tasks
of query routing and results merging in P2P networks that provide dis-
tributed search capabilities. Beverly and Afergan [2007], for example,
proposed a machine learning, evidence integration approach for neigh-
bor selection in P2P networks.

1.5.2 Desktop Search
The goal of desktop search is to facilitate search over files stored in a
user’s desktop computer. One of the main challenges in desktop search
is that different file types are associated very different field structures
and meta-data. Kim and Croft [2010] developed and evaluated a desk-
top search system that maintains different indexes for different file
types. Given a query, the proposed system performs the three basic
steps associated with aggregated search: file-type prediction, file-type-
specific ranking, and results merging. Much like the vertical selection
methods covered in this review, the proposed file-type prediction ap-
proach combined multiple types of evidence as features for a machine
learned model, for example, the similarity between the query and doc-
ument meta-data, the similarity between the query and previously run
queries with clicks on a particular file-type, and the presence of certain
query keywords such as “email” or “pdf”. As one might expect, the
evidence integration approach to file-type prediction outperformed the
best approach using a single source of evidence.
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1.5.3 Selective Search
The aim of selective search is to enable efficient and effective search
from large text collections in environments with modest computational
resources [Kulkarni and Callan, 2015]. First, the system partitions the
large text collection into smaller topical sub-collections or shards. Then,
in response to a query, the system predicts which few shards are most
likely to have relevant documents and merges their results. Selective
search is highly motivated by the cluster hypothesis, which states that
similar documents (ideally assigned to the same shard) tend to be rele-
vant to same information needs [van Rijsbergen, 1979]. Shard represen-
tation and selection can be performed using existing federated search
techniques, and results merging is relatively straightforward because
the system has access to global term statistics can be used to compute
comparable retrieval scores. The critical step in selective search is par-
titioning the collection into topical shards. Kulkarni and Callan [2015]
proposed a variant of the well-known K-means clustering algorithm
that operates on a sample of documents from the collection. Experimen-
tal results show that selective search can greatly reduce computational
costs and latency, and can yield retrieval performance comparable to
exhaustive search, particularly for precision-oriented tasks.

While current shard-selection techniques do not combine multiple
types of evidence to make predictions, prior work on text-based feder-
ated search used machine learning to combine a wide range of features
for the task of resource selection [Arguello et al., 2009a; Hong et al.,
2010]. In particular, because shards are topically focused, the query cat-
egory features discussed later in Section 2.3 might contribute valuable
evidence for shard selection.

1.5.4 Contextual Suggestion

The goal of contextual suggestion is to recommend points-of-interest
(POIs) to a user in a particular context (i.e., in a particular location,
at a particular time) [Dean-Hall et al., 2012, 2013, 2014, 2015]. The
system is assumed to have access to ratings on previously recommended
POIs for the same user in different contexts.

Full text available at: http://dx.doi.org/10.1561/1500000052



1.5. Related Topics 15

Zhuang et al. [2011] describe a mobile contextual suggestion system
with an aggregated search architecture. Rather than index and retrieve
all POIs using a single system, the proposed approach is to build differ-
ent indexes and rankers for different POI-types (e.g., restaurants, coffee
shops, bars, tourist attractions, etc.) The system recommends POIs to
a user in a particular context in two steps. First, the system predicts
the appropriateness of a particular POI-type for the given context, and
then it ranks POIs of a particular type if the user requests to see those
results. Similar to aggregated search, the proposed architecture has two
main benefits. First, the system can use different models for predicting
relevance for each POI-type. For example, the system can learn that
restaurants are more relevant during meal times and that bars are more
relevant in the evening. Second, the system can learn different rankers
for different POI-types. For example, the system can determine that
close proximity to the user is more important for coffee shops than for
tourist attractions (assuming users are more willing to travel longer
distances for the latter).

1.5.5 Search Across Heterogeneous Social Networks

In certain cases, a user may belong to multiple social networks and may
want to receive updates from different networks in a unified interface.
Bian et al. [2012] proposed an algorithm for ranking social network
updates originating from different networks. The main challenge is that
different networks may be associated with different sources of evidence
that can be used to predict the relevance of an update for a particular
user. Consider a user who wants to receive aggregated updates from
both Facebook and Twitter. Some sources of evidence are common
to both networks (e.g., Does the update contain a URL?). However,
other features may aim to exploit the same type of evidence, but be
associated with very different numerical ranges across networks (e.g.,
number of comments on Facebook and number of retweets on Twitter).
Moreover, some features may only exist in one network and not the
other (e.g., the number of Facebook chat messages between the user
and the author of an update). Rather than rank candidate updates from
different networks using a single model, Bian et al. [2012] describe a
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“divide and conquer” approach that learns network-specific rankers and
combines their output rankings into a single merged list.

Lee et al. [2012] focused on the task of ranking social media updates
and used two test collections: one generated from Facebook updates and
another generated from Twitter updates. The authors did not attempt
the task of constructing a single, merged ranking. However, the authors
concluded that combining updates from different heterogeneous social
networks into a single ranked list is an interesting research direction
for future work.

1.5.6 News Aggregators

News content aggregators such as the Yahoo! homepage or the New
York Times homepage combine results from different heterogeneous
data streams into a single presentation. Data streams may include news
articles from different sources, images, videos, audio interviews, blog
posts, and social media updates such as tweets. The system is respon-
sible for predicting which items to display from each data stream and
where [Bharat et al., 1998; Krakovsky, 2011]. Different data streams
are likely to be associated with very different types of evidence that
can be used to predict relevance. Thus, news aggregators are likely to
benefit from a “divide and conquer” approach—building customized
rankers for different data streams and a system that predicts which
content to display and where.

