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ABSTRACT

Explainable recommendation attempts to develop models
that generate not only high-quality recommendations but
also intuitive explanations. The explanations may either be
post-hoc or directly come from an explainable model (also
called interpretable or transparent model in some contexts).
Explainable recommendation tries to address the problem
of why: by providing explanations to users or system design-
ers, it helps humans to understand why certain items are
recommended by the algorithm, where the human can either
be users or system designers. Explainable recommendation
helps to improve the transparency, persuasiveness, effective-
ness, trustworthiness, and satisfaction of recommendation
systems. It also facilitates system designers for better system
debugging. In recent years, a large number of explainable rec-
ommendation approaches – especially model-based methods
– have been proposed and applied in real-world systems.

In this survey, we provide a comprehensive review for the
explainable recommendation research. We first highlight the
position of explainable recommendation in recommender
system research by categorizing recommendation problems
into the 5W, i.e., what, when, who, where, and why. We then

Yongfeng Zhang and Xu Chen (2020), “Explainable Recommendation: A Survey
and New Perspectives”, Foundations and Trends® in Information Retrieval: Vol. 14,
No. 1, pp 1–101. DOI: 10.1561/1500000066.
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2

conduct a comprehensive survey of explainable recommen-
dation on three perspectives: 1) We provide a chronological
research timeline of explainable recommendation, including
user study approaches in the early years and more recent
model-based approaches. 2) We provide a two-dimensional
taxonomy to classify existing explainable recommendation
research: one dimension is the information source (or display
style) of the explanations, and the other dimension is the
algorithmic mechanism to generate explainable recommen-
dations. 3) We summarize how explainable recommendation
applies to different recommendation tasks, such as product
recommendation, social recommendation, and POI recom-
mendation.

We also devote a section to discuss the explanation per-
spectives in broader IR and AI/ML research. We end the
survey by discussing potential future directions to promote
the explainable recommendation research area and beyond.

Full text available at: http://dx.doi.org/10.1561/1500000066



1
Introduction

1.1 Explainable Recommendation

Explainable recommendation refers to personalized recommendation
algorithms that address the problem of why – they not only provide users
or system designers with recommendation results, but also explanations
to clarify why such items are recommended. In this way, it helps to
improve the transparency, persuasiveness, effectiveness, trustworthiness,
and user satisfaction of the recommendation systems. It also facilitates
system designers to diagnose, debug, and refine the recommendation
algorithm.

To highlight the position of explainable recommendation in the
recommender system research area, we classify personalized recommen-
dation with a broad conceptual taxonomy. Specifically, personalized
recommendation research can be classified into the 5W problems –
when, where, who, what, and why, corresponding to time-aware rec-
ommendation (when), location-based recommendation (where), social
recommendation (who), application-aware recommendation (what), and
explainable recommendation (why), where explainable recommendation
aims to answer why-type questions in recommender systems.

3
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4 Introduction

Explainable recommendation models can either be model-intrinsic
or model-agnostic (Lipton, 2018; Molnar, 2019). The model-intrinsic
approach develops interpretable models, whose decision mechanism is
transparent, and thus, we can naturally provide explanations for the
model decisions (Zhang et al., 2014a). The model-agnostic approach
(Wang et al., 2018d), or sometimes called the post-hoc explanation
approach (Peake and Wang, 2018), allows the decision mechanism to
be a blackbox. Instead, it develops an explanation model to generate
explanations after a decision has been made. The philosophy of these two
approaches is deeply rooted in our understanding of human cognitive
psychology – sometimes we make decisions by careful, rational reasoning
and we can explain why we make certain decisions; other times we make
decisions first and then find explanations for the decisions to support
or justify ourselves (Lipton, 2018; Miller, 2019).

The scope of explainable recommendation not only includes de-
veloping transparent machine learning, information retrieval, or data
mining models. It also includes developing effective methods to deliver
the recommendations or explanations to users or system designers, be-
cause explainable recommendations naturally involve humans in the
loop. Significant research efforts in user behavior analysis and human-
computer interaction community aim to understand how users interact
with explanations.

