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Abstract

Sparse estimation methods are aimed at using or obtaining parsi-
monious representations of data or models. They were first dedi-
cated to linear variable selection but numerous extensions have now
emerged such as structured sparsity or kernel selection. It turns out
that many of the related estimation problems can be cast as convex
optimization problems by regularizing the empirical risk with appro-
priate nonsmooth norms. The goal of this monograph is to present
from a general perspective optimization tools and techniques dedi-
cated to such sparsity-inducing penalties. We cover proximal methods,
block-coordinate descent, reweighted `2-penalized techniques, working-
set and homotopy methods, as well as non-convex formulations and
extensions, and provide an extensive set of experiments to compare
various algorithms from a computational point of view.
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1

Introduction

The principle of parsimony is central to many areas of science: the
simplest explanation of a given phenomenon should be preferred over
more complicated ones. In the context of machine learning, it takes
the form of variable or feature selection, and it is commonly used in
two situations. First, to make the model or the prediction more inter-
pretable or computationally cheaper to use, i.e., even if the underlying
problem is not sparse, one looks for the best sparse approximation.
Second, sparsity can also be used given prior knowledge that the
model should be sparse.

For variable selection in linear models, parsimony may be directly
achieved by penalization of the empirical risk or the log-likelihood by
the cardinality of the support1 of the weight vector. However, this leads
to hard combinatorial problems (see, e.g., [96, 136]). A traditional con-
vex approximation of the problem is to replace the cardinality of the
support by the `1-norm. Estimators may then be obtained as solutions
of convex programs.

Casting sparse estimation as convex optimization problems has two
main benefits: First, it leads to efficient estimation algorithms — and

1 We call the set of non-zeros entries of a vector the support.

1
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2 Introduction

this monograph focuses primarily on these. Second, it allows a fruit-
ful theoretical analysis answering fundamental questions related to
estimation consistency, prediction efficiency [19, 99] or model consis-
tency [145, 158]. In particular, when the sparse model is assumed to
be well-specified, regularization by the `1-norm is adapted to high-
dimensional problems, where the number of variables to learn from
may be exponential in the number of observations.

Reducing parsimony to finding the model of lowest cardinality turns
out to be limiting, and structured parsimony [15, 62, 64, 66] has emerged
as a natural extension, with applications to computer vision [32, 62, 70],
text processing [68], bioinformatics [64, 73] or audio processing [80].
Structured sparsity may be achieved by penalizing other functions than
the cardinality of the support or regularizing by other norms than the
`1-norm. In this monograph, we focus not only on norms which can be
written as linear combinations of norms on subsets of variables, but
we also consider traditional extensions such as multiple kernel learning
and spectral norms on matrices (see Sections 1.3 and 1.5). One main
objective of this monograph is to present methods which are adapted
to most sparsity-inducing norms with loss functions potentially beyond
least-squares.

Finally, similar tools are used in other communities such as sig-
nal processing. While the objectives and the problem set-ups are dif-
ferent, the resulting convex optimization problems are often similar,
and most of the techniques reviewed in this monograph also apply to
sparse estimation problems in signal processing. Moreover, we consider
in Section 7 non-convex formulations and extensions.

This monograph aims at providing a general overview of the main
optimization techniques that have emerged as most relevant and effi-
cient for methods of variable selection based on sparsity-inducing
norms. We survey and compare several algorithmic approaches as they
apply not only to the `1-norm, group norms, but also to norms inducing
structured sparsity and to general multiple kernel learning problems.
We complement these by a presentation of some greedy and nonconvex
methods. Our presentation is essentially based on existing literature,
but the process of constructing a general framework leads naturally to
new results, connections and points of view.

Full text available at: http://dx.doi.org/10.1561/2200000015



3

This monograph is organized as follows:
Sections 1.1 and 1.2 introduce respectively the notations used

throughout the monograph and the optimization problem (1.1) which
is central to the learning framework that we will consider.

Section 1.3 gives an overview of common sparsity and structured
sparsity-inducing norms, with some of their properties and examples of
structures which they can encode.

Section 1.4 provides an essentially self-contained presentation of
concepts and tools from convex analysis that will be needed in the
rest of the monograph, and which are relevant to understand algo-
rithms for solving the main optimization problem (1.1). Specifically,
since sparsity-inducing norms are nondifferentiable convex functions,2

we introduce relevant elements of subgradient theory and Fenchel
duality — which are particularly well suited to formulate the optimal-
ity conditions associated to learning problems regularized with these
norms. We also introduce a general quadratic variational formulation
for a certain class of norms in Section 1.4.2; the part on subquadratic
norms is essentially relevant in view of sections on structured multiple
kernel learning and can safely be skipped in a first reading.

Section 1.5 introduces multiple kernel learning (MKL) and shows
that it can be interpreted as an extension of plain sparsity to reproduc-
ing kernel Hilbert spaces (RKHS), but formulated in the dual. This
connection is further exploited in Section 1.5.2, where it is shown
how structured counterparts of MKL can be associated with struc-
tured sparsity-inducing norms. These sections rely on Section 1.4.2.
All sections on MKL can be skipped in a first reading.

In Section 2, we discuss classical approaches to solving the opti-
mization problem arising from simple sparsity-inducing norms, such
as interior point methods and subgradient descent, and point at their
shortcomings in the context of machine learning.

Section 3 is devoted to a simple presentation of proximal methods.
After two short sections introducing the main concepts and algorithms,
the longer Section 3.3 focusses on the proximal operator and presents

2 Throughout this monograph, we refer to sparsity-inducing norms such as the `1-norm as

nonsmooth norms; note that all norms are nondifferentiable at zero, but some norms have
more nondifferentiability points (see more details in Section 1.3).
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4 Introduction

algorithms to compute it for a variety of norms. Section 3.4 shows
how proximal methods for structured norms extend naturally to the
RKHS/MKL setting.

Section 4 presents block coordinate descent algorithms, which pro-
vide an efficient alternative to proximal method for separable norms
like the `1- and `1/`2-norms, and can be applied to MKL. This section
uses the concept of proximal operator introduced in Section 3.

Section 5 presents reweighted-`2 algorithms that are based on the
quadratic variational formulations introduced in Section 1.4.2. These
algorithms are particularly relevant for the least-squares loss, for which
they take the form of iterative reweighted least-squares algorithms
(IRLS). Section 5.2 presents a generally applicable quadratic varia-
tional formulation for general norms that extends the variational for-
mulation of Section 1.4.2.

Section 6 covers algorithmic schemes that take advantage computa-
tionally of the sparsity of the solution by extending the support of the
solution gradually. These schemes are particularly relevant to construct
approximate or exact regularization paths of solutions for a range of val-
ues of the regularization parameter. Specifically, Section 6.1 presents
working-set techniques, which are meta-algorithms that can be used
with the optimization schemes presented in all the previous sections.
Section 6.2 focuses on the homotopy algorithm, which can efficiently
construct the entire regularization path of the Lasso.

Section 7 presents nonconvex as well as Bayesian approaches that
provide alternatives to, or extensions of the convex methods that were
presented in the previous sections. More precisely, Section 7.1 presents
so-called greedy algorithms, that aim at solving the cardinality-
constrained problem and include matching pursuit, orthogonal match-
ing pursuit and forward selection; Section 7.2 presents continuous
optimization problems, in which the penalty is chosen to be closer to
the so-called `0-penalty (i.e., a penalization of the cardinality of the
model regardless of the amplitude of the coefficients) at the expense of
losing convexity, and corresponding optimization schemes. Section 7.3
discusses the application of sparse norms regularization to the problem
of matrix factorization, which is intrinsically nonconvex, but for which
the algorithms presented in the rest of this monograph are relevant.

Full text available at: http://dx.doi.org/10.1561/2200000015



1.1 Notation 5

Finally, we discuss briefly in Section 7.4 Bayesian approaches to spar-
sity and the relations to sparsity-inducing norms.

Section 8 presents experiments comparing the performance of
the algorithms presented in Sections 2, 3, 4, 5, in terms of speed of
convergence of the algorithms. Precisely, Section 8.1 is devoted to
the `1-regularization case, and Sections 8.2 and 8.3 are respectively
covering the `1/`p-norms with disjoint groups and to more general
structured cases.

We discuss briefly methods and cases which were not covered in the
rest of the monograph in Section 9 and we conclude in Section 10.

Some of the material from this monograph is taken from an earlier
book chapter [12] and the dissertations of Rodolphe Jenatton [65] and
Julien Mairal [85].

