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Abstract

We give a tutorial overview of several foundational methods for dimen-
sion reduction. We divide the methods into projective methods and
methods that model the manifold on which the data lies. For projective
methods, we review projection pursuit, principal component analysis
(PCA), kernel PCA, probabilistic PCA, canonical correlation analysis
(CCA), kernel CCA, Fisher discriminant analysis, oriented PCA, and
several techniques for sufficient dimension reduction. For the manifold
methods, we review multidimensional scaling (MDS), landmark MDS,
Isomap, locally linear embedding, Laplacian eigenmaps, and spectral
clustering. Although this monograph focuses on foundations, we also
provide pointers to some more modern techniques. We also describe
the correlation dimension as one method for estimating the intrinsic
dimension, and we point out that the notion of dimension can be a
scale-dependent quantity. The Nyström method, which links several of
the manifold algorithms, is also reviewed. We use a publicly available
data set to illustrate some of the methods. The goal is to provide a
self-contained overview of key concepts underlying many of these algo-
rithms, and to give pointers for further reading.
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1

Introduction

Dimension reduction1 is the mapping of data to a lower dimensional
space such that uninformative variance in the data is discarded, or such
that a subspace in which the data lives is detected. Dimension reduction
has a long history as a method for data visualization, and for extracting
key low dimensional features (for example, the two-dimensional orien-
tation of an object, from its high dimensional image representation). In
some cases the desired low dimensional features depend on the task at
hand. Apart from teaching us about the data, dimension reduction can
lead us to better models for inference. The need for dimension reduc-
tion also arises for other pressing reasons. Stone [85] showed that, under
certain regularity assumptions (including that the samples be IID),
the optimal rate of convergence2 for nonparametric regression varies

1 We follow both the lead of the statistics community and the spirit of the paper to reduce
‘dimensionality reduction’ and ‘dimensional reduction’ to ‘dimension reduction’.

2 The definition of ‘optimal rate of convergence’ is technical and for completeness we repro-

duce Stone’s definitions here [85]. A ‘rate of convergence’ is defined as a sequence of
numbers, indexed by sample size. Let θ be the unknown regression function, Θ the col-
lection of functions to which θ belongs, T̂n an estimator of θ using n samples, and {bn}
a sequence of positive constants. Then {bn} is called a lower rate of convergence if there
exists c > 0 such that limn infT̂n

supΘP (‖T̂n − θ‖ ≥ cbn) = 1, and it is called an achiev-

able rate of convergence if there is a sequence of estimators {T̂n} and c > 0 such that

1
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2 Introduction

as m−p/(2p+d), where m is the sample size, the data lies in Rd, and
where the regression function is assumed to be p times differentiable.
We can get a very rough idea of the impact of sample size on the rate
of convergence as follows. Consider a particular point in the sequence
of values corresponding to the optimal rate of convergence: m = 10,000
samples, for p = 2 and d = 10. Suppose that d is increased to 20; what
number of samples in the new sequence gives the same value? The
answer is approximately 10 million. If our data lies (approximately) on
a low dimensional manifold L that happens to be embedded in a high
dimensional manifold H, then modeling the data directly in L rather
than in H may turn an infeasible problem into a feasible one.

The purpose of this monograph is to describe the mathematics and
key ideas underlying the methods, and to provide some links to the
literature for those interested in pursuing a topic further.3 The sub-
ject of dimension reduction is vast, so we use the following criterion
to limit the discussion: we restrict our attention to the case where the
inferred feature values are continuous. The observables, on the other
hand, may be continuous or discrete. Thus this review does not address
clustering methods, or, for example, feature selection for discrete data,
such as text. This still leaves a very wide field, and so we further limit
the scope by choosing not to cover probabilistic topic models (in par-
ticular, latent Dirichlet allocation, nonnegative matrix factorization,
probabilistic latent semantic analysis, and Gaussian process latent vari-
able models). Furthermore, implementation details, and important the-
oretical details such as consistency and rates of convergence of sample
quantities to their population values, although important, are not dis-
cussed. For an alternative, excellent overview of dimension reduction
methods, see Lee and Verleysen [62]. This monograph differs from that
work in several ways. In particular, while it is common in the litera-
ture to see methods applied to artificial, low dimensional data sets such
as the famous Swiss Roll, in this monograph we prefer to use higher
dimensional data: while low dimensional toy data can be valuable to

