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ABSTRACT
Search engines play a crucial role in organizing and deliv-
ering information to billions of users worldwide. However,
these systems often reflect and amplify existing societal
biases and stereotypes through their search results and rank-
ings. This concern has prompted researchers to investigate
methods for measuring and reducing algorithmic bias, with
the goal of developing more equitable search systems. This
monograph presents a comprehensive taxonomy of fairness
in search systems and surveys the current research land-
scape. We systematically examine how bias manifests across
key search components, including query interpretation and
processing, document representation and indexing, result
ranking algorithms, and system evaluation metrics. By criti-
cally analyzing the existing literature, we identify persistent
challenges and promising research directions in the pursuit
of fairer search systems. Our aim is to provide a foundation
for future work in this rapidly evolving field while highlight-
ing opportunities to create more inclusive and equitable
information retrieval technologies.
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1
Introduction

Equals should be treated
equally and unequals
unequally.

Aristotle, 384–322 BC

Search systems are ubiquitous across a wide array of platforms, from
online information sources such as web search engines, e-commerce sites,
and social media to sociotechnical systems encompassing admissions,
housing, and employment platforms. They significantly influence the
flow of information and transactions, dictating the content that gets
consumed, the products purchased, employment decisions, and admis-
sions processes. The impact of these systems extends to both sides of
the spectrum: they serve not only consumers, such as web users, em-
ployers, purchasers, and admissions officials, who rely on them to make
informed choices but also providers, such as content creators, sellers,
job applicants, and media organizations, whose visibility and success
are directly affected by how they are ranked and presented within these
systems. This dual influence underscores the substantial role that search
systems play in access to information, shaping economic opportunities,

2
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3

and social mobility. In recent years, there has been a growing focus
within the Information Retrieval (IR) community on the fairness of
search systems. This concern centers around whether the resources and
benefits provided by these systems are equitably distributed among the
various individuals or entities they impact. There is also a scrutiny of
whether these systems perpetuate or introduce harms, especially those
that are distributed in ways that are considered unfair or unjust.

Reflecting on the evolutionary trajectory of retrieval models over the
past few decades reveals a significant shift towards data and machine
learning driven methodologies. Initially, IR systems relied primarily
on ranking algorithms that utilized various heuristics, such as TF-
IDF weighting, to determine the relevance between a query and a
document. The idea of aggregating multiple signals into the ranking
process without resorting to heuristic methods led to the learning-to-
rank techniques in the 2000s (Liu et al., 2009), which involved defining
hand-crafted features that capture different notions of what constitutes
a relevant match, with machine learning models then tasked with
learning the optimal combination of these features from training data.
Recent neural IR models further eliminated the need for manual feature
design (Mitra and Craswell, 2017). The rise of large language models
(LLMs) is expected to dramatically transform the field of IR through
their remarkable capabilities in language understanding, generation,
generalization, and reasoning (Zhu et al., 2023). These models bring a
new level of sophistication to responding to complex queries. With the
evolution of search engines into predominantly data-driven AI systems,
they are increasingly susceptible to data and algorithmic biases. These
biases can significantly impact the fairness of search results, potentially
disadvantaging certain groups of consumers or providers, or reinforcing
stereotypes.

In this monograph, we provide an introduction to fairness in search
systems, with the aim of offering a starting point for understanding
the problem space, reviewing the body of existing research, and laying
the groundwork for further exploration and study in this critical area.
Our focus is primarily on the fairness of a search system in delivering
results that meet a user’s information needs as encoded in their queries.
We address fairness-related biases and harms, rather than the wider

Full text available at: http://dx.doi.org/10.1561/1500000101



4 Introduction

spectrum of issues that search systems might encounter, such as the
propagation of misinformation.

1.1 History of Fairness in Search

The history of fairness research in search has evolved over several
decades, reflecting a growing understanding of how these factors impact
the user experience and the ethical implications of IR systems.