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by upper
case ones. We define for q ≥ 1 the `q-norm of a vector x in Rn as
‖x‖q := (

∑n
i=1 |xi|q)1/q, where xi denotes the ith coordinate of x,

and ‖x‖∞ := maxi=1,...,n |xi| = limq→∞ ‖x‖q. We also define the `0-
penalty as the number of nonzero elements in a vector3: ‖x‖0 :=
#{i s.t. xi 6= 0} = limq→0+(

∑n
i=1 |xi|q). We consider the Frobenius

norm of a matrixX in Rm×n: ‖X‖F := (
∑m

i=1

∑n
j=1X

2
ij)

1/2, whereXij

denotes the entry of X at row i and column j. For an integer n > 0,
and for any subset J ⊆ {1, . . . ,n}, we denote by xJ the vector of size |J |
containing the entries of a vector x in Rn indexed by J , and by XJ the
matrix in Rm×|J | containing the |J | columns of a matrix X in Rm×n

indexed by J .

1.2 Loss Functions

We consider in this monograph convex optimization problems of the
form

min
w∈Rp

f(w) + λΩ(w), (1.1)

3 Note that it would be more proper to write ‖x‖00 instead of ‖x‖0 to be consistent with the

traditional notation ‖x‖q . However, for the sake of simplicity, we will keep this notation
unchanged in the rest of the monograph.
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6 Introduction

where f :Rp→ R is a convex differentiable function and Ω:Rp→ R is a
sparsity-inducing — typically nonsmooth and non-Euclidean — norm.

In supervised learning, we predict outputs y in Y from obser-
vations x in X ; these observations are usually represented by
p-dimensional vectors with X = Rp. In this supervised setting,
f generally corresponds to the empirical risk of a loss func-
tion `:Y × R→ R+. More precisely, given n pairs of data points
{(x(i),y(i)) ∈ Rp×Y; i= 1, . . . ,n}, we have for linear models4 f(w) :=
1
n

∑n
i=1 `(y

(i),w>x(i)). Typical examples of differentiable loss functions
are the square loss for least squares regression, i.e., `(y, ŷ) = 1

2(y − ŷ)2

with y in R, and the logistic loss `(y, ŷ) = log(1 + e−yŷ) for logistic
regression, with y in {−1,1}. Clearly, several loss functions of inter-
est are nondifferentiable, such as the hinge loss `(y, ŷ) = (1 − yŷ)+

or the absolute deviation loss `(y, ŷ) = |y − ŷ|, for which most of the
approaches we present in this monograph would not be applicable or
require appropriate modifications. Given the tutorial character of this
monograph, we restrict ourselves to smooth functions f , which we con-
sider is a reasonably broad setting, and we refer the interested reader
to appropriate references in Section 9. We refer the readers to [126] for
a more complete description of loss functions.

Penalty or constraint? Given our convex data-fitting term f(w),
we consider in this monograph adding a convex penalty λΩ(w). Within
such a convex optimization framework, this is essentially equivalent to
adding a constraint of the form Ω(w) ≤ µ. More precisely, under weak
assumptions on f and Ω (on top of convexity), from Lagrange multi-
plier theory (see [20], Section 4.3) w is a solution of the constrained
problem for a certain µ > 0 if and only if it is a solution of the penalized
problem for a certain λ ≥ 0. Thus, the two regularization paths, i.e.,
the set of solutions when λ and µ vary, are equivalent. However, there is
no direct mapping between corresponding values of λ and µ. Moreover,
in a machine learning context, where the parameters λ and µ have to
be selected, for example, through cross-validation, the penalized for-
mulation tends to be empirically easier to tune, as the performance is

4 In Section 1.5, we consider extensions to nonlinear predictors through multiple kernel
learning.
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1.3 Sparsity-Inducing Norms 7

usually quite robust to small changes in λ, while it is not robust to
small changes in µ. Finally, we could also replace the penalization with
a norm by a penalization with the squared norm. Indeed, following
the same reasoning as for the nonsquared norm, a penalty of the form
λΩ(w)2 is “equivalent” to a constraint of the form Ω(w)2 6 µ, which
itself is equivalent to Ω(w) 6 µ1/2, and thus to a penalty of the form
λ′Ω(w)2, for λ′ 6= λ. Thus, using a squared norm, as is often done in the
context of multiple kernel learning (see Section 1.5), does not change
the regularization properties of the formulation.

1.3 Sparsity-Inducing Norms

In this section, we present various norms as well as their main sparsity-
inducing effects. These effects may be illustrated geometrically through
the singularities of the corresponding unit balls (see Figure 1.4).

Sparsity through the `1-norm. When one knows a priori that the
solutions w? of problem (1.1) should have a few nonzero coefficients,
Ω is often chosen to be the `1-norm, i.e., Ω(w) =

∑p
j=1 |wj |. This leads

for instance to the Lasso [133] or basis pursuit [37] with the square loss
and to `1-regularized logistic regression (see, for instance, [75, 127])
with the logistic loss. Regularizing by the `1-norm is known to induce
sparsity in the sense that, a number of coefficients of w?, depending on
the strength of the regularization, will be exactly equal to zero.

`1/`q-norms. In some situations, the coefficients of w? are naturally
partitioned in subsets, or groups, of variables. This is typically the
case, when working with ordinal variables.5 It is then natural to select
or remove simultaneously all the variables forming a group. A regu-
larization norm exploiting explicitly this group structure, or `1-group
norm, can be shown to improve the prediction performance and/or
interpretability of the learned models [61, 83, 106, 116, 141, 156]. The

5 Ordinal variables are integer-valued variables encoding levels of a certain feature, such as
levels of severity of a certain symptom in a biomedical application, where the values do not
correspond to an intrinsic linear scale: in that case it is common to introduce a vector of

binary variables, each encoding a specific level of the symptom, that encodes collectively
this single feature.
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8 Introduction

arguably simplest group norm is the so-called-`1/`2 norm:

Ω(w) :=
∑
g∈G

dg‖wg‖2, (1.2)

where G is a partition of {1, . . . ,p}, (dg)g∈G are some strictly positive
weights, and wg denotes the vector in R|g| recording the coefficients
of w indexed by g in G. Without loss of generality we may assume all
weights (dg)g∈G to be equal to one (when G is a partition, we can rescale
the components of w appropriately). As defined in Equation (1.2), Ω
is known as a mixed `1/`2-norm. It behaves like an `1-norm on the
vector (‖wg‖2)g∈G in R|G|, and therefore, Ω induces group sparsity. In
other words, each ‖wg‖2, and equivalently each wg, is encouraged to be
set to zero. On the other hand, within the groups g in G, the `2-norm
does not promote sparsity. Combined with the square loss, it leads to
the group Lasso formulation [141, 156]. Note that when G is the set of
singletons, we retrieve the `1-norm. More general mixed `1/`q-norms
for q > 1 are also used in the literature [157] (using q = 1 leads to a
weighted `1-norm with no group-sparsity effects):

Ω(w) =
∑
g∈G
‖wg‖q :=

∑
g∈G

dg

{∑
j∈g
|wj |q

}1/q

.

In practice though, the `1/`2- and `1/`∞-settings remain the most pop-
ular ones. Note that using `∞-norms may have the undesired effect to
favor solutions w with many components of equal magnitude (due to
the extra nondifferentiabilities away from zero). Grouped `1-norms are
typically used when extra-knowledge is available regarding an appro-
priate partition, in particular in the presence of categorical variables
with orthogonal encoding [116], for multi-task learning where joint vari-
able selection is desired [106], and for multiple kernel learning (see
Section 1.5).

Norms for overlapping groups: a direct formulation. In an
attempt to better encode structural links between variables at play
(e.g., spatial or hierarchical links related to the physics of the prob-
lem at hand), recent research has explored the setting where G in
Equation (1.2) can contain groups of variables that overlap [9, 64, 66,
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1.3 Sparsity-Inducing Norms 9

73, 121, 157]. In this case, if the groups span the entire set of variables,
Ω is still a norm, and it yields sparsity in the form of specific patterns
of variables. More precisely, the solutions w? of problem (1.1) can be
shown to have a set of zero coefficients, or simply zero pattern, that
corresponds to a union of some groups g in G [66]. This property makes
it possible to control the sparsity patterns of w? by appropriately defin-
ing the groups in G. Note that here the weights dg should not be taken
equal to one (see, e.g., [66] for more details). This form of structured
sparsity has notably proven to be useful in various contexts, which we
now illustrate through concrete examples:

— One-dimensional sequence: Given p variables organized
in a sequence, if we want to select only contiguous nonzero
patterns, we represent in Figure 1.1 the set of groups G to
consider. In this case, we have |G| = O(p). Imposing the con-
tiguity of the nonzero patterns is for instance relevant in the
context of time series, or for the diagnosis of tumors, based on
the profiles of arrayCGH [112]. Indeed, because of the specific
spatial organization of bacterial artificial chromosomes along
the genome, the set of discriminative features is expected to
have specific contiguous patterns.

