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ABSTRACT

Matching is a key problem in both search and recommenda-
tion, which is to measure the relevance of a document to a
query or the interest of a user to an item. Machine learning
has been exploited to address the problem, which learns
a matching function based on input representations and
from labeled data, also referred to as “learning to match”.
In recent years, efforts have been made to develop deep
learning techniques for matching tasks in search and recom-
mendation. With the availability of a large amount of data,
powerful computational resources, and advanced deep learn-
ing techniques, deep learning for matching now becomes
the state-of-the-art technology for search and recommenda-
tion. The key to the success of the deep learning approach
is its strong ability in learning of representations and gen-
eralization of matching patterns from data (e.g., queries,
documents, users, items, and contexts, particularly in their
raw forms).

Jun Xu, Xiangnan He and Hang Li (2020), “Deep Learning for Matching in Search
and Recommendation”, Foundations and TrendsR© in Information Retrieval: Vol. 14,
No. 2–3, pp 102–288. DOI: 10.1561/1500000076.
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This survey gives a systematic and comprehensive introduc-
tion to the deep matching models for search and recommen-
dation developed recently. It first gives a unified view of
matching in search and recommendation. In this way, the
solutions from the two fields can be compared under one
framework. Then, the survey categorizes the current deep
learning solutions into two types: methods of representation
learning and methods of matching function learning. The
fundamental problems, as well as the state-of-the-art solu-
tions of query-document matching in search and user-item
matching in recommendation, are described. The survey
aims to help researchers from both search and recommenda-
tion communities to get in-depth understanding and insight
into the spaces, stimulate more ideas and discussions, and
promote developments of new technologies.

Matching is not limited to search and recommendation.
Similar problems can be found in paraphrasing, question
answering, image annotation, and many other applications.
In general, the technologies introduced in the survey can be
generalized into a more general task of matching between
objects from two spaces.
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1
Introduction

1.1 Search and Recommendation

With the rapid growth of the internet, one of the fundamental problems
in information science becomes even more critical today, that is, how
to identify the information satisfying a user’s need from a usually
huge pool of information. The goal is to present the user only the
information that is of interest and relevance, at the right time, place,
and context. Nowadays, two types of information accessing paradigms,
search and recommendation, are widely used in a great variety of
scenarios.

In search, documents (e.g., web documents, Twitter posts, or
E-commerce products) are first pre-processed and indexed in the search
engine. After that, the search engine takes a query (a number of key-
words) from the user. The query describes the user’s information need.
Relevant documents are retrieved from the index, matched with the
query, and ranked according to their relevance to the query. For example,
if a user is interested in news about quantum computing, the query
“quantum computing” mat be submitted to a search engine and get
news articles about the topic will be returned.

6
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1.1. Search and Recommendation 7

Different from search, a recommendation system typically does not
take a query. Instead, it analyzes the user’s profile (e.g., demographics
and contexts) and historical interactions on items, and then makes
recommendation on items to the user. The user features and item
features are indexed and stored in the system in advance. The items
are ranked according to the likelihood that the user is interested in
them. For example, on a news website, when a user browses and clicks
a new article, several news articles with similar topics or news articles
that other users have clicked together with the current one may be
shown.

Table 1.1 summarizes the differences between search and recom-
mendation. The fundamental mechanism of search is “pull”, because
users first make specific requests (i.e., submit queries) and then re-
ceive information. The fundamental mechanisms of recommendation
is “push”, because users are provided information which they do not
specifically request (e.g., submit queries). Here “beneficiary” means
the people whose interests are to be met in the task. In a search en-
gine, the results are typically created solely based on the user’s needs,
and thus the beneficiary is the users. In a recommendation engine,
the results usually need to satisfy both the users and providers, and
thus the beneficiary is all of them. However, the distinction is becom-
ing blurred recently. For example, some search engines mix search
results with paid advertisements, which benefits both the users and
the providers. As for “serendipity”, it means that conventional search
focuses more on information that is clearly relevant. Conventional recom-
mendation, on the other hand, is allowed to offer unexpected but useful
information.

Table 1.1: Information-providing mechanisms of search and recommendation

Search Recommendation

Query available Yes No
Delivery model Pull Push
Beneficiary User User and provider
Serendipity No Yes

Full text available at: http://dx.doi.org/10.1561/1500000076



8 Introduction

Figure 1.1: Unified view of matching in search and recommendation.