In the early years of IR, dating back to the 1960s and 1970s, the
primary goal was to provide users with a list of documents that contained
the queried keywords. Early IR systems did not incorporate sophisticated
algorithms for ranking these documents, and as a result, search results
often lacked the depth and relevance of modern search engines. However,
interestingly, unfair rankings were discussed by Cooper and Robertson
in the probability ranking principle work (Robertson, 1977), even though
they did not use the term “fairness” as such (Hiemstra, 2023). It was
revealed that unfair rankings may arise from blindly applying the
principle without checking whether its preconditions are met.

The 1990s saw a significant expansion in search with the advent of the
Internet. The focus started shifting towards improving search algorithms
for better relevance and precision. Google’s PageRank algorithm (Page
et al., 1998) revolutionized search technology, which considered not
only keywords but also the quality and relevance of web pages. As
the commercial interests grew, search advertising became prominent.
Advertisers could pay to have their content displayed when specific
keywords were searched. This practice had the potential to introduce
bias in search results, as the presence and ranking of content became
influenced by commercial interests rather than purely by relevance and
quality.

During this era, the aspects of diversity and novelty in search results
began to gain attention, particularly in the context of providing a broad
range of search results to users (Clarke et al., 2008). As search engines
became integral to daily life, concerns regarding bias in search results
also began to surface. Algorithmic bias became a topic of discussion,
especially as it related to the ranking of websites. Critics have argued
that search engine algorithms sometimes favor authoritative sources

Full text available at: http://dx.doi.org/10.1561/1500000101



1.1. History of Fairness in Search 5

while marginalizing smaller or less mainstream voices in search results, in
effect leading to concerns about information monopolies (Segev, 2010).

Discussions about net neutrality in the late 2000s and early 2010s
also brought search engine neutrality into the spotlight, as part of
the broader debate about equal access to online information (Crane,
2011). Search engine neutrality refers to the idea that search engines
should have no inherent biases in their algorithms and should treat all
web pages and content sources equally without favoritism. The central
question was whether search engines should serve as neutral platforms
that provided unfiltered and uncurated search results. The discussions
about neutrality raised complex questions about the role of search
engines as information gatekeepers and the potential consequences of
curating content. Search engine providers faced increased scrutiny from
regulatory bodies. They were challenged on practices such as favoring
their own services in search results, penalizing competitor websites,
and lack of transparency in their ranking algorithms. Legal battles and
antitrust investigations became more common, as seen in the European
Commission Guidelines on Ranking Transparency (Commission, 2020),
as governments sought to ensure that search engines operated fairly
and did not abuse their market dominance.

In the realm of IR research, numerous early studies have shed light
on various forms of unfairness in search results. These encompass a range
of biases, including racial, gender, and political viewpoint biases, which
have raised concerns about the perpetuation of stereotypes through
biased search outcomes. This area of inquiry is part of the broader
research landscape focusing on fairness in sociotechnical and AI systems
(Mitchell et al., 2021), yet IR systems present their unique challenges
and opportunities (Ekstrand et al., 2022). Early work (Friedman and
Nissenbaum, 1996; Introna and Nissenbaum, 2000) recognized the inher-
ent capacity of search engines to incorporate social, political, and moral
values into their ranking algorithms. To quantify the impact of such
embedded values, Mowshowitz and Kawaguchi (2002) proposed a metric
for measuring a search engine’s deviation from an ideal exposure of
content. Beyond the study of bias in algorithmic ranking, Vaughan and
Thelwall (2004) and Vaughan and Zhang (2007) discovered that biases
can arise from skewed crawling and indexing processes. Furthermore,
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6 Introduction

the concept of document retrievability (Azzopardi and Vinay, 2008)
investigated the distribution skew in document retrievability across var-
ious retrieval systems, contributing valuable insights into the mechanics
of search engine fairness.

In the 2020s, calls for ensuring fairness in search engine algorithms
have intensified. Many raised concerns about the biases of AI and ma-
chine learning algorithms used in search engines (Baeza-Yates, 2018;
Gao and Shah, 2020). The need to make these algorithms more equitable
gained prominence. Ethical considerations became essential to the devel-
opment and deployment of search engine algorithms. The relationship
between the relevance of search algorithm results (and consequently,
the revenue of the search engine) and the fairness of those results is not
inherently contradictory. It has been shown that there are instances
where enhancing the quality of the results, quantified by metrics such
as Reciprocal Rank (RR), Average Precision (AP), or Normalized Cu-
mulative Discounted Gain (nDCG), can also simultaneously improve
the fairness of the outcomes (Hiemstra, 2023).