— Two-dimensional grid: In the same way, assume now
that the p variables are organized on a two-dimensional
grid. If we want the possible nonzero patterns P to be the
set of all rectangles on this grid, the appropriate groups
G to consider can be shown (see [66]) to be those repre-
sented in Figure 1.2. In this setting, we have |G| = O(

√
p).

Fig. 1.1. (Left) The set of blue groups to penalize in order to select contiguous patterns in

a sequence. (Right) In red, an example of such a nonzero pattern with its corresponding
zero pattern (hatched area).

Full text available at: http://dx.doi.org/10.1561/2200000015



10 Introduction

Fig. 1.2. Vertical and horizontal groups: (Left) the set of blue and green groups to penalize
in order to select rectangles. (Right) In red, an example of nonzero pattern recovered in

this setting, with its corresponding zero pattern (hatched area).

Sparsity-inducing regularizations built upon such group
structures have resulted in good performances for back-
ground subtraction [62, 86, 88], topographic dictionary
learning [72, 88], wavelet-based denoising [111], and for face
recognition with corruption by occlusions [70].

— Hierarchical structure: A third interesting example
assumes that the variables have a hierarchical structure.
Specifically, we consider that the p variables correspond to
the nodes of a tree T (or a forest of trees). Moreover, we
assume that we want to select the variables according to a
certain order: a feature can be selected only if all its ancestors
in T are already selected. This hierarchical rule can be shown
to lead to the family of groups displayed on Figure 1.3.
This resulting penalty was first used in [157]; since then,
this group structure has led to numerous applications, for
instance, wavelet-based denoising [15, 62, 69, 157], hierarchi-
cal dictionary learning for both topic modeling and image
restoration [68, 69], log-linear models for the selection of
potential orders of interaction in a probabilistic graphical
model [121], bioinformatics, to exploit the tree structure of
gene networks for multi-task regression [73], and multi-scale
mining of fMRI data for the prediction of some cognitive
task [67]. More recently, this hierarchical penalty was proved
to be efficient for template selection in natural language pro-
cessing [92].

— Extensions: The possible choices for the sets of groups G
are not limited to the aforementioned examples. More
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1.3 Sparsity-Inducing Norms 11

Fig. 1.3. Left: example of a tree-structured set of groups G (dashed contours in red), cor-

responding to a tree T with p = 6 nodes represented by black circles. Right: example of
a sparsity pattern induced by the tree-structured norm corresponding to G; the groups

{2,4},{4} and {6} are set to zero, so that the corresponding nodes (in gray) that form

subtrees of T are removed. The remaining nonzero variables {1,3,5} form a rooted and
connected subtree of T . This sparsity pattern obeys the following equivalent rules: (i) if a

node is selected, the same goes for all its ancestors; (ii) if a node is not selected, then its

descendant are not selected.

complicated topologies can be considered, for instance, three-
dimensional spaces discretized in cubes or spherical volumes
discretized in slices; for instance, see [143] for an application
to neuroimaging that pursues this idea. Moreover, directed
acyclic graphs that extends the trees presented in Figure 1.3
have notably proven to be useful in the context of hierarchical
variable selection [9, 121, 157],

Norms for overlapping groups: a latent variable formula-
tion. The family of norms defined in Equation (1.2) is adapted to
intersection-closed sets of nonzero patterns. However, some applica-
tions exhibit structures that can be more naturally modelled by union-
closed families of supports. This idea was developed in [64, 105] where,
given a set of groups G, the following latent group Lasso norm was
proposed:

Ωunion(w) := min
v∈Rp×|G|

∑
g∈G

dg‖vg‖q, s.t.

{∑
g∈G v

g = w,

∀g ∈ G, vgj = 0 if j /∈ g.

The idea is to introduce latent parameter vectors vg constrained each
to be supported on the corresponding group g, which should explain w
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linearly and which are themselves regularized by a usual `1/`q-norm.
Ωunion reduces to the usual `1/`q norm when groups are disjoint and
provides therefore a different generalization of the latter to the case
of overlapping groups than the norm considered in the previous para-
graphs. In fact, it is easy to see that solving Equation (1.1) with the
norm Ωunion is equivalent to solving

min
(vg∈R|g|)g∈G

1
n

n∑
i=1

`

(
y(i),

∑
g∈G

vgg
>x(i)

g

)
+ λ

∑
g∈G

dg‖vg‖q (1.3)

and settingw =
∑

g∈G v
g. This last equation shows that using the norm

Ωunion can be interpreted as implicitly duplicating the variables belong-
ing to several groups and regularizing with a weighted `1/`q norm for
disjoint groups in the expanded space. It should be noted that a care-
ful choice of the weights is much more important in the situation of
overlapping groups than in the case of disjoint groups, as it influences
possible sparsity patterns [105].

This latent variable formulation pushes some of the vectors vg to
zero while keeping others with no zero components, hence leading
to a vector w with a support which is in general the union of the
selected groups. Interestingly, it can be seen as a convex relaxation
of a non-convex penalty encouraging similar sparsity patterns which
was introduced by [62]. Moreover, this norm can also be interpreted as
a particular case of the family of atomic norms, which were recently
introduced by [35].

Graph Lasso. One type of a priori knowledge commonly encountered
takes the form of graph defined on the set of input variables, which is
such that connected variables are more likely to be simultaneously rel-
evant or irrelevant; this type of prior is common in genomics where reg-
ulation, co-expression or interaction networks between genes (or their
expression level) used as predictors are often available. To favor the
selection of neighbors of a selected variable, it is possible to consider the
edges of the graph as groups in the previous formulation (see [64, 111]).

Patterns consisting of a small number of intervals. A quite similar
situation occurs, when one knows a priori—typically for variables form-
ing sequences (times series, strings, polymers)—that the support should
consist of a small number of connected subsequences. In that case,

Full text available at: http://dx.doi.org/10.1561/2200000015



1.3 Sparsity-Inducing Norms 13

one can consider the sets of variables forming connected subsequences
(or connected subsequences of length at most k) as the overlapping
groups.

Multiple kernel learning. For most of the sparsity-inducing terms
described in this monograph, we may replace real variables and their
absolute values by pre-defined groups of variables with their Euclidean
norms (we have already seen such examples with `1/`2-norms), or more
generally, by members of reproducing kernel Hilbert spaces. As shown
in Section 1.5, most of the tools that we present in this monograph
are applicable to this case as well, through appropriate modifications
and borrowing of tools from kernel methods. These tools have applica-
tions in particular in multiple kernel learning. Note that this extension
requires tools from convex analysis presented in Section 1.4.

Trace norm. In learning problems on matrices, such as matrix com-
pletion, the rank plays a similar role to the cardinality of the support
for vectors. Indeed, the rank of a matrix M may be seen as the num-
ber of non-zero singular values of M. The rank of M however is not
a continuous function of M, and, following the convex relaxation of
the `0-pseudo-norm into the `1-norm, we may relax the rank of M into
the sum of its singular values, which happens to be a norm, and is
often referred to as the trace norm or nuclear norm of M, and which
we denote by ‖M‖∗. As shown in this monograph, many of the tools
designed for the `1-norm may be extended to the trace norm. Using the
trace norm as a convex surrogate for rank has many applications in con-
trol theory [48], matrix completion [1, 130], multi-task learning [109],
or multi-label classification [4], where low-rank priors are adapted.

Sparsity-inducing properties: A geometrical intuition.
Although we consider in Equation (1.1) a regularized formulation,
as already described in Section 1.2, we could equivalently focus on a
constrained problem, that is,

min
w∈Rp

f(w) such that Ω(w) ≤ µ, (1.4)

for some µ ∈ R+. The set of solutions of Equation (1.4) parameterized
by µ is the same as that of Equation (1.1), as described by some value
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of λµ depending on µ (e.g., see Section 3.2 in [20]). At optimality, the
gradient of f evaluated at any solution ŵ of (1.4) is known to belong to
the normal cone of B = {w ∈ Rp; Ω(w) ≤ µ} at ŵ [20]. In other words,
for sufficiently small values of µ, i.e., so that the constraint is active,
the level set of f for the value f(ŵ) is tangent to B.