1.2 Unifying Search and Recommendation from
Matching Viewpoint

Garcia-Molina et al. (2011) pointed out that the fundamental problems
in search and recommendation are to identify information objects satisfy-
ing users’ information needs. It is also indicated that search (information
retrieval) and recommendation (information filtering) are the two sides
of the same coin, having strong connections and similarities (Belkin and
Croft, 1992). Figure 1.1 illustrates the unified matching view of search
and recommendation. The goal in common is to present to the users
the information they need.

Search is a retrieval task, which aims to retrieve the documents that
are relevant to the query. In contrast, recommendation is a filtering
task, which aims to filter out the items that are of interest to the user
(Adomavicius and Tuzhilin, 2005). As such, search can be considered as
conducting matching between queries and documents, and recommen-
dation can be considered as conducting matching between users and
items. More formally, both the matching in search and recommendation
can be considered as constructing a matching model f : X × Y 7→ R
which calculates the matching degree between two input objects x and
y, where X and Y denote two object spaces. X and Y are the spaces of
queries and documents in search, or the spaces of users and items in
recommendation.

Under the unified matching view in Figure 1.1, we use the term infor-
mation objects to denote the documents/items to retrieve/recommend,
and use information needs to denote the queries/users in the respective
task. By unifying the two tasks under the same view of matching and

Full text available at: http://dx.doi.org/10.1561/1500000076



1.2. Unifying Search and Recommendation 9

comparably reviewing existing techniques, we can provide deeper in-
sights and more powerful solutions to the problems. Moreover, unifying
the two tasks also has practical and theoretical implications.

Search and recommendation have already been combined in some
practical applications. For example, at some E-commerce sites, when
the user submits a query, a ranking list of products are presented
based on not only relevance (query-product matching) but also user
interest (user-product matching). In some lifestyle apps, when the
user searches for restaurants, the results are returned based on both
relevance (query-restaurant matching) and user interest (user-restaurant
matching). There is a clear trend that search and recommendation will
be integrated into a single system at certain scenarios to meet users’
needs better, where matching plays an essential role.

Search and recommendation already have many shared technolo-
gies because of their similarities in matching. Some search problems
can be solved by using recommendation techniques (Zamani et al.,
2016), and vice versa (Costa and Roda, 2011), on the basis of match-
ing. With the use of deep learning technologies, the matching models
for search and recommendation bear even more resemblance in archi-
tecture and methodology, as reflected in the techniques: embedding
the inputs (queries, users, documents, and items) as distributed rep-
resentations, combining neural network components to represent the
matching function, and training the model parameters in an end-to-end
manner. Moreover, search and recommendation can be jointly modeled
and optimized if they share the same set of information objects (as
in the above examples of E-commerce sites and lifestyle apps) (Schedl
et al., 2018; Zamani and Croft, 2018a, 2020). Therefore, in order to
develop more advanced ones, it is necessary and advantageous to take
a unified matching view to analyze and compare existing search and
recommendation technologies.

The matching tasks in search and in recommendation face different
challenges in practice. The underlying problem is essentially the same,
however, that is, the mismatch challenge. Next, we introduce the key
challenges of the two tasks, respectively.

Full text available at: http://dx.doi.org/10.1561/1500000076



10 Introduction

1.3 Mismatching Challenge in Search

In search, queries and documents (usually their titles) are taken as
texts. The relevance of a document to a query is mainly represented
by the matching degree between the two. The document is considered
relevant to the query if the matching degree is high. Natural language
understanding by computer is still challenging, and thus the calculation
of matching degree is still limited to the text level but not at the semantic
level. A high match degree at the text level does not necessarily mean
high relevance at the semantic level, and vice versa. Moreover, queries
are issued by users, while documents are compiled by editors. Due
to the ambiguity of natural language, users and editors are likely to
use different language styles and expressions for presenting the same
concepts or topics. As a result, the search system may suffer from the so-
called query-document mismatch problem. Specifically, when the users
of a search engine and the editors of the documents use different texts
to describe the same concept (e.g., “ny times” vs. “new york times”),
query-document mismatch may occur. This is still one of the main
challenges for search. Moving to the cross-modal IR (e.g., using text
queries to retrieve image documents), the query-document mismatch
problem becomes even more severe, because different modalities have
different types of representations. In cross-modal retrieval, one major
challenge is how to construct a matching function that can bridge the
“heterogeneity gap” amongst the modalities.