Fairness in search engines remains a dynamic and evolving field. In
recent years, there has been a generally increasing number of publications
on fair search as shown in Figure 1.1. The scope of this survey covers
more than 400 papers including the representative papers about fairness
studies in AI and the papers about fairness in search published in the
top IR related conferences and journals such as SIGIR, CIKM, WSDM,
WWW, KDD, ICTIR, ECIR, RecSys, FAccT, FnTIR, TOIS, ACL,
EMNLP, NAACL, AAAI, IJCAI, NeurIPS, ICML, as well as some of
the outstanding arXiv papers.

1.2 Fairness, Bias, and Diversity

While fairness, bias, and diversity are frequently discussed as interrelated
concepts in the research community, their relationships remain complex
and often misunderstood. According to the Cambridge Dictionary,1
bias represents a disproportionate inclination for or against certain
ideas or things, whereas fairness describes the equitable and reasonable

1https://dictionary.cambridge.org
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1.2. Fairness, Bias, and Diversity 7

Labels Data
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2022 47
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Figure 1.1: Publication trends in fairness in search (2014-2024). The data for 2024
is shaded to indicate that it represents an incomplete year at the time of this analysis.

treatment of individuals. This distinction is important: bias describes an
observable characteristic of a system without making value judgments,
while fairness addresses the ethical implications and societal impacts of
system behavior (Ekstrand et al., 2022).

Generally, different types of biases are key contributors to unfair
outcomes in AI systems. The linkage between specific biases and resul-
tant unfairness can be intricate (Li et al., 2023). For instance, unfairness
related to race and ethnicity might stem from biases in training data,
model design, optimization algorithms, or evaluation benchmarks. Fur-
thermore, a single type of bias, such as that in training data, can lead
to various forms of unfairness such as individual and group unfairness.

On the other hand, the presence of bias does not inevitably lead
to unfairness. For example, when a user searches for restaurants, a
search engine shows results biased towards local establishments. This
localization bias is based on the user’s geographic location, which
aligns with the user’s likely intent. Beyond data and algorithmic biases,
other factors can contribute to unfairness. It has been shown that
certain fairness requirements are inherently conflicting, suggesting that
upholding one type of fairness could inadvertently violate another
(Kleinberg et al., 2016).

Full text available at: http://dx.doi.org/10.1561/1500000101



8 Introduction

Recent research in search systems has delved into various biases
and debiasing methods (Zehlike et al., 2022; Ekstrand et al., 2022),
but a clear distinction between research on bias and that on unfairness
often remains elusive. Primarily, debiasing research tends to concentrate
on enhancing retrieval performance, rather than explicitly promoting
fairness. They usually conduct experiments based on improvements
in relevance of results alone, using these gains to demonstrate the
effectiveness of debiasing. In contrast, studies on fairness typically
offer clear definitions and quantitative metrics for evaluating model
unfairness, such as using performance disparities across groups to assess
group-level unfairness. Fairness-focused research often assesses methods
against both fairness metrics and traditional retrieval metrics.

While biases are recognized as key contributors to unfairness and
debiasing methods can potentially improve fairness, many fairness
studies do not rely on debiasing but instead directly incorporate fairness
requirements into model design. This approach, like imposing fairness
regularization during optimization, can sometimes compromise model
accuracy. Hence, there is a discernible research gap between debiasing
and fairness, despite their theoretical and practical interconnections (Li
et al., 2023). A more nuanced understanding of the relationship between
bias, unfairness, and the interplay of debiasing and fairness enhancement
methods could lead to more effective strategies that improve both
fairness and accuracy in search systems.