As a consequence, the geometry of the ball B is directly related
to the properties of the solutions ŵ. If Ω is taken to be the `2-norm,
then the resulting ball B is the standard, isotropic, “round” ball that
does not favor any specific direction of the space. On the other hand,
when Ω is the `1-norm, B corresponds to a diamond-shaped pattern in
two dimensions, and to a pyramid in three dimensions. In particular, B
is anisotropic and exhibits some singular points due to the extra non-
smoothness of Ω. Moreover, these singular points are located along the
axis of Rp, so that if the level set of f happens to be tangent at one of
those points, sparse solutions are obtained. We display in Figure 1.4 the
balls B for the `1-, `2-norms, and two different grouped `1/`2-norms.

Extensions. The design of sparsity-inducing norms is an active field
of research and similar tools to the ones we present here can be derived
for other norms. As shown in Section 3, computing the proximal oper-
ator readily leads to efficient algorithms, and for the extensions we
present below, these operators can be efficiently computed.

In order to impose prior knowledge on the support of predictor, the
norms based on overlapping `1/`∞-norms can be shown to be convex
relaxations of submodular functions of the support, and further ties can
be made between convex optimization and combinatorial optimization
(see [10] for more details). Moreover, similar developments may be car-
ried through for norms which try to enforce that the predictors have
many equal components and that the resulting clusters have specific
shapes, e.g., contiguous in a pre-defined order, see some examples in
Section 3, and, e.g., [11, 33, 86, 134, 144] and references therein.

1.4 Optimization Tools

The tools used in this monograph are relatively basic and should
be accessible to a broad audience. Most of them can be found in
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Fig. 1.4. Comparison between different balls of sparsity-inducing norms in three dimensions.
The singular points appearing on these balls describe the sparsity-inducing behavior of the
underlying norms Ω.
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classical books on convex optimization [18, 20, 25, 104], but for
self-containedness, we present here a few of them related to nons-
mooth unconstrained optimization. In particular, these tools allow the
derivation of rigorous approximate optimality conditions based on dual-
ity gaps (instead of relying on weak stopping criteria based on small
changes or low-norm gradients).

Subgradients. Given a convex function g:Rp→ R and a vector w
in Rp, let us define the subdifferential of g at w as

∂g(w) := {z ∈ Rp | g(w) + z>(w′ − w) ≤ g(w′)

for all vectors w′ ∈ Rp}.

The elements of ∂g(w) are called the subgradients of g at w. Note that
all convex functions defined on Rp have non-empty subdifferentials at
every point. This definition admits a clear geometric interpretation:
any subgradient z in ∂g(w) defines an affine function w′ 7→ g(w) +
z>(w′ − w) which is tangent to the graph of the function g (because
of the convexity of g, it is a lower-bounding tangent). Moreover, there
is a bijection (one-to-one correspondence) between such “tangent affine
functions” and the subgradients, as illustrated in Figure 1.5.

Fig. 1.5. Red curves represent the graph of a smooth (left) and a nonsmooth (right) func-
tion f . Blue affine functions represent subgradients of the function f at a point w.
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Subdifferentials are useful for studying nonsmooth optimization
problems because of the following proposition (whose proof is straight-
forward from the definition):

Proposition 1.1 (Subgradients at Optimality).
For any convex function g:Rp→ R, a pointw in Rp is a global minimum
of g if and only if the condition 0 ∈ ∂g(w) holds.

Note that the concept of subdifferential is mainly useful for nonsmooth
functions. If g is differentiable at w, the set ∂g(w) is indeed the
singleton {∇g(w)}, where ∇g(w) is the gradient of g at w, and the
condition 0 ∈ ∂g(w) reduces to the classical first-order optimality con-
dition ∇g(w) = 0. As a simple example, let us consider the following
optimization problem

min
w∈R

1
2

(x − w)2 + λ|w|.

Applying the previous proposition and noting that the subdifferential
∂| · | is {+1} for w > 0, {−1} for w < 0 and [−1,1] for w = 0, it is easy
to show that the unique solution admits a closed form called the soft-
thresholding operator, following a terminology introduced in [42]; it can
be written

w? =

{
0, if |x| ≤ λ
(1 − λ

|x|)x, otherwise, (1.5)

or equivalently w? = sign(x)(|x| − λ)+, where sign(x) is equal to 1 if
x > 0, −1 if x < 0 and 0 if x = 0. This operator is a core component
of many optimization techniques for sparse estimation, as we shall see
later. Its counterpart for nonconvex optimization problems is the hard-
thresholding operator. Both of them are presented in Figure 1.6. Note
that similar developments could be carried through using directional
derivatives instead of subgradients (see, e.g., [20]).

Dual norm and optimality conditions. The next concept we
introduce is the dual norm, which is important to study sparsity-
inducing regularizations [9, 66, 99]. It notably arises in the analysis
of estimation bounds [99], and in the design of working-set strategies
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Fig. 1.6. Soft- and hard-thresholding operators.

as will be shown in Section 6.1. The dual norm Ω∗ of the norm Ω is
defined for any vector z in Rp by

Ω∗(z) := max
w∈Rp

z>w such that Ω(w) ≤ 1. (1.6)

Moreover, the dual norm of Ω∗ is Ω itself, and as a consequence, the
formula above holds also if the roles of Ω and Ω∗ are exchanged. It is
easy to show that in the case of an `q-norm, q ∈ [1;+∞], the dual norm
is the `q′-norm, with q′ in [1;+∞] such that 1

q + 1
q′ = 1. In particular,

the `1- and `∞-norms are dual to each other, and the `2-norm is self-
dual (dual to itself).

The dual norm plays a direct role in computing optimality condi-
tions of sparse regularized problems. By applying Proposition 1.1 to
Equation (1.1), we obtain the following proposition:

Proposition 1.2 (Optimality conditions for Equation (1.1)).
Let us consider problem (1.1) where Ω is a norm on Rp. A vector w
in Rp is optimal if and only if − 1

λ∇f(w) ∈ ∂Ω(w) with

∂Ω(w) =

{
{z ∈ Rp; Ω∗(z) ≤ 1}, if w = 0,

{z ∈ Rp; Ω∗(z) = 1 and z>w = Ω(w)}, otherwise.
(1.7)
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Computing the subdifferential of a norm is a classical course exer-
cise [20] and its proof will be presented in the next section, in
Remark 1.1. As a consequence, the vector 0 is solution if and only
if Ω∗

(
∇f(0)

)
≤ λ. Note that this shows that for all λ larger than

Ω∗
(
∇f(0)

)
,w = 0 is a solution of the regularized optimization problem

(hence this value is the start of the non-trivial regularization path).
These general optimality conditions can be specialized to the Lasso

problem [133], also known as basis pursuit [37]:

min
w∈Rp

1
2n
‖y −Xw‖22 + λ‖w‖1, (1.8)

where y is in Rn, andX is a design matrix in Rn×p. With Equation (1.7)
in hand, we can now derive necessary and sufficient optimality condi-
tions:

Proposition 1.3 (Optimality conditions for the Lasso).
A vector w is a solution of the Lasso problem (1.8) if and only if

∀j = 1, . . . ,p,

{
|X>j (y −Xw)| ≤ nλ, if wj = 0
X>j (y −Xw) = nλsign(wj), if wj 6= 0,

(1.9)

where Xj denotes the jth column of X, and wj the jth entry of w.

Proof. We apply Proposition 1.2. The condition − 1
λ∇f(w)∈∂‖w‖1

can be rewritten: X>(y −Xw)∈ nλ∂‖w‖1, which is equivalent to:
(i) if w = 0, ‖X>(y −Xw)‖∞≤nλ (using the fact that the `∞-
norm is dual to the `1-norm); (ii) if w 6= 0, ‖X>(y −Xw)‖∞=nλ

and w>X>(y −Xw) =nλ‖w‖1. It is then easy to check that these
conditions are equivalent to Equation (1.9).

