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ABSTRACT

Text classification stands as a cornerstone within the realm
of Natural Language Processing (NLP), particularly when
viewed through computer science and engineering. The past
decade has seen deep learning revolutionize text classifi-
cation, propelling advancements in text retrieval, catego-
rization, information extraction, and summarization. The
scholarly literature includes datasets, models, and evaluation
criteria, with English being the predominant language of
focus, despite studies involving Arabic, Chinese, Hindi, and
others. The efficacy of text classification models relies heav-
ily on their ability to capture intricate textual relationships
and non-linear correlations, necessitating a comprehensive
examination of the entire text classification pipeline.

In the NLP domain, a plethora of text representation tech-
niques and model architectures have emerged, with Large
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Language Models (LLMs) and Generative Pre-trained Trans-
formers (GPTs) at the forefront. These models are adept at
transforming extensive textual data into meaningful vector
representations encapsulating semantic information. The
multidisciplinary nature of text classification, encompassing
data mining, linguistics, and information retrieval, highlights
the importance of collaborative research to advance the field.
This work integrates traditional and contemporary text min-
ing methodologies, fostering a holistic understanding of text
classification.

This monograph provides an in-depth exploration of the
text classification pipeline, with a particular emphasis on
evaluating the impact of each component on the overall per-
formance of text classification models. The pipeline includes
state-of-the-art datasets, text preprocessing techniques, text
representation methods, classification models, evaluation
metrics, and future trends. Each section examines these
stages, presenting technical innovations and recent findings.
The work assesses various classification strategies, offering
comparative analyses, examples and case studies. These
contributions extend beyond a typical survey, providing a
detailed and insightful exploration of the field.

Full text available at: http://dx.doi.org/10.1561/1500000107



1
Introduction

In several Natural Language Processing (NLP) applications like news
categorization, sentiment analysis, and subject labelling, text classifica-
tion is a crucial and relevant task (Garrido-Merchan et al., 2023; Fields
et al., 2024b; Emanuel et al., 2024). The goal is to tag or label textual
components like sentences, questions, paragraphs, and documents. In
this era of massive information dissemination, manually processing and
categorizing huge amounts of text data takes a relevant amount of time
and effort. Text information can be found on social media, websites,
chat rooms, emails, questions and answers from customer service rep-
resentatives, insurance claims and user reviews. Furthermore, human
factors such as skills and fatigue can influence the effectiveness of text
classification by hand. It is preferable to automate the text classification
pipeline involving machine learning models to get objective outcomes.
Furthermore, to reduce the problem of information overloading, the
improvement of information retrieval effectiveness can help in finding
the necessary information for a certain task. Figure 1.1 illustrates a
flowchart of the steps involved in text classification in light of the tradi-
tional and most recent machine learning models. A critical first stage is
the preprocessing of the text to be provided as input to the model.

3
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4 Introduction

Figure 1.1: Overview of the text classification pipeline, illustrating the progression
from text datasets to preprocessing, feature representations (e.g., Bag of Words,
word embeddings), and final label predictions, encompassing traditional and modern
approaches.

Classical approaches usually employ AI methods to collect relevant
features, which are then classified using machine learning techniques.
Next, the text representation approach can severely impact the outcomes,
involving a series of transformations to map a source text to predicted
labels. Deep learning, as opposed to traditional models, incorporates
feature engineering into the training process. Up until 2010, classical
text classification models were the most used and popular. Some of
them are logistic regressor, Naïve Bayes, Support Vector Machine (SVM)
and K-Nearest Neighbour (KNN). These methods can outperform past
rule-based techniques in consistency and accuracy (Mitra et al., 2007;
Atmadja and Purwarianti, 2015). However, they still require feature
engineering and are usually more time-consuming. Additionally, it is
hard to understand the semantics of the words since they frequently
neglect the context or natural sequential arrangement of textual mate-
rial. In text classification, deep learning algorithms gradually replaced
traditional techniques by the 2010s. Deep learning techniques for text
mining automatically construct semantically pertinent representations
without human intervention to define rules and features. Consequently,
the majority of modern text classification activities are based on deep
neural networks.

Most conventional machine learning models use a two-step proce-
dure. First, the documents are stripped of manually added features

Full text available at: http://dx.doi.org/10.1561/1500000107
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(or any other textual unit). In the following, a classifier receives these
features to provide a prediction. The Bag of Words (BoW) feature
and extensions are frequently created by hand. Hidden Markov Models,
Naive Bayes, SVM, Random Forests and Gradient Boosting, are com-
mon classification algorithms employed in the second step. Numerous
disadvantages exist with this two-step approach. For instance, using
handcrafted features and expecting acceptable performance requires
time-consuming feature engineering and analysis. Due to the strategy’s
heavy reliance on domain expertise for feature generation, it is difficult
to adapt it to new applications. Last, because of the specific features
domain, these models cannot fully benefit from the vast volumes of
training data available. To address the issues related to handcrafted fea-
tures, the use of neural approaches has increased. The main component
of these approaches is an embedding space, where text is encoded as a
low-dimensional continuous feature vector without the need for tradi-
tional feature representation strategies. The Latent Semantic Analysis
(LSA) proposed by Landauer and Dumais (1997) is one of the earliest
studies on embedding models. The proposed architecture is trained on
200K words and has fewer than 1 million parameters.