Diversity in IR is about ensuring a wide range of information in
search results. This means that the results should include a variety of
sources, viewpoints, or content types, rather than being dominated by
a few sources or perspectives. In many cases, efforts to improve fairness
in IR systems also enhance diversity. For example, algorithms designed
to reduce bias in search results often lead to a more diverse set of
search results. On the other hand, there can be tensions between these
two goals. For example, maximizing diversity in search results might
sometimes lead to less fair outcomes for certain groups, or vice versa.
In the literature, the notion of coverage-based diversity (Drosou et al.,
2017) is most closely related to fairness, which requires that members of
multiple, possibly overlapping, groups, be sufficiently well-represented
among the top-k, treated either as a set or as a ranked list. Both fairness

Full text available at: http://dx.doi.org/10.1561/1500000101



1.3. Biases in Search 9

and diversity should consider the user perspective. An IR system might
be fair and diverse from a content perspective but still fail to meet the
diverse needs and fairness expectations of different user groups.

Fairness is frequently encapsulated within the broader framework
of FACTS-IR that stands for Fairness, Accountability, Confidentiality,
Transparency, and Safety in Information Retrieval that also contains the
other pivotal aspects of responsible IR. The report from the FACTS-IR
Workshop (Olteanu et al., 2021) delves into the interplay and significance
of these concepts. In this survey, our primary focus is on fairness,
although we will also touch upon the other aspects, particularly in
contexts where they intersect with or influence fairness.

1.3 Biases in Search

The search process can be conceptualized as a feedback loop encom-
passing various stages, such as query formulation and understanding,
document representation, retrieval (or candidate generation), ranking,
user feedback, and evaluation. At each of these stages, biases may arise,
and the cyclic nature of the feedback loop has the potential to sustain
or even intensify these biases. While this survey primarily focuses on
fairness, it is important to recognize that various types of biases are sig-
nificant contributors to unfair outcomes in search systems. A thorough
understanding of how these biases interplay is essential for delivering
fair and accurate information to users. In this section, we outline the
architecture of a typical search engine, highlighting potential biases at
each stage as depicted in Figure 1.2. While this list of biases is not
exhaustive, it aims to provide an initial understanding of how biases
can manifest throughout the search process. More detailed discussions
on biases and unfairness, their implications, and mitigation strategies
are provided in the subsequent sections.

Given data sources, crawling and indexing are the foundational
processes in search engines that determine what content becomes search-
able. Crawling is the first step where crawlers, also known as spiders,
systematically browse the web to collect data from accessible web pages.
Due to the extensive nature of the web, crawling bias may occur when
these crawlers favor certain pages over others based on factors such as

Full text available at: http://dx.doi.org/10.1561/1500000101
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User
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Figure 1.2: An overview of biases that can emerge at various stages in the life cycle
of a search system. Section x in the figure refers to the specific section where the
corresponding fairness issues are discussed.

page popularity or the quality and quantity of incoming links. This pri-
oritization can result in the underrepresentation of less popular or newly
established websites. Additionally, indexing bias can arise during the
organization and storage of data, where a search engine might prioritize
certain content, potentially distorting representation based on aspects
like language, popularity, or perceived relevance. This can dispropor-
tionately represent cultural and linguistic content. Moreover, technical
constraints and operational guidelines, such as the use of robots.txt files
to guide crawler activities, can inadvertently introduce biases.

Query formulation and understanding begin with the user
entering a query into the search engine. It involves a multi-faceted
analysis of user queries to interpret their intent, context, and meaning.
A cognitive bias is a systematic pattern of deviations in thinking which
may lead to errors in judgments and decision-making (Azzopardi, 2021).
Such biases may significantly influence how users formulate their queries.
For instance, confirmation bias stems from people’s tendency to prefer
confirmatory information, where they discount information that does
not conform to their existing beliefs. When querying, this may manifest
as people employing positive test strategies where they try to find
information that supports their hypotheses.

Full text available at: http://dx.doi.org/10.1561/1500000101



1.3. Biases in Search 11

Representation learning involves transforming documents or
queries into a format that can be efficiently processed by a search system.
During this stage, each document/query is analyzed and converted into
a structured form, often as a vector of features, which is then indexed
and stored in the search system’s database. This process also involves
pre-processing steps such as tokenization, removal of stop words, and
stemming or lemmatization. The goal is to distill the essence of each
document into a representation that captures its main themes and
content in a way that can be readily compared with user queries,
facilitating effective and efficient retrieval in response to search requests.