As we will see in Section 6.2, it is possible to derive from these con-
ditions interesting properties of the Lasso, as well as efficient algorithms
for solving it. We have presented a useful duality tool for norms. More
generally, there exists a related concept for convex functions, which we
now introduce.
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1.4.1 Fenchel Conjugate and Duality Gaps

Let us denote by f∗ the Fenchel conjugate of f [115], defined by

f∗(z) := sup
w∈Rp

[z>w − f(w)].

Fenchel conjugates are particularly useful to derive dual problems and
duality gaps.6 Under mild conditions, the conjugate of the conjugate of
a convex function is itself, leading to the following representation of f
as a maximum of affine functions:

f(w) = sup
z∈Rp

[z>w − f∗(z)].

In the context of this tutorial, it is notably useful to specify the expres-
sion of the conjugate of a norm. Perhaps surprisingly and misleadingly,
the conjugate of a norm is not equal to its dual norm, but corresponds
instead to the indicator function of the unit ball of its dual norm. More
formally, let us introduce the indicator function ιΩ∗ such that ιΩ∗(z) is
equal to 0 if Ω∗(z) ≤ 1 and +∞ otherwise. Then, we have the follow-
ing well-known results, which appears in several text books (e.g., see
Example 3.26 in [25]):

Proposition 1.4(Fenchel conjugate of a norm). Let Ω be a norm
on Rp. The following equality holds for any z ∈ Rp

sup
w∈Rp

[z>w − Ω(w)] = ιΩ∗(w) =

{
0, if Ω∗(z) ≤ 1

+∞, otherwise.

Proof. On the one hand, assume that the dual norm of z is greater
than 1, that is, Ω∗(z) > 1. According to the definition of the dual norm
(see Equation (1.6)), and since the supremum is taken over the compact
set {w ∈ Rp; Ω(w) ≤ 1}, there exists a vector w in this ball such that
Ω∗(z) = z>w > 1. For any scalar t ≥ 0, consider v = tw and notice
that

z>v − Ω(v) = t[z>w − Ω(w)] ≥ t,

6 For many of our norms, conic duality tools would suffice (see, e.g., [25]).
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which shows that when Ω∗(z) > 1, the Fenchel conjugate is unbounded.
Now, assume that Ω∗(z) ≤ 1. By applying the generalized Cauchy–
Schwarz’s inequality, we obtain for any w

z>w − Ω(w) ≤ Ω∗(z)Ω(w) − Ω(w) ≤ 0.

Equality holds for w = 0, and the conclusion follows.

An important and useful duality result is the so-called Fenchel–
Young inequality (see [20]), which we will shortly illustrate geometri-
cally:

Proposition 1.5 (Fenchel–Young inequality). Let w be a vector
in Rp, f be a function on Rp, and z be a vector in the domain of f∗

(which we assume non-empty). We have then the following inequality

f(w) + f∗(z) ≥ w>z,

with equality if and only if z is in ∂f(w).

We can now illustrate geometrically the duality principle between a
function and its Fenchel conjugate in Figure 1.7.

Remark 1.1. With Proposition 1.4 in place, we can formally (and
easily) prove the relationship in Equation (1.7) that make explicit the
subdifferential of a norm. Based on Proposition 1.4, we indeed know
that the conjugate of Ω is ιΩ∗ . Applying the Fenchel–Young inequality
(Proposition 1.5), we have

z ∈ ∂Ω(w)⇔
[
z>w = Ω(w) + ιΩ∗(z)

]
,

which leads to the desired conclusion.

For many objective functions, the Fenchel conjugate admits closed
forms, and can therefore be computed efficiently [20]. Then, it is
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Fig. 1.7. For all z in Rp, we denote by P(z) the hyperplane with normal z and tangent to
the graph of the convex function f . (a) For any contact point between the graph of f and

an hyperplane P(z), we have that f(w) + f∗(z) =w>z and z is in ∂f(w) (the Fenchel–

Young inequality is an equality). (b) The graph of f is the convex envelope of the collection
of hyperplanes (P(z))z∈Rp .
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possible to derive a duality gap for problem (1.1) from standard Fenchel
duality arguments (see [20]), as shown in the following proposition:

Proposition 1.6 (Duality for Problem (1.1)). If f∗ and Ω∗

are respectively, the Fenchel conjugate of a convex and differentiable
function f and the dual norm of Ω, then we have

max
z∈Rp:Ω∗(z)≤λ

−f∗(z) ≤ min
w∈Rp

f(w) + λΩ(w). (1.10)

Moreover, equality holds as soon as the domain of f has non-empty
interior.

Proof. This result is a specific instance of Theorem 3.3.5 in [20]. In
particular, we use the fact that the conjugate of a norm Ω is the
indicator function ιΩ∗ of the unit ball of the dual norm Ω∗ (see
Proposition 1.4).

If w? is a solution of Equation (1.1), and w,z in Rp are such that
Ω∗(z) ≤ λ, this proposition implies that we have

f(w) + λΩ(w) ≥ f(w?) + λΩ(w?) ≥ −f∗(z). (1.11)

The difference between the left and right term of Equation (1.11) is
called a duality gap. It represents the difference between the value
of the primal objective function f(w) + λΩ(w) and a dual objective
function −f∗(z), where z is a dual variable. The proposition says that
the duality gap for a pair of optima w? and z? of the primal and dual
problem is equal to 0. When the optimal duality gap is zero one says
that strong duality holds. In our situation, the duality gap for the pair
of primal/dual problems in Equation (1.10), may be decomposed as the
sum of two non-negative terms (as the consequence of Fenchel–Young
inequality):

(f(w) + f∗(z) − w>z) + λ(Ω(w) + w>(z/λ) + ιΩ∗(z/λ)).

It is equal to zero if and only if the two terms are simultaneously equal
to zero.

Duality gaps are important in convex optimization because they
provide an upper bound on the difference between the current value of
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an objective function and the optimal value, which makes it possible
to set proper stopping criteria for iterative optimization algorithms.
Given a current iterate w, computing a duality gap requires choosing
a “good” value for z (and in particular a feasible one). Given that at
optimality, z(w?) =∇f(w?) is the unique solution to the dual problem,
a natural choice of dual variable is z = min

(
1, λ

Ω∗(∇f(w))

)
∇f(w), which

reduces to z(w?) at the optimum and therefore yields a zero duality
gap at optimality.

Note that in most formulations that we will consider, the function f
is of the form f(w) = ψ(Xw) with ψ:Rn→ R and X ∈ Rn×p a design
matrix. Indeed, this corresponds to linear prediction on Rp, given n

observations xi, i = 1, . . . ,n, and the predictions Xw = (w>xi)i=1,...,n.
Typically, the Fenchel conjugate of ψ is easy to compute7 while the
design matrix X makes it hard8 to compute f∗. In that case, Equa-
tion (1.1) can be rewritten as

min
w∈Rp,u∈Rn

ψ(u) + λ Ω(w), s.t. u =Xw, (1.12)

and equivalently as the optimization of the Lagrangian

min
w∈Rp,u∈Rn

max
α∈Rn

ψ(u) + λΩ(w) + λα>(Xw − u),

min
w∈Rp,u∈Rn

max
α∈Rn

(ψ(u) − λα>u) + λ(Ω(w) + α>Xw), (1.13)

which is obtained by introducing the Lagrange multiplier α for the
constraint u =Xw. The corresponding Fenchel dual9 is then

max
α∈Rn

−ψ∗(λα) such that Ω∗(X>α) ≤ 1, (1.14)

which does not require any inversion ofX>X (which would be required
for computing the Fenchel conjugate of f). Thus, given a candi-
date w, we consider α = min

(
1, λ

Ω∗(X>∇ψ(Xw))

)
∇ψ(Xw), and can get

7 For the least-squares loss with output vector y ∈ Rn, we have ψ(u) = 1
2
‖y − u‖22 and

ψ∗(β) = 1
2
‖β‖22 + β>y. For the logistic loss, we have ψ(u) =

∑n
i=1 log(1 + exp(−yiui))

and ψ∗(β) =
∑n
i=1(1 + βiyi) log(1 + βiyi) − βiyi log(−βiyi) if ∀i, −βiyi ∈ [0,1] and

+∞ otherwise.
8 It would require to compute the pseudo-inverse of X.
9 Fenchel conjugacy naturally extends to this case; see Theorem 3.3.5 in [20] for more details.
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an upper bound on optimality using primal (1.12) and dual (1.14)
problems. Concrete examples of such duality gaps for various sparse
regularized problems are presented in Appendix D of [85], and are
implemented in the open-source software SPAMS,10 which we have used
in the experimental section of this monograph.

