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ABSTRACT

The abundance of user generated content on social media
provides the opportunity to build models that are able to
accurately and effectively extract, mine and predict users’
interests with the hopes of enabling more effective user en-
gagement, better quality delivery of appropriate services
and higher user satisfaction. While traditional methods for
building user profiles relied on AI-based preference elici-
tation techniques that could have been considered to be
intrusive and undesirable by the users, more recent advances
are focused on a non-intrusive yet accurate way of deter-
mining users’ interests and preferences. In this monograph,
we will cover five important subjects related to the mining
of user interests from social media: (1) the foundations of
social user interest modeling, such as information sources,
various types of representation models and temporal fea-
tures, (2) techniques that have been adopted or proposed for

Fattane Zarrinkalam, Stefano Faralli, Guangyuan Piao and Ebrahim Bagheri (2020),
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tions and TrendsR© in Information Retrieval: Vol. 14, No. 5, pp 445–617. DOI:
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mining user interests, (3) different evaluation methodologies
and benchmark datasets, (4) different applications that have
been taking advantage of user interest mining from social
media platforms, and (5) existing challenges, open research
questions and opportunities for further work.
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1
Introduction

Mining user interests from user behavioral data is critical for many
applications, ranging from homophily analysis to recommender systems.
Based on user interests, service providers such as advertisers can sig-
nificantly reduce service delivery costs by offering the most relevant
products (e.g., ads) to their customers. The challenge of accurately and
efficiently identifying user interests has been the subject of increasing
attention in the past several years (Zarrinkalam et al., 2019a). Early ap-
proaches were based on explicit input from individuals about their own
interests (Maron et al., 1986). To avoid the extra burden of manually
filling in and maintaining interest profiles, most methods in the past two
decades have focused on the development of techniques that can auto-
matically and unobtrusively determine users’ interests based on user be-
havioral data from data sources such as browsing history, page visits, the
links they click on, the searches they perform and the topics they interact
with (Gasparetti, 2017; Holub and Bieliková, 2010; Li and Zhang, 2013).

With the emergence and growing popularity of social media such
as blogging systems, wikis, social bookmarking, social networks and
microblogging services, many users are extensively engaged in at least
some of these applications to express their feelings and views about
a wide variety of social events/topics as they happen in real time by

3
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4 Introduction

commenting, tagging, joining, sharing, liking, and publishing posts
(Abel et al., 2011b; Li et al., 2008). According to Statista, a company
which provides statistics and survey results, there were an estimated
3.6 billion people using social media in 2020, a number projected to
increase to almost 4.41 billion in 2025.1 This has made social media an
exciting and unique source of information about users’ interests.

For instance, when looking at Twitter data during the first week of
March 2019, the rivalry between the two English Premier League soccer
clubs, i.e., Tottenham Hotspur and Arsenal, is a topic that has attracted
a lot of discussion and interest. The development of techniques that
can automatically detect such topics and model users’ interests towards
them has the potential to improve the quality of applications that work
on a user modeling basis, such as filtering twitter streams (Kapanipathi
et al., 2011), news recommendation (Abel et al., 2011b) and retweet
prediction (Feng and Wang, 2013), among others.

This monograph is a valuable resource for those who have famil-
iarity with social media mining and basics of information retrieval
(IR) techniques. Where appropriate, the monograph will not make any
assumptions about the researchers’ knowledge on more advanced tech-
niques such as link prediction, matrix factorization, entity linking and
knowledge graph-based reasoning, among others. As such, sufficient
details about user interest modeling from social media will be provided
as appropriate so that the content will be accessible and understand-
able to those who have fundamental understanding of IR principles.
The monograph will only assume familiarity with topics included in an
undergraduate IR course such as those covered in Manning et al. (2008).

The monograph is structured as follows.

• Section 1 provides the motivations of user interest modeling from
social media and the scope and delimitation of this monograph
by highlighting the difference between this monograph and other
related review monographs and introducing some related research
areas which are out of the scope of this monograph.

1https://www.statista.com/statistics/278414/number-of-worldwide-social-
network-users/.
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1.1. Definitions 5

• Section 2 introduces the foundations of user interest modeling
from social media such as information sources, representation
units to represent each topic of interest and user interest profile,
temporal aspects and cross-system user interest modeling.

