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ABSTRACT

With the rapid progress of deep neural models and the ex-
plosion of available data resources, dialogue systems that
supports extensive topics and chit-chat conversations are
emerging as a research hot-spot for many communities,
e.g., information retrieval (IR), natural language processing
(NLP), and machine learning (ML). Building a chit-chat
system with retrieval techniques is an essential task and has
achieved great success in the past few years. The advance of
chit-chat systems, in turn, can support extensive IR tasks,
e.g., conversational search and conversational recommenda-
tion. To facilitate the development of both retrieval-based
chit-chat systems and IR tasks supported by these systems,
we survey chit-chat systems from two perspectives: (1) tech-
niques to build chit-chat systems, i.e., deep retrieval-based
models, generative methods, and their ensembles, and (2)
chit-chat components in completing IR tasks. In each aspect,

Rui Yan, Juntao Li and Zhou Yu (2022), “Deep Learning for Dialogue Systems:
Chit-Chat and Beyond”, Foundations and Trends® in Information Retrieval: Vol. 15,
No. 5, pp 417–589. DOI: 10.1561/1500000083.
©2022 R. Yan et al.
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we present cutting-edge neural methods and summarize the
core challenges encountered and possible research directions.
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1
Introduction

Starting from the 1960s, conversational artificial intelligence has be-
come a crucial research field and has grabbed much more attention in
recent years. Empowered by deep neural models, dialogue systems have
demonstrated very impressive and appealing performance in virtual
assistants and social bots. In viewing its potential and values, main-
stream NLP, IR, and even ML communities have started contributing
to dialogue systems. Dialogue systems can be roughly grouped into
two classes, i.e., task-oriented and chit-chat systems. The former group
focuses on completing predefined tasks with task-specific constraints
and goals, e.g., restaurant booking and making calls. The later systems
are mainly designed for modeling the ‘chats’ characteristic of human-
human conversations (Daniel and James, 2020) without specific goals
and constraints, i.e., the topics of the conversation could be any. Given
predefined constraints and goals, task-oriented systems can achieve
impressive performance with limited data and computational resources.
In contrast, chit-chat systems require massive training conversations
to mimic human chatting with extensive topics. Unlike task-oriented
systems that have achieved great success for decades, learning-based
chit-chat systems have not made great strides until recent years with the

3

Full text available at: http://dx.doi.org/10.1561/1500000083



4 Introduction

explosion of both data resources, model capacity (data modeling capa-
bility of deep neural networks), and computational power. To facilitate
the development of chit-chat systems and their supported IR tasks and
bridge the gap between different research communities, especially for the
NLP and IR fields, we propose to systematically review state-of-the-art
chit-chat systems and draw the connections between chit-chat and tasks,
from being supporting tasks and the unified modeling framework in the
paradigm of pre-trained language models.

Specifically, our work has a deep concentration on deep neural chit-
chat systems using IR techniques and NLP methods, i.e., this monograph
presents lessons and experiences of how to establish relevant, coherent,
diverse, knowledgeable, and human-like chit-chat systems. Besides, we
also discuss the connections between chit-chat systems and tasks, rang-
ing from the perspectives of treating chit-chat components as supporting
tasks to make task completion more natural (e.g., recommendation)
to the trend of leveraging a unified framework for various downstream
tasks in the era of pre-trained language models. To the best of our
knowledge, it is the first survey to cover these topics and features.

The main contributions of this survey are as follows:

• We thoroughly survey the deep neural models in recent years
for chit-chat systems, ranging from retrieval-based methods to
generation-based approaches and the ensemble of these two types
of models.

• We provide the connections between the recently resurgent chit-
chat systems and task-oriented systems, e.g., conversational recom-
mendation and conversational search, which enables us to explore
more possibilities of building either better chit-chat systems or
improving user experience in constructing IR systems.

• We introduce various solutions for addressing or mitigating the
confronted challenges (e.g., context modeling, one-to-diversity,
human factors learning) from different perspectives, including data-
side and model-side solutions and utilization of extra resources.

• We present necessary data resources and evaluation methods for
building retrieval-based and generation-based chit-chat systems.