1.4.2 Quadratic Variational Formulation of Norms

Several variational formulations are associated with norms, the most
natural one being the one that results directly from (1.6) applied to
the dual norm:

Ω(w) = max
z∈Rp

w>z s.t. Ω∗(z) ≤ 1.

However, another type of variational form is quite useful, especially for
sparsity-inducing norms; among other purposes, as it is obtained by
a variational upper-bound (as opposed to a lower-bound in the equa-
tion above), it leads to a general algorithmic scheme for learning prob-
lems regularized with this norm, in which the difficulties associated
with optimizing the loss and that of optimizing the norm are partially
decoupled. We present it in Section 5. We introduce this variational
form first for the `1- and `1/`2-norms and subsequently generalize it to
norms that we call subquadratic norms.

The case of the `1- and `1/`2-norms. The two basic variational
identities we use are, for a,b > 0,

2ab = inf
η∈R∗+

η−1a2 + η b2, (1.15)

where the infimum is attained at η = a/b, and, for a ∈ Rp
+,(

p∑
i=1

ai

)2

= inf
η∈(R∗+)p

p∑
i=1

a2
i

ηi
s.t.

p∑
i=1

ηi = 1. (1.16)

The last identity is a direct consequence of the Cauchy–Schwarz
inequality:

p∑
i=1

ai =
p∑
i=1

ai√
ηi
· √ηi ≤

(
p∑
i=1

a2
i

ηi

)1/2( p∑
i=1

ηi

)1/2

. (1.17)

10 http://www.di.ens.fr/willow/SPAMS/.
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The infima in the previous expressions can be replaced by a minimiza-
tion if the function q:R × R+→ R+ with q(x,y) = x2

y is extended in
(0,0) using the convention “0/0=0”, since the resulting function11 is a
proper closed convex function. We will use this convention implicitly
from now on. The minimum is then attained when equality holds in
the Cauchy–Schwarz inequality, that is for

√
ηi ∝ ai/

√
ηi, which leads

to ηi = ai
‖a‖1 if a 6= 0 and 0 else.

Introducing the simplex 4p = {η ∈ Rp
+ |
∑p

i=1ηi = 1}, we apply
these variational forms to the `1- and `1/`2-norms (with nonoverlapping
groups) with ‖w‖`1/`2 =

∑
g∈G ‖wg‖2 and |G| = m, so that we obtain

directly:

‖w‖1 = min
η∈Rp+

1
2

p∑
i=1

[
w2
i

ηi
+ ηi

]
, ‖w‖21 = min

η∈4p

p∑
i=1

w2
i

ηi
,

‖w‖`1/`2 = min
η∈Rm+

1
2

∑
g∈G

[
‖wg‖22
ηg

+ ηg
]
, ‖w‖2`1/`2 = min

η∈4m

∑
g∈G

‖wg‖22
ηg

.

Quadratic variational forms for subquadratic norms. The vari-
ational form of the `1-norm admits a natural generalization for certain
norms that we call subquadratic norms. Before we introduce them, we
review a few useful properties of norms. In this section, we will denote
|w| the vector (|w1|, . . . , |wp|).

Definition 1.1 (Absolute and monotonic norm). We say that:

• A norm Ω is absolute if for all v ∈ Rp, Ω(v) = Ω(|v|).
• A norm Ω is monotonic if for all v,w ∈ Rp s.t. |vi| ≤
|wi|, i = 1, . . . ,p, it holds that Ω(v) ≤ Ω(w).

These definitions are in fact equivalent (see, e.g., [16]):

Proposition 1.7. A norm is monotonic if and only if it is absolute.

11 This extension is in fact the function q̃: (x,y) 7→min
{
t ∈ R+ |

[
t x

x y

]
� 0
}

.

Full text available at: http://dx.doi.org/10.1561/2200000015



1.4 Optimization Tools 27

Proof. If Ω is monotonic, the fact that
∣∣v∣∣ =

∣∣|v|∣∣ implies Ω(v) = Ω(|v|)
so that Ω is absolute.

If Ω is absolute, we first show that Ω∗ is absolute. Indeed,

Ω∗(κ) = max
w∈Rp, Ω(|w|)≤1

w>κ = max
w∈Rp, Ω(|w|)≤1

|w|>|κ| = Ω∗(|κ|).

Then if |v| ≤ |w|, since Ω∗(κ) = Ω∗(|κ|),

Ω(v) = max
κ∈Rp, Ω∗(|κ|)≤1

|v|>|κ| ≤ max
κ∈Rp, Ω∗(|κ|)≤1

|w|>|κ| = Ω(w),

which shows that Ω is monotonic.

We now introduce a family of norms, which have recently been
studied in [93].

Definition 1.2(H-norm). Let H be a compact convex subset of Rp
+,

such that H ∩ (R∗+)p 6= ∅, we say that ΩH is an H-norm if ΩH(w) =

minη∈H
∑p

i=1
w2
i
ηi

.

The next proposition shows that ΩH is indeed a norm and characterizes
its dual norm.

Proposition 1.8. ΩH is a norm and Ω∗H(κ)2 = maxη∈H
∑p

i=1ηiκ
2
i .

Proof. First, since H contains at least one element whose components
are all strictly positive, Ω is finite on Rp. Symmetry, nonnegativity and
homogeneity of ΩH are straightforward from the definitions. Definite-
ness results from the fact that H is bounded. ΩH is convex, since it is
obtained by minimization of η in a jointly convex formulation. Thus
ΩH is a norm. Finally,

1
2

Ω∗H(κ)2 = max
w∈Rp

w>κ − 1
2

ΩH(w)2

= max
w∈Rp

max
η∈H

w>κ − 1
2
w>Diag(η)−1w.

The form of the dual norm follows by maximizing w.r.t. w.
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We finally introduce the family of norms that we call subquadratic.

Definition 1.3(Subquadratic norm). Let Ω and Ω∗ a pair of abso-
lute dual norms. Let Ω̄∗ be the function defined as Ω̄∗: κ 7→ [Ω∗(|κ|1/2)]2

where we use the notation |κ|1/2 = (|κ1|1/2, . . . , |κp|1/2)>. We say that
Ω is subquadratic if Ω̄∗ is convex.

With this definition, we have:

Lemma 1.9. If Ω is subquadratic, then Ω̄∗ is a norm, and denoting Ω̄
the dual norm of the latter, we have:

Ω(w) =
1
2

min
η∈Rp+

∑
i

w2
i

ηi
+ Ω̄(η)

Ω(w)2 = min
η∈H

∑
i

w2
i

ηi
where H = {η ∈ Rp

+ | Ω̄(η) ≤ 1}.

Proof. Note that by construction, Ω̄∗ is homogeneous, symmetric and
definite (Ω̄∗(κ) = 0⇒ κ = 0). If Ω̄∗ is convex then Ω̄∗(1

2(v + u)) ≤
1
2

(
Ω̄∗(v) + Ω̄∗(u)

)
, which by homogeneity shows that Ω̄∗ also satis-

fies the triangle inequality. Together, these properties show that Ω̄∗ is
a norm. To prove the first identity we have, applying (1.15), and since
Ω is absolute,

Ω(w) = max
κ∈Rp+

κ>|w|, s.t. Ω∗(κ) ≤ 1

= max
κ∈Rp+

p∑
i=1

κ
1/2
i |wi|, s.t. Ω∗(κ1/2)2 ≤ 1

= max
κ∈Rp+

min
η∈Rp+

1
2

p∑
i=1

w2
i

ηi
+ κ>η, s.t. Ω̄∗(κ) ≤ 1

= min
η∈Rp+

max
κ∈Rp+

1
2

p∑
i=1

w2
i

ηi
+ κ>η, s.t. Ω̄∗(κ) ≤ 1,

which proves the first variational formulation (note that we can switch
the order of the max and min operations because strong duality holds,
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which is due to the non-emptiness of the unit ball of the dual norm).
The second one follows similarly by applying (1.16) instead of (1.15).

Ω(w)2 = max
κ∈Rp+

(
p∑
i=1

κ
1/2
i |wi|

)2

, s.t. Ω∗(κ1/2)2 ≤ 1

= max
κ∈Rp+

min
η̃∈Rp+

p∑
i=1

κiw
2
i

η̃i
, s.t.

p∑
i=1

η̃i = 1, Ω̄∗(κ) ≤ 1

= max
κ∈Rp+

min
η∈Rp+

p∑
i=1

w2
i

ηi
, s.t. η>κ = 1, Ω̄∗(κ) ≤ 1.