With this section, we will introduce not only the explainable recom-
mendation problem, but also a big picture of the recommender system
research area. It will help readers to understand what is unique about
the explainable recommendation problem, what is the position of ex-
plainable recommendation in the research area, and why explainable
recommendation is important to the area.

1.2 A Historical Overview

In this section, we will provide a historical overview of the explainable
recommendation research. Though the term explainable recommendation
was formally introduced in recent years (Zhang et al., 2014a), the basic
concept, however, dates back to some of the earliest works in personalized

Full text available at: http://dx.doi.org/10.1561/1500000066



1.2. A Historical Overview 5

recommendation research. For example, Schafer et al. (1999) noted that
recommendations could be explained by other items that the user is
familiar with, such as this product you are looking at is similar to these
other products you liked before, which leads to the fundamental idea of
item-based collaborative filtering (CF); Herlocker et al. (2000) studied
how to explain CF algorithms in MovieLens based on user surveys; and
Sinha and Swearingen (2002) highlighted the role of transparency in
recommender systems. Besides, even before explainable recommendation
has attracted serious research attention, the industry has been using
manual or semi-automatic explanations in practical systems, such as
the people also viewed explanation in e-commerce systems (Tintarev
and Masthoff, 2007a).

To help the readers understand the “pre-history” research of recom-
mendation explanation and how explainable recommendation emerged
as an essential research task in the recent years, we provide a historical
overview of the research line in this section.

Early approaches to personalized recommender systems mostly fo-
cused on content-based or collaborative filtering (CF)-based recommen-
dation (Ricci et al., 2011). Content-based recommender systems model
user and item profiles with various available content information, such
as the price, color, brand of the goods in e-commerce, or the genre,
director, duration of the movies in review systems (Balabanović and
Shoham, 1997; Pazzani and Billsus, 2007). Because the item contents
are easily understandable to users, it was usually intuitive to explain
to users why an item is recommended. For example, one straightfor-
ward way is to let users know the content features he/she might be
interested in the recommended item. Ferwerda et al. (2012) provided a
comprehensive study of possible protocols to provide explanations for
content-based recommendations.

However, collecting content information in different application do-
mains is time-consuming. Collaborative filtering (CF)-based approaches
(Ekstrand et al., 2011), on the other hand, attempt to avoid this dif-
ficulty by leveraging the wisdom of crowds. One of the earliest CF
algorithms is User-based CF for the GroupLens news recommendation
system (Resnick et al., 1994). User-based CF represents each user as
a vector of ratings, and predicts the user’s missing rating on a news

Full text available at: http://dx.doi.org/10.1561/1500000066



6 Introduction

message based on the weighted average of other users’ ratings on the
message. Symmetrically, Sarwar et al. (2001) introduced the Item-based
CF method, and Linden et al. (2003) further described its application
in Amazon product recommendation system. Item-based CF takes each
item as a vector of ratings, and predicts the missing rating based on
the weighted average of ratings from similar items.

Though the rating prediction mechanism would be relatively difficult
to understand for average users, user- and item-based CF are somewhat
explainable due to the philosophy of their algorithm design. For example,
the items recommended by user-based CF can be explained as “users
that are similar to you loved this item”, while item-based CF can
be explained as “the item is similar to your previously loved items”.
However, although the idea of CF has achieved significant improvement
in recommendation accuracy, it is less intuitive to explain compared
with content-based algorithms. Research pioneers in very early stages
also noticed the importance of the problem (Herlocker and Konstan,
2000; Herlocker et al., 2000; Sinha and Swearingen, 2002).