Full text available at: http://dx.doi.org/10.1561/1500000083



1.1. Intended Audience and Scope 5

• We also analyze the main challenges that we are facing and give
the possible exploration directions and the rising trends, which
will shed light on building human-like systems.

1.1 Intended Audience and Scope

This survey is intended to bridge the researchers of IR and the NLP
community to move chit-chat systems forward and support more IR
tasks. Our target audience includes, but is not limited to, IR or NLP
researchers who want to study chit-chat from different perspectives, e.g.,
compensating retrieval-based models with the generation or vice versa,
IR researchers who need to complete their tasks with the assistance
of chit-chat systems, engineers with hands-on experience in building
chit-chat systems to leverage advanced chit-chat modeling techniques,
anyone who intends to quickly keep up with the frontier of chit-chat
systems, anyone who wants to learn how to build chit-chat systems with
deep neural architectures.

The main scope of this survey is based on the tutorial of SIGIR 2019
and WWW 2019 (Wu and Yan, 2019a, 2019b). We expand the tutorial
contents with up-to-date techniques for building chit-chat systems,
covering retrieval-based methods, generation components, and their
ensembles. Besides the above contents, we also discuss the role of chit-
chat systems in completing tasks, especially for some emerging IR
tasks, e.g., conversational search and conversational recommendation.
Considering the new trend of utilizing a unified self-supervised pre-
training framework for both chit-chat and IR tasks, we further review a
few recent works in this line and point out the possible future direction.

The rest of this survey is structured as follows:

• The remainder of this section summarizes the importance of chit-
chat systems and presents the core problems of chit-chat systems.
Besides, the landscape of chit-chat systems is also introduced. At
the end of this section, we clarify the relationship and discrepancy
between this survey and recent papers.

• Section 2 briefly reviews classic chit-chat systems before the neural
age, including rule-based, template-based, and learning-based
methods, and summarizes the characteristics of these methods.

Full text available at: http://dx.doi.org/10.1561/1500000083



6 Introduction

• Section 3 sorts out and elaborates retrieval-based dialogue sys-
tems in recent years. This section starts with the pre-processing
of conversation data and then discusses the core problems of
retrieval-based chit-chat systems in detail (e.g., context model-
ing, knowledge utilization, human factors learning), which ends
with necessary data resources and evaluation metrics for building
retrieval-based chit-chat systems.

• Section 4 provides an alternative option for building chit-chat
systems, i.e., generation-based methods, focusing on the pros and
cons of generation-based methods in building chit-chat systems
and their relationships with retrieval-based solutions. The last part
of this section gives essential data resources, evaluation methods,
and current challenges.

• In Section 5, we describe the ensemble of the aforementioned
two types of frameworks, focusing on the scenarios of integration
and re-ranking, template and prototype, and adversarial learning.
Section 6 connects chit-chat systems with tasks, including vanilla
tasks and newly appeared IR tasks like conversational search, and
reveals the trend of unifying chit-chat dialogues and tasks with
large-scale pre-trained language models.

• Section 7 first concludes this survey with the progress of chit-chat
systems and the chit-chat component in IR tasks, and then points
out the ongoing struggles and the possible future trends.

1.2 The Importance of Chit-Chat Systems

Chit-chat systems have become more and more popular and impor-
tant in both academia and industry. Studying chit-chat systems have
various benefits, including providing helpful services to human users,
promoting the development of artificial intelligence technologies, holding
tremendous potential and commercial values in the future.

To human users, chit-chat systems can satisfy a myriad of human
needs, such as communication, social belongings, emotional engagement,

Full text available at: http://dx.doi.org/10.1561/1500000083



1.2. The Importance of Chit-Chat Systems 7

Figure 1.1: User size of social bots from Microsoft (Wu and Yan, 2019b).

etc. (Huang et al., 2020b). On account of these merits, various applica-
tions, including but not limited to virtual assistants, smart speakers,
social bots, and virtual customer services, are developed. As shown in
Figure 1.1, chit-chat systems from the Microsoft corporation alone at-
tracted over 245 million users and achieved over 30 billion conversations
by 2019.