In Bengio et al. (2000), the first neural language model was proposed.
It consisted of an artificial neural network trained on over 10 million
words. When progressively larger embedding models were constructed
with significantly more training data, a paradigm change occurred. Sev-
eral Word2Vec models that Google created in 2013 (Mikolov et al.,
2013b) were trained using billions of words and quickly gained popular-
ity for numerous NLP applications. As the basis for their contextual
embedding model, the researchers from Ai21 and the University of Wash-
ington created a Bidirectional-Long Short-Term Memory (BiLSTM)
network using 93 million hyperparameters and a training performed
on billions of words in 2017. A novel model named Embedding from
Language Models (ELMo) (Peters et al., 2018) captures contextual
information and performs significantly better than Word2Vec. This sub-
sequent development results in the construction of embedding models
using Google’s new neural architecture, the Transformer (Vaswani et al.,

1https://allenai.org/allennlp/software/elmo
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6 Introduction

2017). The Transformer architecture is based on attention modules,
which boosts the effectiveness of extensive model training on the Tensor
Processing Unit (TPU). In the same year, Google created the Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019). BERT has 340M parameters and was trained on 3.3 billion
words. More training data and larger models are proposed in the litera-
ture every day. The most recent OpenAI GPT model has more than
170 billion parameters (Dale, 2021) and it is based on Transformers.
Some academics contend that despite the enormous models’ remarkable
performance on different NLP tasks, they do not truly grasp language
and are insufficient for many domains that are mission-critical (Jin
et al., 2020; Marcus and Davis, 2019). Recently, there has been a rise of
interest toward neuro-symbolic hybrid models to solve significant flaws
of neural models like interpretability, inability to use symbolic thinking
and lack of grounding (Schlag et al., 2019; Gao et al., 2020).

Although there are many excellent reviews and textbooks on text
classification techniques and applications, this work provides a thorough
analysis of all the phases that go into creating a text classification
pipeline with several contributions, including traditional and deep mod-
els to explore the impact on the performance of each stage of the pipeline.
Even if specific languages are considered in the related works, from the
standpoint of computer science, English is the language that is most
frequently used and referred to in the present literature regarding text
classification. Furthermore, most of the Large Language Models (LLMs)
and pre-trained word embeddings are originally developed focusing on
English, partially neglecting the other languages. Nowadays, modern
LLMs are multilingual so they can be fed and can produce output also
in other languages other than English (Rathje et al., 2024). The rest of
this work primarily uses English as the reference language for many of
the examples and cases presented and discussed.

Starting with a discussion on some of the more contemporary tasks
— such as author profiling, topic classification, news classification, and
sentiment analysis — we then present classification models and the most
recent and relevant findings. We also cover the most recent deep neural
network architectures, which are divided into several types based on their
functioning, including Transformers (LLMs and GPTs), Convolutional

Full text available at: http://dx.doi.org/10.1561/1500000107



1.1. Overview and Contributions 7

Neural Networks (CNNs), Capsule Nets and Recurrent Neural Networks
(RNNs).

This monograph is organized as follows: Section 2 presents the most
common datasets used and available in the literature. In Section 3,
the preprocessing techniques to prepare raw text are presented and
discussed. In Section 4, the methods to represent text in a numerical
way understandable by a computer are reported. In this section, we
also show and analyse a word embedding space trained from scratch.
In Section 5, traditional and modern classifiers commonly employed
for text classification are discussed, including a discussion on modern
LLMs and GPTs. In Section 6 generic and linguistic-specific metrics
to evaluate the performance on text classification tasks are discussed.
In Section 7, the conclusions and the future perspectives are presented.
The contributions and a summary for each section of this work are
reported in what follows.

1.1 Overview and Contributions

Several works have investigated text classification techniques from a
general standpoint. We specifically mention the work by Li et al. (2020),
which offers a thorough analysis of model architectures, from traditional
to modern deep learning-based ones. The survey by Kowsari et al. (2019)
offers a great examination of preprocessing procedures, including feature
extraction and dimensionality reduction. Despite including quantita-
tive outcomes of conventional approaches, Minaee et al. (2021) mainly
focuses on deep learning models. By providing a view of each stage
required to design a text classification model, this monograph seeks to
enhance the landscape of text classification from a general point of view.
As a result, we give a thorough explanation of the key data preparation
procedures used along with classification models. We provide model
descriptions from traditional to deep learning-based ones, in contrast
to prior surveys. The design of the classifier and feature extraction
are highlighted for the traditional models. A specific overview of each
section of this work is reported to conclude this section.