The idea of CF achieved further success when integrated with Latent
Factor Models (LFM) introduced by Koren (2008) in the late 2000s.
Among the many LFMs, Matrix Factorization (MF) and its variants
were especially successful in rating prediction tasks (Koren et al., 2009).
Latent factor models have been leading the research and application
of recommender systems for many years. However, though successful
in recommendation performance, the “latent factors” in LFMs do not
possess intuitive meanings, which makes it difficult to understand why
an item got good predictions or why it got recommended out of other
candidates. This lack of model explainability also makes it challenging
to provide intuitive explanations to users, since it is hardly acceptable
to tell users that we recommend an item only because it gets higher
prediction scores by the model.

To make recommendation models better understandable, researchers
have gradually turned to Explainable Recommendation Systems, where
the recommendation algorithm not only outputs a recommendation
list, but also explanations for the recommendations by working in
an explainable way. For example, Zhang et al. (2014a) defined the
explainable recommendation problem, and proposed an Explicit Factor

Full text available at: http://dx.doi.org/10.1561/1500000066



1.3. Classification of the Methods 7

Model (EFM) by aligning the latent dimensions with explicit features
for explainable recommendation. More approaches were also proposed
to address the explainability problem, which we will introduce in detail
in the survey. It is worthwhile noting that deep learning (DL) models
for personalized recommendation have emerged in recent years. We
acknowledge that whether DL models truly improve the recommendation
performance is controversial (Dacrema et al., 2019), but this problem
is out of the scope of this survey. In this survey, we will focus on the
problem that the black-box nature of deep models brings difficulty in
model explainability. We will review the research efforts on explainable
recommendation over deep models.

In a broader sense, the explainability of AI systems was already a
core discussion in the 1980s era of “old” or logical AI research, when
knowledge-based systems predicted (or diagnosed) well but could not
explain why. For example, the work of Clancy showed that being able
to explain predictions requires far more knowledge than just making
correct predictions (Clancey, 1982). The recent boom in big data and
computational power have brought AI performance to a new level,
but researchers in the broader AI community have again realized the
importance of Explainable AI in recent years (Gunning, 2017), which
aims to address a wide range of AI explainability problems in deep
learning, computer vision, autonomous driving systems, and natural
language processing tasks. As an essential branch of AI research, this
also highlights the importance of the IR/RecSys community to address
the explainability issues of various search and recommendation systems.
Moreover, explainable recommendation has also become a very suitable
problem setting to develop new Explainable Machine Learning theories
and algorithms.

1.3 Classification of the Methods

In this survey, we provide a classification taxonomy of existing explain-
able recommendation methods, which can help readers to understand
the state-of-the-art of explainable recommendation research.

Specifically, we classify existing explainable recommendation re-
search with two orthogonal dimensions: 1) The information source or

Full text available at: http://dx.doi.org/10.1561/1500000066



8 Introduction

display style of the explanations (e.g., textual sentence explanation, or
visual explanation), which represents the human-computer interaction
(HCI) perspective of explainable recommendation research, and 2) the
model to generate such explanations, which represents the machine
learning (ML) perspective of explainable recommendation research.
Potential explainable models include the nearest-neighbor, matrix fac-
torization, topic modeling, graph models, deep learning, knowledge
reasoning, association rule mining, and others.

With this taxonomy, each combination of the two dimensions refers
to a particular sub-direction of explainable recommendation research.
We should note that there could exist conceptual differences between
“how explanations are presented (display style)” and “the type of infor-
mation used for explanations (information source)”. In the context of
explainable recommendation, however, these two principles are closely
related to each other because the type of information usually determines
how the explanations can be displayed. As a result, we merge these
two principles into a single classification dimension. Note that among
the possibly many classification taxonomies, this is just one that we
think would be appropriate to organize the research on explainable
recommendation, because it considers both HCI and ML perspectives
of explainable recommendation research.