Representational bias may emerge in representation learning. This
bias can stem from a variety of factors related to the content, sources,
and historical context of the documents. It manifests as skewed or un-
balanced perspectives, representations, or information within the corpus
itself, which can lead to a misrepresentation of certain demographics,
viewpoints, or subject areas, affecting the fairness and accuracy of the
search process. Representational bias is not introduced by the retrieval
algorithms but rather originates from the intrinsic characteristics of
the corpus. Bias inherent in training corpora can not only persist but
also amplify (Papakyriakopoulos et al., 2020; Wang et al., 2024c) in
learned latent representations through deep neural networks, such as
pre-trained word embeddings (Brunet et al., 2019), BERT (Kurita et al.,
2019), and more recently in LLMs (Gallegos et al., 2023).

Retrieval is a process that retrieves all the candidates that match
the user query from the index. In general, the retrieval system has to
be fast and lightweight, as it considers the contents of the entire index.
Retrievability bias measures how easily a document can be retrieved
and exposed to the later ranking stage. A system with pronounced
retrievability bias disproportionately favors certain documents over
others (Azzopardi and Vinay, 2008), potentially resulting in unfair
outcomes in the search results (Otterbacher et al., 2017). Popularity
bias can also be manifested in retrieval, which is the tendency to retrieve
popular items more frequently than their intrinsic popularity justifies.
This bias stems from several contributing factors. The sheer volume and
visibility of content from popular sources can overshadow less popular
but relevant content in the retrieval process. Many search engines use
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link analysis algorithms such as PageRank to infer its importance or
relevance. Popular pages with many inbound links are more likely to be
retrieved due to their perceived authority. Some retrieval algorithms may
use historical user interaction data, like click-through rates as indicators
of relevance. Popular items that have been clicked on or interacted with
more frequently are likely to be considered more relevant, thus being
retrieved more often.

Ranking involves reordering the top results obtained from the
retrieval process. This can be based on chronological order, relevance
criteria, or a combination of both. Learning-to-rank techniques are often
employed at this stage to enhance the relevance of the results (Liu
et al., 2009). Beyond the popularity bias noted in the retrieval stage,
the ranking stage is also subject to biases introduced during retrieval.
Specifically, selection bias occurs when the initial set of documents
retrieved dictates the subsequent ranking order (Wang et al., 2023c). If
this initial retrieval is biased or narrow in scope, the range of documents
available for ranking becomes limited. As a result, the ranking stage is
constrained to working with this pre-selected set, potentially overlooking
more relevant or diverse documents that were not initially retrieved.

When ranked results are presented to the users, position bias occurs
when users engage more frequently with items at the top of a ranked list,
often irrespective of the actual relevance of these results. Eye-tracking
studies have shown that users typically focus on the initial items and
are less likely to consider those positioned lower (Joachims et al., 2007b).
Other research indicates that users often place undue trust in the top-
ranked results and may not evaluate subsequent items as thoroughly,
leading to a lack of holistic assessment of all available results (O’Brien
and Keane, 2006).

User feedback on ranked search results can be categorized into
two types: explicit and implicit. Explicit feedback is provided directly
by users in a clear and intentional manner such as ratings and surveys.
It represents a deliberate effort to convey relevance satisfaction with
the search results. Explicit feedback can also be done by third-party
human annotators by providing relevance judgment on query-document
pairs. Implicit feedback is gathered from user behavior and interactions
that are not directly intended as feedback but can be interpreted
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as such. It is unobtrusively collected as users go about their normal
activities. Examples include click-through rate (CTR), dwell time, scroll
depth, mouse movements, query reformulations, bounce rate, and so
on. Evaluation is required to continuously monitor the performance
of a search engine, as well as for measuring the effect of new changes
that are introduced to any of its components. Evaluation can be done
either manually, using explicit feedback, or automatically by tracking
the implicit feedback such as clicks and session metrics.