As for the connections between chit-chat systems and technology
development, it is an indicator to calibrate the progress of artificial
intelligence by launching the Turing test which is designed to test
whether a machine can exhibit intelligent behaviours equivalent or
indistinguishable from a human1. Building chit-chat systems also poses
various unique challenges to state-of-the-art deep neural models, e.g.,
one-to-diversity, long-range context modeling, topic shift, long-term
engagement computation, human factors learning, and the settlement
of these problems, in turn, facilitates the progress of deep learning
methods and encourages technical development.

Except for contributing to technology development and human
needs, chit-chat systems also connect to various online commercial
services. As demonstrated in Figure 1.2, chit-chat conversation might
mix with goal-oriented demands, such as question answering, image
search, and recommendation. Exploring chit-chat conversations could
seamlessly find the demands of users and complete different tasks in
a more efficient manner accordingly, i.e., without introducing multiple

1https://en.wikipedia.org/wiki/Turing_test (date accessed: 11 April 2022)
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8 Introduction

Figure 1.2: A case study that demonstrates the connections between chatbots and
goal-oriented applications (Wu and Yan, 2019b).

task-specific systems. It also serves an essential role in intelligent entities
and devices by providing the human-machine interface. The progress of
chatbots could assist the development of robotics.

With the rapid progress of conversational AI techniques that sup-
port human-like interactions between computers and humans, it can
be imaged that chit-chat systems are likely to have more industrial
applications and broad market prospects. We believe that the potential
of these systems is far more than we have seen in recent few years on
social bots, virtual assistants, information seeking systems. In the far
future, conversational AI systems might change almost everything in

Full text available at: http://dx.doi.org/10.1561/1500000083



1.3. The Core Problems of Chit-Chat Systems 9

our daily life, e.g., the games will be more immersive, robotics are more
intelligent that is able to sing, talk and even make friends with humans.

1.3 The Core Problems of Chit-Chat Systems

One of the main goals of chit-chat systems is to pass the Turing test so
as to prove that an artificial program can chat like humans. Thus, the
properties of human conversations should be considered and modeled
in chit-chat systems. Seeing that human conversations are intricate
and difficult to formulate, we utilize the qualitative analysis results of
human conversation properties in Daniel and James (2020) to divide
and shape the core problems of chit-chat systems. There are mainly
six basic properties for human conversations: (1) turns, (2) speech
acts, (3) grounding, (4) sub-dialogues and dialogue structure,
(5) initiative, and (6) inference and implicature. For deep neu-
ral models trained on massive conversation data, speech acts and
dialogue structure are implicitly modelled by neural networks. As
for initiative, user-initiative and system-initiative frameworks are
more common for task-specific systems while mixed initiative are
very difficult to achieve. Thus, researchers mainly focus on the following
problems in deep neural chit-chat systems.

Context Modeling. One of the main challenges we encountered is the
long-range context modeling. Unlike task-oriented conversations that
mainly consist of task-specific contents and usually complete a user
demand in no more than a few dozens of conversation turns, chit-chat
conversation is tied up with over hundreds of turns in usual, owing to
the non-goal-oriented nature of chit-chat. In view of this, long-range
context modeling has become a crucial issue for chit-chat dialogues to
make conversations more consistent and coherent.

One-to-Diversity. In addition to multi-turn context modeling, one-
to-diversity has also hindered the development of chit-chat systems.
Unlike task-oriented conversations that take task completion as the
evaluation metric, chit-chat further needs to mimic human-like conversa-
tions. Among various characteristics of human conversations, modeling
expression diversity and one-to-many correlations bear the brunt.

Full text available at: http://dx.doi.org/10.1561/1500000083



10 Introduction

Knowledge and Grounding. Beyond learning statistical patterns from
existing human conversations, advanced chit-chat systems are expected
to master and leverage knowledge like human beings. Besides com-
monsense knowledge, chit-chat conversations often correlate with non-
contextual information, i.e., information and content that are not in
context. Hereafter, we denote these extra information as grounding.

Human Factors. For chit-chat systems, user experience and engage-
ment are always the core. To build a better chit-chat system, we have
to consider the influence of various human factors, such as personalized
expression preference, emotional changes, and beyond.