limn supΘP (‖T̂n − θ‖ ≥ cbn) = 0; {bn} is called an optimal rate of convergence if it is
both a lower rate of convergence and an achievable rate of convergence. Here the infT̂n

is

over all possible estimators T̂n.
3 This monograph is a revised and extended version of Burges [17].

Full text available at: http://dx.doi.org/10.1561/2200000002



3

express ideas and to illustrate strengths and weaknesses of a method,
high dimensional data has qualitatively different behavior from two-
or three-dimensional data. Here, we use the publicly available KDD
Cup [61] training data. This is anonymized breast cancer screening
data for 1,712 patients, 118 of whom had a malignant cancer; each
feature vector has 117 features, and a total of 102,294 such samples
are available. The goal of the Cup was to identify those patients with
a malignant tumor from the corresponding feature vectors in a test
set. We use the data here because it is relevant to an important real-
world problem, it is publicly available, and because the training data
has labels (some of the techniques we describe below are for supervised
problems).

Regarding notation: we denote the sample space (the high dimen-
sional space in which the data resides) as H, the low dimensional space
(to which many of the methods discussed below map the data) as L,
and we reserve F to denote a feature space (often a high or infinite-
dimensional Hilbert space, to which the kernel versions of the methods
below map the data as an intermediate step). Vectors are denoted by
boldface, whereas components are denoted by xa, or by (xi)a for the
a-th component of the i-th vector. Random variables are denoted by
upper case; we use E[X|y] as shorthand for the function E[X|Y = y],
in contrast to the random variable E[X|Y ]. Following Horn and John-
son [54], the set of p by q matrices is denoted Mpq, the set of (square) p
by p matrices by Mp, the set of symmetric p by p matrices by Sp, and
the set of (symmetric) positive semidefinite matrices by S+

p (all matri-
ces considered are real). e with no subscript is used to denote the
vector of all ones; on the other hand ea denotes the a-th eigenvector.
We denote sample size by m, and dimension usually by d or d′, with
typically d′� d. δij is the Kronecker delta (the ij-th component of the
unit matrix).

We place dimension reduction techniques into two broad categories:
methods that rely on projections (Section 3) and methods that attempt
to model the manifold on which the data lies (Section 4). Section 3 gives
a detailed description of principal component analysis; apart from its
intrinsic usefulness, PCA is interesting because it serves as a start-
ing point for many modern algorithms, some of which (kernel PCA,

Full text available at: http://dx.doi.org/10.1561/2200000002



4 Introduction

probabilistic PCA, and oriented PCA) are also described here. How-
ever, it has clear limitations: it is easy to find even low dimensional
examples where the PCA directions are far from optimal for feature
extraction [33], and PCA ignores correlations in the data that are
higher than second order. We end Section 3 with a brief look at pro-
jective methods for dimension reduction of labeled data: sliced inverse
regression, and kernel dimension reduction. Section 4 starts with an
overview of the Nyström method, which can be used to extend, and
link, several of the algorithms described in this monograph. We then
examine some methods for dimension reduction which assume that the
data lies on a low dimensional manifold embedded in a high dimen-
sional space, namely locally linear embedding, multidimensional scal-
ing, Isomap, Laplacian eigenmaps, and spectral clustering.

Before we begin our exploration of these methods, however, let’s
investigate a question that is more fundamental than, and that can
be explored independently of, any particular dimension reduction tech-
nique: if our data lives on a manifold M that is embedded in some
Euclidean space, how can we estimate the dimension of M?
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