Conformity bias can skew user explicit feedback, as individuals often
align their behaviors with group norms, sometimes overriding their
personal judgment (Azzopardi, 2021). This can lead to feedback that
does not accurately represent their true opinions. Similarly, confirmation
bias occurs when users selectively favor or emphasize search results that
align with their pre-existing beliefs. This bias can result in feedback
that reflects personal preferences or beliefs rather than an impartial
assessment of the search results’ quality.

Unlike explicit feedback, implicit feedback only offers a limited in-
dication of user preference, as it lacks accurate information on what
users like or dislike. Exposure bias is a significant issue in this context,
arising from the fact that users only interact with a subset of docu-
ments. Consequently, not all unobserved interactions imply a negative
preference. This ambiguity stems from two potential reasons for an
unobserved interaction: either the document was not relevant to the
user, or the user was simply unaware of it. This makes it challenging to
accurately differentiate between genuinely negative interactions where
the user is exposed to but not interested in a document and potentially
positive ones where the user is not exposed to the document. As a
result, this inability to distinguish between different types of unobserved
interactions can lead to substantial biases in the learning process (Chen
et al., 2023b).

User feedback and evaluations are pivotal to update the parameters
of machine learning models in various components, including query
understanding, retrieval, and ranking, thus creating a feedback loop.
To enhance specific desirable properties, inductive biases can be inten-
tionally incorporated into the model design. Inductive biases are the
underlying assumptions that a model uses to better learn the target
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function and generalize beyond the training data. These biases are
often not harmful but essential, as the core of machine learning is the
ability to extrapolate predictions to new, unseen examples. Without
making certain assumptions about the data or model, generalization is
impossible, as the output for unseen examples could vary widely. The
development of an effective search system requires the incorporation of
specific assumptions about the nature of the target function to guide the
learning process. Moreover, some unfairness mitigation strategies, such
as the in-processing methods discussed in Section 5, leverage inductive
bias to correct for certain biases.

As shown in Figure 1.2, the search process forms a feedback loop
and biases emerge in different stages of the loop. These biases could
be further amplified over time along the loop. Take popularity bias
or position bias as an example. Initially, certain documents may be
ranked higher due to their popularity or early user engagement. These
documents then garner additional feedback, which influences future
rankings, potentially fostering a rich-get-richer dynamic (Joachims
et al., 2017c). This phenomenon raises important fairness questions
regarding how exposure should be distributed, ideally based on the
merit of the documents or items, rather than their initial popularity or
position (Biega et al., 2018; Singh and Joachims, 2018). For instance,
in a job applicant ranking system, such dynamics could exacerbate
existing unfairness, such as gender disparities. Similarly, in an online
marketplace, this bias could favor certain sellers (or groups), leading to
monopolistic tendencies and potentially driving other sellers out of the
market (Morik et al., 2020). Both scenarios highlight the important need
to address the biases and feedback loop to prevent the reinforcement of
existing disparities in search systems.

1.4 Comparisons with Related Surveys

In recent years, a number of surveys discussing fairness and bias in
general machine learning have been published (Caton and Haas, 2020;
Castelnovo et al., 2022). They usually focus on the fairness works in
classification tasks. A few surveys provide an overview of fairness in rec-
ommendation tasks (Wang et al., 2023b). Recommendation algorithms
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can usually be considered as a type of ranking algorithm, but they often
represent different characteristics. Pitoura et al. (2021) addresses fair-
ness in both ranking and recommendation, and Ekstrand et al. (2022)
discusses fairness in information access systems such as information
retrieval and recommendation. Chen et al. (2023b) provides a survey on
bias and debias in recommender systems, which covers a part of the con-
tent about fairness in recommendation. Similarly, Li et al. (2023) offers
a systematic survey of existing works on fairness in recommendation by
focusing on the foundations for fairness in recommendation literature.
Recently, Dai et al. (2024a) presents a survey on bias and unfairness
in IR systems that incorporate large language models predominantly
references studies from the recommendation systems domain. While
covering a brief introduction about fairness in classification and ranking,
our survey pays specific attention to organizing the concept of fairness in
search through a comprehensive taxonomy of fairness notions proposed
in search problems, the task-specific techniques for promoting ranking
fairness, as well as the datasets specially suitable for fairness research
in search.