To address the query-document mismatch challenge, methods have
been proposed to perform matching at the semantic level, referred
to as semantic matching. The key idea in the solutions is either to
perform more query and document understanding to better represent
the meanings of the query and document, or to construct more powerful
matching functions that can bridge the semantic gap between the query
and document. Both traditional machine learning approaches (Li and
Xu, 2014) and deep learning approaches (Guo et al., 2019b; Mitra and
Craswell, 2018; Onal et al., 2018) have been developed for semantic
matching.

Full text available at: http://dx.doi.org/10.1561/1500000076
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1.4 Mismatching Challenge in Recommendation

The mismatching problem is even more severe in recommendation. In
search, queries and documents consist of terms in the same language,1
making it at least meaningful to conduct direct matching on their terms.
In recommendation, however, users and items are usually represented
by different types of features, for example, the features of users can be
the user ID, age, income level, and recent behaviors, while the features
for items can be the item ID, category, price, and brand name. Since the
features of users and items are from the spaces of different semantics,
the naive approaches based on the matching of superficial features do
not work for recommendation. More challengingly, the items can be
described by multi-modal features, e.g., images of clothing products
and cover images of movies, which could play a pivotal role in affecting
the decision-making of users. In such visually-aware scenarios, we need
to consider the cross-modal matching between users and multi-modal
content.

To address the mismatching challenge in recommendation, the col-
laborative filtering principle has been proposed (Shi et al., 2014). Col-
laborative Filtering (CF), which works as the fundamental basis of
almost all personalized recommender systems, assumes that a user
may like (consume) the items that are liked (consumed) by the similar
users, for which the similarity is judged from the historical interac-
tions (Sarwar et al., 2001). However, directly evaluating the similarity
between users (items) suffers from the sparsity issue, since a user only
consumed a few items in the whole item space. A typical assumption
to address the sparsity issue is that the user-item interaction matrix
is low-rank, which thus can be estimated from low-dimensional user
(and item) latent feature matrix. Then the user (item) similarity can be
more reliably reflected in the latent feature matrix. This leads to the
effectiveness of matrix factorization for collaborative filtering (Koren
et al., 2009; Rendle et al., 2009), which becomes a strong CF method
and an essential design for many recommender models. Besides matrix
factorization, many other types of CF methods have been developed

1Here we do not consider cross-language information retrieval.

Full text available at: http://dx.doi.org/10.1561/1500000076



12 Introduction

like neural network-based methods (He et al., 2017c; Liang et al., 2018)
and graph-based methods (Wang et al., 2019b; Ying et al., 2018).

To leverage the various side information beyond the interaction
matrix, such as user profiles, item attributes, and the current contexts,
many generic recommender models that follow the standard supervised
learning paradigm have been proposed. These models can be used in
the (re-)ranking stage of a recommendation engine, e.g., by predicting
the click-through rate (CTR) of an item. A representative model is
factorization machine (FM) (Rendle, 2010), which extends the low-rank
assumption of matrix factorization to model feature interactions. Since
the expressiveness of FM is limited by its linearity and second-order
interaction modeling, many later efforts complement it with neural
networks for nonlinear and higher-order interaction modeling (He and
Chua, 2017; Lian et al., 2018; Zhou et al., 2018). These neural network
models have now been intensively used in industrial applications. Batmaz
et al. (2019) and Zhang et al. (2019) reviewed deep learning methods
for recommendation systems.

Please note that though query-document matching and user-item
matching are critical for search engines and recommendation systems,
these systems also include other important components. Besides match-
ing, web search engines also include crawling, indexing, document un-
derstanding, query understanding, and ranking, etc. Recommendation
systems also include components such as user modeling (profiling),
indexing, caching, diversity controlling, and online exploration, etc.

1.5 Recent Advances

Though traditional machine learning was successful for matching in
search and recommendation, recent advances in deep learning have
brought even more significant progress to the area with a large number
of deep matching models proposed. The power of deep learning models
lies in the ability to learn distributed representations from the raw
data (e.g., text) for the matching problem, to avoid many limitations
of hand-crafted features, and to learn the representations and matching
networks in an end-to-end fashion. Moreover, deep neural networks have
sufficient capacity to model complicated matching tasks. They have

Full text available at: http://dx.doi.org/10.1561/1500000076
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the flexibility of extending to cross-modal matching naturally, where
the common semantic space is learned to represent data of different
modalities universally. All these characteristics are helpful in handling
the complexity of search and recommendation.