One interesting aspect of news aggregation is that in some cases, the
system may want to show results from different data streams that are
related to the same topic. For example, the system may want to display
news, images, videos, and opinionated tweets about the same trending
news story. Hong et al. [2011] proposed an approach for finding related
content in different data streams. In the context of aggregated search,
the results from different sources aggregated on the search results page
are typically independent of each other. However, identifying related
results in different sources or verticals may be an interesting direction
for future work.
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1.6 Related Surveys

As mentioned above, aggregated search is related to the subfield of
federated search or distributed information retrieval, where the goal is
to provide integrated search across multiple textual collections. Shok-
ouhi and Si [2011] provide an extensive review of the state of the art
in federated search, and review methods for all three federated search
sub-tasks: resource representation, selection, and results merging.

Chapter 4 in this review focuses on methods of aggregated search
evaluation. Online evaluation approaches learn about a system’s per-
formance from user interactions in a live environment. In the context
of aggregated search, vertical selection approaches can be evaluated by
considering user’s clicks on the vertical results. Interpreting user inter-
actions with a SERP is complicated by the fact that users are influenced
by factors other than relevance, such as position and visual salience.
Hofmann et al. [2016] provide an extensive survey of approaches for
online evaluation using real users.

The current survey is most closely related to the book chapter ti-
tled “Aggregated Vertical Search” appearing in Long and Chang [2014].
However, the current survey is different in several respects. First, it in-
cludes new solutions, evaluation methods, and user studies published
since 2014. In recent years, studies have proposed and tested new eval-
uation metrics for aggregated search [Zhou et al., 2013b]. Furthermore,
recent studies have investigated different factors that may affect search
behavior and performance with aggregated search interfaces. For ex-
ample, recent work investigates how users visually scan an aggregated
SERP [Liu et al., 2015], how the results from one source on the SERP
can influence user engagement with the results from other sources [Ar-
guello and Capra, 2016; Bota et al., 2016], and how users’ cognitive abil-
ities can affect different search behaviors and outcomes [Turpin et al.,
2016].

Furthermore, this review covers more special topics in aggregated
search. For example, it surveys recent work on composite retrieval,
where the goal for the system is to combine results from different
sources, but to organize them by how they satisfy different aspects
of the user’s task. Also, it covers recent work on aggregated search for

Full text available at: http://dx.doi.org/10.1561/1500000052



18 Introduction

children, who exhibit different search behaviors than adults and require
unique aggregated search solutions [Duarte-Torres and Weber, 2011].

1.7 Outline

As previously mentioned, the most effective approaches for vertical
selection and presentation use machine learning to combine different
types of evidence as features. Chapter 2 reviews different features used
in prior work. These include features that derive evidence from vertical
content, from queries issued directly to the vertical by users, and from
previous users’ interactions with the results from a particular vertical.

In a sense, vertical selection and presentation have a common goal—
to predict the degree of relevance of a vertical to a user’s query. In
Chapter 2, we remain somewhat agnostic as to whether a particular
feature is more appropriate for one task versus the other. That said,
certain features (referred to as post-retrieval features) require issuing
the query to the candidate vertical. Thus, in some places, we empha-
size that post-retrieval features may be more appropriate for vertical
presentation.

Chapter 3 focuses on evidence combination approaches for vertical
selection and presentation. The main challenge in vertical selection and
presentation is that certain features may be predictive for one vertical,
but not another. For example, the publication age of the top vertical
results may be predictive for the news vertical, but not the image ver-
tical. Moreover, certain features may be positively predictive for one
vertical, but negatively predictive for another. For example, the query
term “news” is positively predictive for the news vertical, but nega-
tively predictive for the image vertical. For this reason, in Chapter 3
we focus on approaches that can exploit a vertical-specific relationship
between different features and the relevance of a particular vertical.

Chapter 4 focuses on evaluation methodologies and metrics for ag-
gregated search. Evaluation is a critical component of all information
retrieval techniques and a research area in its own right. We start with
vertical selection and then cover end-to-end evaluation, which includes
selection and presentation. We cover evaluation methodologies based
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on re-usable test collections, which typically include a set of evaluation
queries, cached results from the different sources, and human-produced
relevance judgements. We also discuss on-line evaluation methodologies
based on implicit feedback from real users in an operational setting.

Chapter 5 reviews user studies aimed at further understanding what
users want from an aggregated search system and how they behave. We
cover studies where the goal is to determine the extent to which a par-
ticular evaluation metric correlates with user satisfaction, and studies
where the goal is to understand how different characteristics of the
interface, the search task, and the user can affect outcome measures
associated with the user’s perceptions about the system and their per-
formance.

Chapter 6 reviews special topics in aggregated search. Here, we
touch upon algorithms for predicting how a user will visually scan a
particular aggregated SERP, methods for leveraging implicit feedback
in order to improve performance, and approaches for learning a model
for a new vertical with little human-produced training data. Further-
more, we review the new task of composite retrieval, where the goal
is to organize results from different sources based on different aspects
associated with the task. Finally, we discuss aggregated search for chil-
dren, who exhibit different behavior than adults and require unique
solutions.

Finally, in Chapter 7, we conclude by highlighting the main trends
in aggregated search and discussing short-term and long-term areas for
future work.
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