Table 1.1 shows how representative explainable recommendation
research is classified into different categories. For example, the Explicit
Factor Model (EFM) for explainable recommendation (Zhang et al.,
2014a) developed a matrix factorization method for explainable recom-
mendation, which provides an explanation sentence for the recommended
item. As a result, it falls into the category of “matrix factorization with
textual explanation”. The Interpretable Convolutional Neural Network
approach (Seo et al., 2017), on the other hand, develops a deep con-
volutional neural network model and displays item features to users
as explanations, which falls into the category of “deep learning with
user/item feature explanation”. Another example is visually explainable
recommendation (Chen et al., 2019b), which proposes a deep model to
generate image regional-of-interest explanations, and it belongs to the
“deep learning with visual explanation” category. We also classify other

Full text available at: http://dx.doi.org/10.1561/1500000066
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10 Introduction

research according to this taxonomy, so that readers can understand the
relationship between existing explainable recommendation methods.

Due to the large body of related work, Table 1.1 is only an incomplete
enumeration of explainable recommendation methods. For each “model
– information” combination, we present one representative work in the
corresponding table cell. However, in Sections 2 and 3 of the survey, we
will introduce the details of many explainable recommendation methods.

1.4 Explainability and Effectiveness

Explainability and effectiveness could sometimes be conflicting goals
in model design that we have to trade-off (Ricci et al., 2011), i.e., we
can either choose a simple model for better explainability, or choose
a complex model for better accuracy while sacrificing the explainabil-
ity. While recent evidence also suggests that these two goals may not
necessarily conflict with each other when designing recommendation
models (Bilgic et al., 2004; Zhang et al., 2014a). For example, state-of-
the-art techniques – such as the deep representation learning approaches
– can help us to design recommendation models that are both effective
and explainable. Developing explainable deep models is also an attrac-
tive direction in the broader AI community, leading to progress not
only in explainable recommendation research, but also in fundamental
explainable machine learning problems.

When introducing each explainable recommendation model in the
following sections, we will also discuss the relationship between explain-
ability and effectiveness in personalized recommendations.

1.5 Explainability and Interpretability

Explainability and interpretability are closely related concepts in the
literature. In general, interpretability is one of the approaches to achieve
explainability. More specifically, Explainable AI (XAI) aims to develop
models that can explain their (or other model’s) decisions for system
designers or normal users. To achieve the goal, the model can be either
interpretable or non-interpretable. For example, interpretable models
(such as interpretable machine learning) try to develop models whose
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decision mechanism is locally or globally transparent, and in this way, the
model outputs are usually naturally explainable. Prominent examples of
interpretable models include many linear models such as linear regression
and tree-based models such as decision trees. Meanwhile, interpretability
is not the only way to achieve explainability, e.g., some models can reveal
their internal decision mechanism for explanation purpose with complex
explanation techniques, such as neural attention mechanisms, natural
language explanations, and many post-hoc explanation models, which
are widely used in information retrieval, natural language processing,
computer vision, graph analysis, and many other tasks. Researchers and
practitioners may design and select appropriate explanation methods
to achieve explainable AI for different tasks.

1.6 How to Read the Survey

Potential readers of the survey include both researchers and practi-
tioners interested in explainable recommendation systems. Readers
are encouraged to prepare with basic understandings of recommender
systems, such as content-based recommendation (Pazzani and Billsus,
2007), collaborative filtering (Ekstrand et al., 2011), and evaluation of
recommender systems (Shani and Gunawardana, 2011). It is also benefi-
cial to read other related surveys such as explanations in recommender
systems from a user study perspective (Tintarev and Masthoff, 2007a),
interpretable machine learning (Lipton, 2018; Molnar, 2019), as well as
explainable AI in general (Gunning, 2017; Samek et al., 2017).

The following part of the survey will be organized as follows.
In Section 2 we will review explainable recommendation from a user-
interaction perspective. Specifically, we will discuss different information
sources that can facilitate explainable recommendation, and different
display styles of recommendation explanation, which are closely related
with the corresponding information source. Section 3 will focus on a
machine learning perspective of explainable recommendation, which
will introduce different types of models for explainable recommendation.
Section 4 will introduce evaluation protocols for explainable recommen-
dation, while Section 5 introduces how explainable recommendation
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methods are used in different real-world recommender system applica-
tions. In Section 6 we will summarize the survey with several important
open problems and future directions of explainable recommendation
research.
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