In search, the mismatch between query and document is more effec-
tively addressed by deep neural networks, including the feed-forward
neural networks (FFNs), convolutional neural networks (CNNs), and
Recurrent neural networks (RNNs), because they have stronger ca-
pabilities in representation learning and matching function learning.
Most notably, Bidirectional Encoder Representations from Transformers
(BERT) has significantly enhanced the accuracy of matching in search
and stands out as the state-of-the-art technique now.

In recommendation, recent focus has shifted from behavior-centric
collaborative filtering to information-rich user-item matching as in
sequential, context-aware, and knowledge graph enhanced recommen-
dations, which are all practical scenario-driven. In terms of techniques,
graph neural networks (GNNs) become an emerging tool for represen-
tation learning (Wang et al., 2019a,b), because recommendation data
can be naturally organized in a heterogeneous graph and GNNs have
the capability to exploit such data. To handle user behavior sequence
data, self-attention and BERT are also adopted, which demonstrates
promising results in sequential recommendation (Sun et al., 2019; Yuan
et al., 2020).

1.6 About This Survey

This survey focuses on the fundamental problems of matching in search
and recommendation. State-of-the-art matching solutions using deep
learning are described. A unified view of search and recommendation
from matching is provided. The ideas and solutions explained may mo-
tivate industrial practitioners to turn the research results into products.
The methods and the discussions may help academic researchers to
develop new approaches. The unified view may bring researchers in the
search and the recommendation communities together and inspire them
to explore new directions.

Full text available at: http://dx.doi.org/10.1561/1500000076



14 Introduction

The survey is organized as follows: Section 2 describes the traditional
machine learning approaches to matching for search and recommen-
dation; Section 3 gives a general formulation of deep matching meth-
ods; Section 4 and Section 5 describe the details of the deep learning
approaches to search and recommendation respectively. Each section
includes the representation learning-based approaches and matching
function learning-based approaches; Section 6 summarizes the survey
and discusses open problems. Sections 2, 3, 4, and 5 are self-contained,
and the readers can choose to read on the basis of their interest and
need.

Note that deep learning for search and recommendation is a very hot
topic of research. As such, this survey does not try to cover all related
works in the fields of information retrieval and recommender systems.
Instead, we discuss the most representative approaches of the two fields
from the viewpoint of matching, aiming to summarize their key ideas
which are general and essential. In particular, this survey covers the
representative work before 2019.

Several previous FnTIR issues have given detailed introductions to
related topics. One issue (Li and Xu, 2014) introduces the traditional
machine learning approaches to the semantic matching problem, partic-
ularly in web search. Our survey in this issue is very different from it
in the sense that (1) it focuses on the newly developed deep learning
methods, and (2) it considers both search and recommendation. Mitra
and Craswell (2018) conducted a comprehensive survey on deep neural
networks for information retrieval, referred to as Neural IR. Bast et al.
(2016) carries out a survey on the techniques and systems of semantic
search, which means search with keyword queries, structured queries,
and natural language queries, to documents, knowledge bases, and their
combinations.

Several surveys and tutorials have been made on deep learning for
information retrieval and recommendation. For example, Onal et al.
(2018) have explained neural models for ad-hoc retrieval, query un-
derstanding, question answering, sponsored search, and similar item
retrieval. Zhang et al. (2019) reviews deep learning-based recommenda-
tion methods according to the taxonomy of deep learning techniques,
e.g., MLP, CNN, RNN, autoencoder-based, and so on. Other related

Full text available at: http://dx.doi.org/10.1561/1500000076
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surveys and tutorials include Kenter et al. (2017), Li and Lu (2016),
Guo et al. (2019b), Batmaz et al. (2019), and Zhang et al. (2019). They
all quite differ from this survey, which summarizes existing work from
the perspective of matching (e.g., input representations and the way
for matching).

This survey focuses on state-of-the-art matching techniques using
deep learning. We expect that the readers have a certain knowledge
of search and recommendation. Those who are not familiar with the
areas may consult existing materials (e.g., Adomavicius and Tuzhilin,
2005; Croft et al., 2009; Li and Xu, 2014; Liu, 2009; Ricci et al., 2015).
We also assume that the readers have sufficient knowledge of machine
learning, particularly deep learning.
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