Thus, given a subquadratic norm, we may define a convex set H,
namely the intersection of the unit ball of Ω̄ with the positive orthant
Rp

+, such that Ω(w)2 = minη∈H
∑p

i=1
w2
i
ηi

, i.e., a subquadratic norm
is an H-norm. We now show that these two properties are in fact
equivalent.

Proposition 1.10. Ω is subquadratic if and only if it is an H-norm.

Proof. The previous lemma shows that subquadratic norms are
H-norms. Conversely, let ΩH be an H-norm. By construction, ΩH is
absolute, and as a result of Proposition 1.8, Ω̄∗H(w) =

(
Ω∗H(|w|1/2)

)2 =
maxη∈H

∑
iηi|wi|, which shows that Ω̄∗H is a convex function, as a

maximum of convex functions.

It should be noted that the set H leading to a given H-norm ΩH

is not unique; in particular H is not necessarily the intersection of the
unit ball of a norm with the positive orthant. Indeed, for the `1-norm,
we can take H to be the unit simplex.

Proposition 1.11. Given a convex compact set H, let ΩH be the
associated H-norm and Ω̄H as defined in Lemma 1.9. Define the mir-
ror image of H as the set Mirr(H) = {v ∈ Rp | |v| ∈ H} and denote
the convex hull of a set S by Conv(S). Then the unit ball of Ω̄H is
Conv(Mirr(H)).
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Proof. By construction:

Ω̄∗H(κ) = Ω∗H(|κ|1/2)2 = max
η∈H

η>|κ|

= max
|w|∈H

w>κ = max
w∈Conv(Mirr(H))

w>κ,

since the maximum of a convex function over a convex set is attained
at its extreme points. But C = Conv(Mirr(H)) is by construction a
centrally symmetric convex set, which is bounded and closed like H,
and whose interior contains 0 since H contains at least one point whose
components are strictly positive. This implies by Theorem 15.2 in [115]
that C is the unit ball of a norm (namely x 7→ inf{λ ∈ R+ | x ∈ λC}),
which by duality has to be the unit ball of Ω̄H .

This proposition combined with the result of Lemma 1.9 therefore
shows that if Conv(Mirr(H)) = Conv(Mirr(H ′)) then H and H ′ define
the same norm.

Several instances of the general variational form we considered in
this section have appeared in the literature [70, 109, 110]. For norms
that are not subquadratic, it is often the case that their dual norm
is itself subquadratic, in which case symmetric variational forms can
be obtained [2]. Finally, we show in Section 5 that all norms admit
a quadratic variational form provided the bilinear form considered is
allowed to be non-diagonal.

1.5 Multiple Kernel Learning

A seemingly unrelated problem in machine learning, the problem of
multiple kernel learning is in fact intimately connected with sparsity-
inducing norms by duality. It actually corresponds to the most natu-
ral extension of sparsity to reproducing kernel Hilbert spaces. We will
show that for a large class of norms and, among them, many sparsity-
inducing norms, there exists for each of them a corresponding multiple
kernel learning scheme, and, vice-versa, each multiple kernel learning
scheme defines a new norm.

The problem of kernel learning is a priori quite unrelated with par-
simony. It emerges as a consequence of a convexity property of the
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so-called “kernel trick”, which we now describe. Consider a learning
problem with f(w) = ψ(Xw). As seen before, this corresponds to lin-
ear predictions of the form Xw = (w>xi)i=1,...,n. Assume that this
learning problem is this time regularized by the square of the norm
Ω (as shown in Section 1.2, this does not change the regularization
properties), so the we have the following optimization problem:

min
w∈Rp

f(w) +
λ

2
Ω(w)2. (1.18)

As in Equation (1.12) we can introduce the linear constraint

min
u∈Rn,w∈Rp

ψ(u) +
λ

2
Ω(w)2, s.t. u =Xw, (1.19)

and reformulate the problem as the saddle point problem

min
u∈Rn,w∈Rp

max
α∈Rn

ψ(u) +
λ

2
Ω(w)2 − λα>(u −Xw). (1.20)

Since the primal problem (1.19) is a convex problem with feasible linear
constraints, it satisfies Slater’s qualification conditions and the order
of maximization and minimization can be exchanged:

max
α∈Rn

min
u∈Rn,w∈Rp

(ψ(u) − λα>u) + λ

(
1
2

Ω(w)2 + α>Xw

)
. (1.21)

Now, the minimization in u and w can be performed indepen-
dently. One property of norms is that the Fenchel conjugate of w 7→
1
2Ω(w)2 is κ 7→ 1

2Ω∗(κ)2; this can be easily verified by finding the
vector w achieving equality in the sequence of inequalities κ>w ≤
Ω(w)Ω∗(κ) ≤ 1

2

[
Ω(w)2 + Ω∗(κ)2

]
. As a consequence, the dual opti-

mization problem is

max
α∈Rn

−ψ∗(λα) − λ

2
Ω∗(X>α)2. (1.22)

If Ω is the Euclidean norm (i.e., the `2-norm) then the previous problem
is simply

G(K) := max
α∈Rn

−ψ∗(λα) − λ

2
α>Kα with K =XX>. (1.23)

Focussing on this last case, a few remarks are crucial:

(1) The dual problem depends on the design X only through the
kernel matrix K =XX> ∈ Rn×n.
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(2) G is a convex function of K (as a maximum of linear
functions).

(3) The solutions w? and α? to the primal and dual problems
satisfy w? =X>α? =

∑n
i=1α

?
ixi.

(4) The exact same duality result applies for the generalization
to w,xi ∈ H for H a Hilbert space.

The first remark suggests a way to solve learning problems that are
non-linear in the inputs xi: in particular consider a non-linear map-
ping φ which maps xi to a high-dimensional φ(xi) ∈ H with H = Rd

for d� p or possibly an infinite dimensional Hilbert space. Then
consider the problem (1.18) with now f(w) = ψ

(
(〈w,φ(xi)〉)i=1,...,n

)
,

which is typically of the form of an empirical risk f(w) =
1
n

∑n
i=1 `(y

(i),〈w,φ(xi)〉). It becomes high-dimensional to solve in the
primal, while it is simply solved in the dual by choosing a kernel
matrix with entries Ki,j = 〈φ(xi),φ(xj)〉, which is advantageous as
soon as n2 ≤ d; this is the so-called “kernel trick” (see more details
in [122, 126]).

In particular, if we consider functions h ∈ H where H is a reproduc-
ing kernel Hilbert space (RKHS) with reproducing kernel K then

min
h∈H

ψ
(
(h(xi))i=1,...,n

)
+
λ

2
‖h‖2H (1.24)

is solved by solving Equation (1.23) with Ki,j = K(xi,xj). When
applied to the mapping φ:x 7→K(x, ·), the third remark above
yields a specific version of the representer theorem of Kimmeldorf
and Wahba [74]12 stating that h?(·) =

∑n
i=1α

?
iK(xi, ·). In this case,

the predictions may be written equivalently as h(xi) or 〈w,φ(xi)〉,
i = 1, . . . ,n.

As shown in [77], the fact that G is a convex function of K suggests
the possibility of optimizing the objective with respect to the choice of
the kernel itself by solving a problem of the form minK∈KG(K) where
K is a convex set of kernel matrices.

In particular, given a finite set of kernel functions (Ki)1≤i≤p it is
natural to consider to find the best linear combination of kernels, which

12 Note that this provides a proof of the representer theorem for convex losses only and that
the parameters α are obtained through a dual maximization problem.
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requires to add a positive definiteness constraint on the kernel, leading
to a semi-definite program [77]:

min
η∈Rp

G

(
p∑
i=1

ηiKi

)
, s.t.

p∑
i=1

ηiKi � 0, tr

(
p∑
i=1

ηiKi

)
≤ 1.

(1.25)
Assuming that the kernels have equal trace, the two constraints of the
previous program are avoided by considering convex combinations of
kernels, which leads to a quadratically constrained quadratic program
(QCQP) [78]:

min
η∈Rp+

G

(
p∑
i=1

ηiKi

)
, s.t.

p∑
i=1

ηi = 1. (1.26)

We now present a reformulation of Equation (1.26) using sparsity-
inducing norms (see [7, 13, 110] for more details).