Full text available at: http://dx.doi.org/10.1561/1500000107



8 Introduction

Overview of Section 2: Tasks and Datasets

In the early history of machine learning, information retrieval systems
primarily used text classification algorithms. But as technology has
developed over time, text classification and document categorization
have become widely employed in several fields, including law, engineering,
social sciences, healthcare, psychology, and medicine. We highlight some
domains that use text classification algorithms in this section. Some
text classification tasks are discussed in this section, including three
new datasets related to emerging author profiling tasks. The datasets
available in the literature and related to these tasks and usually employed
as benchmarks, are also reported and presented in this section.

Overview of Section 3: Preprocessing

In this section, we collect, report and discuss the text preprocessing
techniques found in the literature and their possible and most recent
variants, proposing a standard nomenclature based on acronyms. We
also provide the reader with useful information for self-study of the tech-
niques presented along with advice on how to operate educated choices
to select the preprocessing technique (or combination of techniques)
given a specific task, model, and dataset. According to recent related
works, we also discuss if simple classifiers’ performance is comparable to
the ones obtained by Transformer-based models when text preprocessing
is performed according to the specific model and dataset used.

Overview of Section 4: Representation

Before moving to the classification stage, it is necessary to convert
unstructured data, especially free-running text data, into organized
numerical data. To do this, a document representation model must be
used to employ a subsequent classification system following the text
preprocessing stage. Text representation models convert text data into
a numerical vector space, which has a substantial impact on how well
subsequent learning tasks can perform. In the history of NLP, word rep-
resentation has always been a topic of interest. It is crucial to properly
represent such text data since it contains a wealth of information and

Full text available at: http://dx.doi.org/10.1561/1500000107



1.1. Overview and Contributions 9

may be applied broadly across a variety of applications. This section
examines the expressive potential of several word representation models,
ranging from the traditional to the contemporary word representation
approaches provided by LLMs. The section discusses numerous repre-
sentation methods that are frequently employed in the literature. Before
discussing well-known representation learning and pre-trained language
models, we first discuss various statistical models. Then we move to
attention-based representation and, in the last subsection, to a case
study about the analysis of a trained word embedding for a specific
text classification task. Thanks to a Principal Component Analysis
(PCA) tool, it shows and discusses the effect of CNN training on a 3D
visualization of a word embedding space. In this way, we can motivate
some implicit choices operated during the training of a deep learning
model to assign specific word vectors to certain keywords belonging to
one of the two class labels used for the discussed task.

Overview of Section 5: Classification

In Section 5, both the traditional classification models for text classifi-
cation and the most modern ones based on deep learning are reported.
The models discussed in this section belong to three different groups.
The non-deep learning deterministic models, the foundational deep
learning models and the large pre-trained language models known as
Transformers. The term “earlier approaches” refers to all techniques
used before the advent of deep neural networks, when the prediction
was based on manually created features. Neural networks with only
a few hidden layers are also included in this category, and these are
so-called “shallow” networks. These methods replace several rule-based
ones, which they usually outperform in terms of accuracy. The most
recent deep learning models, which have an impact on all artificial
intelligence domains, including text classification, are also discussed.
These techniques have become popular because they can simulate intri-
cate features without requiring manual engineering, which reduces the
need for subject expertise. Finally, we discuss Transformers (LLMs and
GPTs) and the recent and emerging discipline of Prompt Engineering.
We discuss several prompting techniques, and then we move to some
ethical considerations on the use of generative AI.

Full text available at: http://dx.doi.org/10.1561/1500000107



10 Introduction

Overview of Section 6: Evaluation

This section focuses on how to evaluate the performance of deep learn-
ing models in the context of text classification tasks, introducing the
most used metrics in the literature. We discuss various metrics such as
accuracy, precision, recall, and F1 score, emphasizing the importance
of selecting the right metric based on the specific goals. In addition, we
explore the limitations of traditional evaluation metrics and highlight
the necessity for more sophisticated approaches, particularly in scenar-
ios involving imbalanced datasets. The use of confusion matrices and
ROC-AUC scores were recommended to provide a more comprehensive
evaluation of model performance, along with metrics as ROUGE and
BLEU for tasks involving text generation and summarization. Moreover,
we propose the integration of human evaluation methods to supplement
quantitative metrics, recognizing that the nuances of language often
elude numerical representation.

Overview of Section 7: Conclusion

In the final section of this work, we report the final conclusions and
future perspectives on the matter.

Full text available at: http://dx.doi.org/10.1561/1500000107
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