• Section 3 describes user interest modeling approaches by focusing
on three main perspectives: (1) explicit user interest detection,
(2) implicit user interest mining, and (3) future user interest
prediction.

• Section 4 describes the main evaluation methodologies which have
been widely adopted in the literature followed by the existing
benchmark datasets and evaluation metrics.

• Section 5 introduces different applications that have been taking
advantage of user interest modeling from social media platforms
to improve their services.

• Section 6 presents exciting open challenges, future directions
and research questions in the state-of-the-art for modeling users’
interests from social media.

1.1 Definitions

In this section, we provide concrete definitions of social media and user
interest modeling as two key terms used in this monograph.

Social Media. The term social media has been defined in the literature
in various ways by different communities such as communications,
management, and computer science (Boyd and Ellison, 2007; Fuchs,
2014; Rohani and Hock, 2010). In this monograph, we follow the same
definition provided by Obar and Wildman (2015), which synthesize
the definitions presented in the literature by defining social media as a
service that has the following four distinct commonalities:

• Social media services are (currently) Web 2.0 Internet-based ap-
plications. In Web 2.0 applications, users have become not only
content consumers but also active producers.

Full text available at: http://dx.doi.org/10.1561/1500000078



6 Introduction

• User-generated content is the lifeblood of social media. Social media
services are not sustainable without user-generated content. For
example, the videos that we upload to YouTube, the connections
and posts that we generate on Facebook or Twitter play crucial
roles in making those social media platforms live.

• Individuals and groups create user-specific profiles for a site or
application designed and maintained by a social media service.
User profile in a social media service provides a unique way of
identifying each user which is important to enable social networks
between users. A user profile here can refer to any information to
uniquely identify a user such as a username, IP address, locations,
contact information, etc.

• Social media services facilitate the development of social networks
online by connecting a profile with those of other individuals and/or
groups. For example, friends on Facebook, connections on LinkedIn
and followers on Twitter and Instagram. Users are motivated to
create their social networks in social media services for consuming
content generated by their social networks or interact with them.

User Interest Modeling. Piao and Breslin (2018a) provided a general
definition about user interest modeling and user profiles. We use a
refined definition as follows.

The process of obtaining the user interest profile is called user interest
modeling. A user interest profile is a data structure that represents the
degree of interest of an individual user over a set of topics represented
by words or concepts.

1.2 Related Review Papers

Despite the importance of user interest modeling from social media,
there is a lack of an extensive review on this domain that covers the ideas,
insights and applications of different approaches in user interest modeling
from social media. Piao and Breslin (2018a) have reviewed studies in
user interest modeling from microblogging websites such as Twitter by
focusing on four dimensions: (1) data collection, (2) representation of

Full text available at: http://dx.doi.org/10.1561/1500000078



1.2. Related Review Papers 7

user interests, (3) construction and enhancement of user interest profiles,
and (4) evaluation methodologies.

The authors in Piao and Breslin (2018a) have presented the foun-
dations of user interest modeling from microblogging websites and
overlooked other social media platforms (e.g., Facebook, Flickr and
Pinterest). Further, they have not covered the potential applications
of the extracted user interest models. Since we categorize different
approaches proposed in the literature with respect to three main per-
spectives: (1) explicit user interest detection, (2) implicit user interest
mining, and (3) future user interest prediction, this has set the stage for
a more detailed presentation of the ideas and insights about different
user interest modeling approaches. Moreover, in addition to providing
the fundamental information that new researchers need for understand-
ing this field, we extensively discuss the potential applications of the
extracted user interest models and promising techniques which can be
applied for future exploration in this field.

As another related review monograph, Safari et al. (2019) have
recently reviewed different studies on user behavior mining from so-
cial media (UBMSM). They have provided different statistical and
demographic information (e.g., venue types and publishers) about the
publications in this domain. Further, based on the focus area of their
studies, they have identified four main aspects which affect user behavior
mining from social media: (1) user, (2) content, (3) network structure,
and (4) information diffusion. For each aspect, multiple characteristics
are defined and their impact and consequences on UBMSM are dis-
cussed. The authors have considered user interest modeling as one of
the four characteristics of the user aspect and reviewed different related
studies on this topic.