1.4 Landscape of Chit-Chat Systems and Beyond

A View from Chit-Chat. Advanced chit-chat systems mainly utilize
cutting-edge deep neural techniques to automatically obtain responses
for any newly given query or dialogue contexts. We group existing chit-
chat models into three categories, i.e., frameworks based on retrieval
techniques, generation-based models, and the ensemble of these two
kinds of solutions. Retrieval-based frameworks mainly study how to au-
tomatically select feasible response candidates, covering the multi-turn
context matching, extra resource utilization, human factors constraining,
and pre-trained context-aware representation usages. Generation-based
research focuses on the limitations of sequence to sequence networks, ex-
ploring from the perspective of data manipulation, generation pipelines,
training objectives, large-scale pre-trained language models, and afore-
mentioned context modeling, as well as human factors. Ensemble solu-
tions investigate how to compensate retrieval-based dialogue systems
with the merits of generation models and vice versa.

Linking Chit-Chat with Tasks. The connections between chit-chat and
tasks can be categorized into three different directions. One is to discover
and complete specific goals from chit-chat human-machine conversations
to achieve better user engagement. The second is to enhance downstream
tasks with chit-chat components, e.g., it can make it easier for users to
accept recommended items from commercial recommendation systems.

Full text available at: http://dx.doi.org/10.1561/1500000083
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Another possible direction is to utilize a unified large-scale pre-training
framework to complete chit-chat conversations and tasks.

1.5 Comparisons with Existing Surveys

Recently, several tutorials and survey papers on dialogue systems have
been presented (Yih et al., 2015; Yih et al., 2016), focusing on deep
learning techniques and various IR related tasks (Gao, 2017), e.g.,
question answering (QA). Li and Yan (2018) briefly reviewed the multi-
turn conversation methods involved in the NLPCC 2018 shared task,
including both retrieval models and generation solutions. Chen et al.
(2018b) provided a tutorial on spoken dialogue systems, which is mainly
about traditional task-oriented dialogue systems. Serban et al. (2018)
offered a thorough investigation on the public data available for building
dialogue systems. Gao et al. (2019a) covered a myriad of topics in
dialogue systems, including question answering, reading comprehension,
task-oriented systems, social bots and industrial applications. Huang
et al. (2020b) comprehensively studied three challenges that researchers
are facing at present in building intelligent dialogue systems. Yan
and Wu (2021) briefly summarized the progress and future of chit-
chat dialogues with limited coverage and insufficient in-depth study.
Zamani et al. (2022) recently provided an overview of existing research
related to conversational information seeking. Gao et al. (2022) also
wrote a book about conversational information seeking but focused on
recent advances and technical details for building the main modules
of conversational information retrieval systems. Considering that deep
neural-based systems are the mainstream and are still in the process
of development, we mainly compare this paper with recent surveys in
closely related fields. More concretely, we conduct comparisons with
two recent papers presented by Gao et al. (2019a) and Huang et al.
(2020b), respectively.

This survey differs with Gao et al. (2019a) from the following aspects:

• We mainly focus on chit-chat systems rather than focus on task-
oriented systems, question answering, and machine reading com-
prehension.

Full text available at: http://dx.doi.org/10.1561/1500000083
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• We group recent research from the view of chit-chat, a specific
type of conversation system that has attracted millions of users,
instead of connecting goal-oriented dialogues and fully data-driven
social bots from a unified perspective of optimal decision making.

• We mainly survey end-to-end methods built upon deep learning
methods, instead of presenting task-oriented pipeline models or
connecting traditional machine learning methods with modern
neural models.

• We expose the recently explosive progress of completing tasks
with the assistance of chit-chat systems, e.g., conversational rec-
ommendation (Lei et al., 2020). We review the new paradigm of
building chit-chat systems and completing tasks in recent large-
scale pre-trained language models.

Compared with the short survey written by Huang et al. (2020b),
we further present the following contents.

• Instead of focusing on surveying research that relates to specific
challenges of chit-chat systems, we present a comprehensive study
of modern chit-chat systems based on deep neural models.

• Except for discussing the main challenges that we are facing,
this survey presents various solutions for addressing a myriad
of challenges in the chit-chat conversations, which can provide
guidance for anyone who wants to build chit-chat systems.

• This survey also has a border coverage, which draws the connection
between chit-chat and goal-oriented systems, and emerging tasks
of the IR community.
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