Three surveys were focused on fairness in ranking and retrieval sys-
tems (Ekstrand et al., 2022; Zehlike et al., 2022; Patro et al., 2022). One
recent survey performed a systematic literature review of the field of
fairness, accountability, transparency, and ethics in information retrieval
(Bernard and Balog, 2023). Our survey distinguishes itself from existing
literature by offering several key advantages: 1) it provides a holistic
review of unfairness across the entire life cycle of a search process, in
contrast to previous surveys that primarily concentrate on fairness in
ranking; 2) it introduces a thorough taxonomy of fairness in search and
retrieval, aiding readers in comprehending various fairness considera-
tions within search systems and facilitating an organized framework
for navigating the literature in this domain; and 3) it is designed to
be accessible, enabling newcomers to the field to develop a systematic
understanding of the subject.

It is also worth noting that there have been several tutorials and
workshops related to investigating biases and fairness issues in IR
including the following: Addressing Bias and Fairness in Search Systems
at SIGIR 2021 (Gao and Shah, 2021), Fairness of Machine Learning in
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Recommender Systems at CIKM 2021 (Li et al., 2021b), Fair Graph
Mining at CIKM 2021 (Kang and Tong, 2021), Gender Fairness in
Information Retrieval Systems at SIGIR 2022 (Bigdeli et al., 2022),
Fairness of Machine Learning in Search Engines at CIKM 2022 (Fang
et al., 2022), Bias and Unfairness in Information Retrieval Systems:
New Challenges in the LLM Era at KDD 2024 (Dai et al., 2024a) and
WSDM 2025, and the workshop series on Algorithmic Bias in Search
and Recommendation (BIAS) at ECIR 2020-2023 (Boratto et al., 2023)
and SIGIR 2024 (Bellogin et al., 2024).

1.5 Intended Audience and Scope

This survey is beneficial for a wide array of individuals in the information
retrieval field, including: 1) newcomers seeking a comprehensive guide
to quickly delve into fairness issues in search systems; 2) those grappling
with various sources of bias and requiring a systematic study to grasp the
nuances of unfairness in search; 3) researchers aiming to stay up-to-date
with cutting-edge techniques for mitigating unfairness in search; and 4)
practitioners confronting unfairness challenges in the development of
search systems and searching for effective solutions.

Primarily written for the IR community, this monograph also caters
to diverse backgrounds such as machine learning, natural language
processing, and AI ethics. It serves as an accessible entry point to the
concept of fair search, enriched with numerous practical insights. We
envision this resource as valuable for students, researchers, and software
practitioners alike. Offering a holistic perspective and a thorough explo-
ration of key ideas, it is essential for understanding and constructing
modern search systems. These systems are crucial in enabling billions of
users to access a wealth of global knowledge and services while ensuring
fairness and equity in access.

1.6 Structure of the Survey

The monograph is structured as follows.

• Section 1 describes the architecture of a modern search system
with important components and highlights various biases that

Full text available at: http://dx.doi.org/10.1561/1500000101



1.6. Structure of the Survey 17

may arise in the search process. We also briefly review the history
of fairness in search.

• Section 2 provides background information about the bias in
algorithmic decision-making in general and in search in particular.
We review the existing work on bias mitigation in machine learning
and discuss the challenges in this space.

• Section 3 focuses on representation learning and content analysis,
and on how to learn an unbiased data representation.

• Section 4 investigates fairness in query understanding, specifically
in query formulation, query suggestion, and non-textual queries.

• Section 5 studies fair ranking and how to mitigate unfairness in
rankings.

• Section 6 discusses bias in relevance judgment (both explicit and
implicit) and how to learn and evaluate with biased feedback.

• Section 7 discusses emerging research directions, prompted by the
rise of large language models (LLMs) and the growing imperative
for responsible AI. This section also examines the open challenges
that define this evolving landscape.
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