Therefore, in contrast to our work, the focus of the authors in Safari
et al. (2019) is not directly on user interest modeling from social media
and they have concentrated more on the effect of different characteristics
and aspects of user behavior. As a result, they don’t provide more in-
depth analysis and discussion of the studies in this field. However,
our monograph describes the specific techniques, evaluation strategies,
benchmarks and challenges of user interest modeling from social media,
in addition to concrete directions for future work. Consequently, we

Full text available at: http://dx.doi.org/10.1561/1500000078



8 Introduction

believe that our review monograph is more insightful for a researcher
interested in this specific field, i.e., user interest modeling from social
media.

1.3 Related Research Areas

There are some research areas/topics which are related to user interest
modeling from social media. Because each of these areas is a mature
and active field of research and includes a rich line of studies in the
literature, we will not cover them in detail and they are beyond the scope
of this monograph. To provide a more in-depth analysis, we only review
the studies that focus directly on user interest modeling from social
media. In the following, some of the most important examples of these
areas/topics, e.g., topic detection, personality prediction and latent user
modeling from social media are introduced and their similarities and
differences to the subject of this monograph are highlighted.

1.3.1 Topic/Event Detection from Social Media

There is already a well-established body of work in the literature that
extracts topics/events from social media (Aiello et al., 2013; Huang et al.,
2017a; Petkos et al., 2014; Yan et al., 2015). Applying topic modeling
methods, such as LDA, over social posts is the main approach to extract
topics from social media. However, since the majority of standard topic
modeling methods are designed for regular documents such as news
articles, they fail to identify the essential information of social posts
which are short, noisy and informal. An intuitive solution to address this
issue is first using a pooling scheme to aggregate the related social posts
to a single document (e.g., posts published by a given user or in a given
time interval) and then applying a standard topic modeling method on
the resulting documents to extract topics from social posts. This allows
for the discovery of better topics without modifying the existing topic
modeling methods (Alvarez-Melis and Saveski, 2016; Mehrotra et al.,
2013; Rajani et al., 2014).

To extract topics from social posts, instead of applying pooling
scheme, some studies have applied some restrictions to simplify the

Full text available at: http://dx.doi.org/10.1561/1500000078
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conventional topic models or developed novel topic models. For example,
in Zhao et al. (2011), Twitter-LDA model has been proposed which
assumes that a single tweet contains only one topic. Similarly, in Yan
et al. (2015), the authors have extended the Biterm Topic Model (BTM)
(Yan et al., 2013), which models word pairs instead of words for effective
topic modeling in short texts, by incorporating the burstiness of word
pairs as prior knowledge in BTM for bursty topic modeling from social
posts.

There is also another line of studies that extracts topics/events from
social media by applying clustering methods over social posts or their
features (Comito et al., 2019a,b; Long et al., 2011). As one of the earlier
studies that focused on microblogging data, in Long et al. (2011), a co-
occurrence graph is constructed by extracting topical words from daily
posts. To extract events during a time period, the authors have applied
a top-down hierarchical clustering algorithm over the co-occurrence
graph.

The above studies can be considered as a related area to user interest
modeling as they are applied in some studies to first extract active topics
in social media and then the interest profile of users are modeled over
the extracted topics (Arabzadeh et al., 2018; Zarrinkalam et al., 2018).
In these studies, it is assumed that existing state-of-the-art techniques
can be employed for extracting and modeling topics. Therefore, they
are not engaged with proposing a new method for the identification of
topics and only have focused on determining the degree of interest of
users towards the topics once they are identified. Given this focus, we
review the work related to the problem of user interest modeling from
social media. Interested readers are encouraged to see Bhardwaj et al.
(2019), Farzindar and Khreich (2015), Zarrinkalam and Bagheri (2016)
for the state of the art on topic and event detection from social media.