1.5.1 From `1/`2-Regularization to MKL

As we presented it above, MKL arises from optimizing the objective
of a learning problem w.r.t. to a convex combination of kernels, in the
context of plain `2- or Hilbert norm regularization, which seems a pri-
ori unrelated to sparsity. We will show in this section that, in fact, the
primal problem corresponding exactly to MKL (i.e., Equation 1.26) is
an `1/`2-regularized problem (with the `1/`2-norm defined in Equa-
tion (1.2)), in the sense that its dual is the MKL problem for the set
of kernels associated with each of the groups of variables. The proof to
establish the relation between the two relies on the variational formu-
lation presented in Section 1.4.2.

We indeed have, assuming that G is a partition of {1, . . . ,p}, with
|G| = m, and 4m denoting the simplex in Rm,

min
w∈Rp

ψ(Xw) +
λ

2

∑
g∈G
‖wg‖2

2

= min
w∈Rp,η∈4m

ψ(Xw) +
λ

2

∑
g∈G

‖wg‖22
ηg
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= min
w̃∈Rp,η∈4m

ψ

∑
g∈G

η1/2
g Xgw̃g

 +
λ

2

∑
g∈G
‖w̃g‖22

= min
w̃∈Rp,η∈4m

ψ(X̃w̃) +
λ

2
‖w̃‖22, s.t. X̃ = [η1/2

g1 Xg1 , . . . ,η
1/2
gmXgm ]

= min
η∈4m

max
α∈Rn

−ψ∗(λα) − λ

2
α>

∑
g∈G

ηgKg

α
= min
η∈4m

G

∑
g∈G

ηgKg

 ,
where the third line results from the change of variable w̃gη

1/2
g = wg,

and the last step from the definition of G in Equation (1.23).
Note that `1-regularization corresponds to the special case where

groups are singletons and whereKi = xix
>
i is a rank-one kernel matrix.

In other words, MKL with rank-one kernel matrices (i.e., feature spaces
of dimension one) is equivalent to `1-regularization (and thus simpler
algorithms can be brought to bear in this situation).

We have shown that learning convex combinations of kernels
through Equation (1.26) turns out to be equivalent to an `1/`2-norm
penalized problems. In other words, learning a linear combination∑m

i=1ηiKi of kernel matrices, subject to η belonging to the simplex4m

is equivalent to penalizing the empirical risk with an `1-norm applied
to norms of predictors ‖wg‖2. This link between the `1-norm and the
simplex may be extended to other norms, among others to the sub-
quadratic norms introduced in Section 1.4.2.

1.5.2 Structured Multiple Kernel Learning

In the relation established between `1/`2-regularization and MKL in
the previous section, the vector of weights η for the different kernels
corresponded to the vector of optimal variational parameters defining
the norm. A natural way to extend MKL is, instead of considering
a convex combination of kernels, to consider a linear combination of
the same kernels, but with positive weights satisfying a different set of
constraints than the simplex constraints. Given the relation between
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kernel weights and the variational form of a norm, we will be able to
show that, for norms that have a variational form as in Lemma 1.8, we
can generalize the correspondence between the `1/`2-norm and MKL
to a correspondence between other structured norms and structured
MKL schemes.

Using the same line of proof as in the previous section, and given
an H-norm (or equivalently a subquadratic norm) ΩH as defined in
Definition 1.2, we have:

min
w∈Rp

ψ(Xw) +
λ

2
ΩH(w)2

= min
w∈Rp,η∈H

ψ(Xw) +
λ

2

p∑
i=1

w2
i

ηi

= min
w̃∈Rp,η∈H

ψ

(
p∑
i=1

η
1/2
i Xiw̃i

)
+
λ

2

p∑
i=1

w̃2
i

= min
w̃∈Rp,η∈H

ψ(X̃w̃) +
λ

2
‖w̃‖22, s.t. X̃ = [η1/2

1 X1, . . . ,η
1/2
p Xp]

= min
η∈H

max
α∈Rn

−ψ∗(λα) − λ

2
α>

(
p∑
i=1

ηiKi

)
α

= min
η∈H

G

(
p∑
i=1

ηiKi

)
. (1.27)

This results shows that the regularization with the norm ΩH in the
primal is equivalent to a multiple kernel learning formulation in which
the kernel weights are constrained to belong to the convex set H, which
defines ΩH variationally. Note that we have assumed that H ⊂ Rp

+,
so that formulations such as (1.25), where positive semidefiniteness of∑p

i=1ηiKi has to be added as a constraint, are not included.
Given the relationship of MKL to the problem of learning a func-

tion in a reproducing kernel Hilbert space, the previous result suggests
a natural extension of structured sparsity to the RKHS settings. Indeed
let, h = (h1, . . . ,hp) ∈ B :=H1 × ·· · × Hp, where Hi are RKHSs. It is
easy to verify that Λ:h 7→ ΩH

(
(‖h1‖H1 , . . . ,‖hp‖Hp)) is a convex func-

tion, using the variational formulation of ΩH , and since it is also
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non-negative definite and homogeneous, it is a norm.13 Moreover, the
learning problem obtained by summing the predictions from the differ-
ent RKHSs, i.e.,

min
h∈B

ψ((h1(xi) + · · · + hp(xi))i=1,...,n) +
λ

2
ΩH((‖h1‖H1 , . . . ,‖hp‖Hp))2

(1.28)
is equivalent, by the above derivation, to the MKL problem
minη∈HG(

∑p
i=1ηiKi) with [Ki]j,j′ = Ki(xj ,xj′) for Ki the reproduc-

ing kernel of Hi. See Section 3.4 for more details.
This means that, for most of the structured sparsity-inducing norms

that we have considered in Section 1.3, we may replace individual vari-
ables by whole Hilbert spaces. For example, tree-structured sparsity
(and its extension to directed acyclic graphs) was explored in [9] where
each node of the graph was an RKHS, with an application to nonlinear
variable selection.

13 As we show in Section 3.4, it is actually sufficient to assume that Ω is monotonic for Λ

to be a norm.
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[80] A. Lefèvre, F. Bach, and C. Févotte, “Itakura-Saito nonnegative matrix fac-
torization with group sparsity,” in Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2011.

[81] P. L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear
operators,” SIAM Journal on Numerical Analysis, vol. 16, no. 6, pp. 964–979,
1979.

Full text available at: http://dx.doi.org/10.1561/2200000015



108 References

[82] H. Liu, M. Palatucci, and J. Zhang, “Blockwise coordinate descent procedures
for the multi-task lasso, with applications to neural semantic basis discovery,”
in Proceedings of the International Conference on Machine Learning (ICML),
2009.

[83] K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer, “Taking advantage
of sparsity in multi-task learning,” Preprint arXiv:0903.1468, 2009.

[84] N. Maculan and G. Galdino de Paula, “A linear-time median-finding algorithm
for projecting a vector on the simplex of Rn,” Operations Research Letters,
vol. 8, no. 4, pp. 219–222, 1989.

[85] J. Mairal, “Sparse coding for machine learning, image processing and com-
puter vision,” PhD thesis, Ecole Normale Supérieure de Cachan, http://tel.
archives-ouvertes.fr/tel-00595312, 2010.

[86] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix fac-
torization and sparse coding,” Journal of Machine Learning Research, vol. 11,
pp. 19–60, 2010.

[87] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, “Network flow algorithms
for structured sparsity,” in Advances in Neural Information Processing Sys-
tems (NIPS), 2010.

[88] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, “Convex and network flow
optimization for structured sparsity,” Journal of Machine Learning Research,
vol. 12, pp. 2681–2720, 2011.

[89] S. Mallat and Z. Zhang, “Matching pursuit in a time-frequency dictionary,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[90] H. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, no. 1,
pp. 77–91, 1952.

[91] B. Martinet, “Régularisation d’inéquations variationnelles par approximations
successives,” Revue franaise d’informatique et de recherche opérationnelle,
série rouge, 1970.

[92] A. F. T. Martins, N. A. Smith, P. M. Q. Aguiar, and M. A. T. Figueiredo,
“Structured sparsity in structured prediction,” in Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), 2011.

[93] C. A. Micchelli, J. M. Morales, and M. Pontil, “Regularizers for structured
sparsity,” Preprint arXiv:1010.0556v2, 2011.

[94] J. J. Moreau, “Fonctions convexes duales et points proximaux dans un espace
hilbertien,” Comptes-Rendus de l’Académie des Sciences de Paris, Série A,
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