1.3.2 Personality Prediction of Social Media Users

Predicting the personality of users from social media is another related
research area to user interest modeling. In Kosinski et al. (2015), the
authors have provided a comprehensive discussion about opportunities,

Full text available at: http://dx.doi.org/10.1561/1500000078



10 Introduction

challenges and ethical aspects of social media involvement in psycholog-
ical studies. As an example, they have studied users’ profiles in social
media in order to perform personality classification. Similarly, in Youyou
et al. (2015), the authors have concluded that digital footprints created
on top of user preferences (i.e., Facebook likes) are more accurate and
valid than judgments made by social-cognitive experts. Therefore, there
is already a well-established body of work in the literature that predicts
users’ personality traits from social media (Golbeck et al., 2011; Souri
et al., 2018).

Most studies in this area have used the Big Five model (Halverson,
1994) as one of the most well-known measures for personality traits
(the five personality traits according to Big Five model are openness,
conscientiousness, extroversion, agreeableness and neuroticism). For
example, in Souri et al. (2018), the authors have adopted the Big Five
model to design a classifier which is able to automatically identify five
classes of personality traits based on the users’ social media profiles. In
Golbeck et al. (2011), social behavior of a user is considered as a strong
indicator to predict her personality. To model the behavior of a user in
social media, the authors have developed a set of behavioral features
based on the intensity and number of social interactions that the user
has with her friends along a number of dimensions such as reciprocity
and priority. They have analyzed these behavioral features along with a
set of textual features and showed that behavioral features perform as
well as textual features for predicting user personality.

Similar to user interest modeling approaches, the above studies
try to model the users’ behavior on social media by mainly analysing
the textual content of users and their social relations. However, since
these studies aim at extracting personality traits of users instead of
extracting the users’ interests, they dig more into the linguistic fea-
tures. For example, to identify the personality of users, in many studies
LIWC (Pennebaker et al., 1999), which produces statistics on 81 dif-
ferent linguistic features of text, is utilized to study various emotional,
cognitive, structural, and process components presented in the users’
textual content. Interested readers about the state-of-the-art approaches
on personality identification from social media are encouraged to see
Kaushal and Patwardhan (2018).

Full text available at: http://dx.doi.org/10.1561/1500000078



1.3. Related Research Areas 11

1.3.3 Latent User Modeling from Social Media

There are plenty of studies that embed a user’s information in social
media such as the user’s relations, textual content and demographic
profile, into a latent low dimensional space (Benton et al., 2016; Zhang
et al., 2017). These studies are usually tied to a specific task from which
the model is learned and they represent user models by latent features
which are not human readable.

For example, in Ding et al. (2017), the user’s information on Face-
book (e.g., likes and status updates) is embedded in order to build
substance use detection systems to identify users who are at risk of
substance use disorder. The authors have employed Doc2Vec (Le and
Mikolov, 2014), which produces a dense low dimensional feature vector
for a document, as one of their approaches to embed users. To learn
user embeddings from social media posts, they introduced two meth-
ods: (1) User-D2V which treats all the posts published by each user
as one document and trains a document vector to represent each user.
(2) Post-D2V which learns a vector for each post and then aggregates
all the post vectors from the same user to derive the user embedding.

As other examples, in Benton et al. (2016), the authors have proposed
to embed different information of a user on Twitter (e.g., the user’s posts,
followers and friends) into a single embedding vector by applying a
multiview approach. They have shown the effectiveness of their model on
three different prediction tasks (i.e., user engagement prediction, friend
recommendation and demographic characteristics inference). Word2Vec
(Mikolov et al., 2013) is one of the methods the authors have applied to
represent each view of the user by simply averaging the word embeddings
for all the words within that view (e.g., the user’s posts). In Piao and
Breslin (2018b), the latent representation of social posts and users on
Twitter are learned for the application of tweet recommendation. Their
proposed model employs Long Short-Term Memory neural networks
(LSTMs) (Piao and Breslin, 2018b) for learning tweet embeddings, and
calculates the degree of interest of a user to a tweet based on the
similarity between the user and the tweet embeddings as well as the
similarity between the user and tweet’s publisher embeddings.

Full text available at: http://dx.doi.org/10.1561/1500000078



12 Introduction

In this monograph, our focus is on reviewing the user interest
modeling approaches that identify the degree of interest of a user over
a set of topics each of which are represented by words or concepts. In
other words, we do not review user modeling approaches that result
in latent user models represented by a vector of numbers which are
not human readable. A recent survey about social media-based user
embedding can be found in Pan and Ding (2019).
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