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Abstract

Randomized algorithms for very large matrix problems have received a
great deal of attention in recent years. Much of this work was motivated
by problems in large-scale data analysis, largely since matrices are pop-
ular structures with which to model data drawn from a wide range of
application domains, and this work was performed by individuals from
many different research communities. While the most obvious bene-
fit of randomization is that it can lead to faster algorithms, either in
worst-case asymptotic theory and/or numerical implementation, there
are numerous other benefits that are at least as important. For exam-
ple, the use of randomization can lead to simpler algorithms that are
easier to analyze or reason about when applied in counterintuitive set-
tings; it can lead to algorithms with more interpretable output, which is
of interest in applications where analyst time rather than just compu-
tational time is of interest; it can lead implicitly to regularization and
more robust output; and randomized algorithms can often be organized
to exploit modern computational architectures better than classical
numerical methods.
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This monograph will provide a detailed overview of recent work on
the theory of randomized matrix algorithms as well as the application
of those ideas to the solution of practical problems in large-scale data
analysis. Throughout this review, an emphasis will be placed on a few
simple core ideas that underlie not only recent theoretical advances
but also the usefulness of these tools in large-scale data applications.
Crucial in this context is the connection with the concept of statisti-
cal leverage. This concept has long been used in statistical regression
diagnostics to identify outliers; and it has recently proved crucial in
the development of improved worst-case matrix algorithms that are
also amenable to high-quality numerical implementation and that are
useful to domain scientists. This connection arises naturally when one
explicitly decouples the effect of randomization in these matrix algo-
rithms from the underlying linear algebraic structure. This decoupling
also permits much finer control in the application of randomization, as
well as the easier exploitation of domain knowledge.

Most of the review will focus on random sampling algorithms and
random projection algorithms for versions of the linear least-squares
problem and the low-rank matrix approximation problem. These two
problems are fundamental in theory and ubiquitous in practice. Ran-
domized methods solve these problems by constructing and operating
on a randomized sketch of the input matrix A — for random sampling
methods, the sketch consists of a small number of carefully-sampled
and rescaled columns/rows of A, while for random projection meth-
ods, the sketch consists of a small number of linear combinations of
the columns/rows of A. Depending on the specifics of the situation,
when compared with the best previously-existing deterministic algo-
rithms, the resulting randomized algorithms have worst-case running
time that is asymptotically faster; their numerical implementations are
faster in terms of clock-time; or they can be implemented in parallel
computing environments where existing numerical algorithms fail to
run at all. Numerous examples illustrating these observations will be
described in detail.
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1

Introduction

This monograph will provide a detailed overview of recent work on the
theory of randomized matrix algorithms as well as the application of
those ideas to the solution of practical problems in large-scale data
analysis. By “randomized matrix algorithms,” we refer to a class of
recently-developed random sampling and random projection algorithms
for ubiquitous linear algebra problems such as least-squares regression
and low-rank matrix approximation. These and related problems are
ubiquitous since matrices are fundamental mathematical structures for
representing data drawn from a wide range of application domains.
Moreover, the widespread interest in randomized algorithms for these
problems arose due to the need for principled algorithms to deal with
the increasing size and complexity of data that are being generated in
many of these application areas.

Not surprisingly, algorithmic procedures for working with matrix-
based data have been developed from a range of diverse perspectives
by researchers from a wide range of areas — including, e.g., researchers
from theoretical computer science (TCS), numerical linear algebra
(NLA), statistics, applied mathematics, data analysis, and machine

1
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2 Introduction

learning, as well as domain scientists in physical and biological sci-
ences — and in many of these cases they have drawn strength from their
domain-specific insight. Although this has been great for the develop-
ment of the area, and for the “technology transfer” of theoretical ideas
to practical applications, the technical aspects of dealing with any one
of those areas has obscured for many the simplicity and generality of
some of the underlying ideas; thus leading researchers to fail to appre-
ciate the underlying connections and the significance of contributions
by researchers outside their own area. Thus, rather than focusing on
the technical details of proving worst-case bounds or of providing high-
quality numerical implementations or of relating to traditional machine
learning tools or of using these algorithms in a particular physical or
biological domain, in this review we will focus on highlighting for a
broad audience the simplicity and generality of some core ideas — ideas
that are often obscured but that are fruitful for using these random-
ized algorithms in large-scale data applications. To do so, we will focus
on two fundamental and ubiquitous matrix problems — least-squares
approximation and low-rank matrix approximation — that have been
at the center of these recent developments.

The work we will review here had its origins within TCS. In
this area, one typically considers a particular well-defined problem,
and the goal is to prove bounds on the running time and quality-of-
approximation guarantees for algorithms for that particular problem
that hold for “worst-case” input. That is, the bounds should hold for
any input matrix, independent of any “niceness” assumptions such as,
e.g., that the elements of the matrix satisfy some smoothness or nor-
malization condition or that the spectrum of the matrix satisfies some
decay condition. Clearly, the generality of this approach means that
the bounds will be suboptimal — and thus can be improved — in any
particular application where stronger assumptions can be made about
the input. Importantly, though, it also means that the underlying algo-
rithms and techniques will be broadly applicable even in situations
where such assumptions do not apply.

An important feature in the use of randomized algorithms in TCS
more generally is that one must identify and then algorithmically deal
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3

with relevant “non-uniformity structure” in the data.1 For the random-
ized matrix algorithms to be reviewed here and that have proven useful
recently in NLA and large-scale data analysis applications, the relevant
non-uniformity structure is defined by the so-called statistical leverage
scores. Defined more precisely below, these leverage scores are basically
the diagonal elements of the projection matrix onto the dominant part
of the spectrum of the input matrix. As such, they have a long history
in statistical data analysis, where they have been used for outlier detec-
tion in regression diagnostics. More generally, and very importantly for
practical large-scale data applications of recently-developed random-
ized matrix algorithms, these scores often have a very natural inter-
pretation in terms of the data and processes generating the data. For
example, they can be interpreted in terms of the leverage or influence
that a given data point has on, say, the best low-rank matrix approx-
imation; and this often has an interpretation in terms of high-degree
nodes in data graphs, very small clusters in noisy data, coherence of
information, articulation points between clusters, etc.

Historically, although the first generation of randomized matrix
algorithms (to be described in Section 3) achieved what is known as
additive-error bounds and were extremely fast, requiring just a few
passes over the data from external storage, these algorithms did not
gain a foothold in NLA and only heuristic variants of them were used
in machine learning and data analysis applications. In order to “bridge
the gap” between NLA, TCS, and data applications, much finer con-
trol over the random sampling process was needed. Thus, in the second
generation of randomized matrix algorithms (to be described in Sec-
tions 4 and 5) that has led to high-quality numerical implementations

1 For example, for those readers familiar with Markov chain-based Monte Carlo algorithms
as used in statistical physics, this non-uniformity structure is given by the Boltzmann

distribution, in which case the algorithmic question is how to sample efficiently with respect

to it as an importance sampling distribution without computing the intractable partition
function. Of course, if the data are sufficiently nice (or if they have been sufficiently

preprocessed, or if sufficiently strong assumptions are made about them, etc.), then that
non-uniformity structure might be uniform, in which case simple methods like uniform
sampling might be appropriate — but this is far from true in general, either in worst-case

theory or in practical applications.
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4 Introduction

and useful machine learning and data analysis applications, two key
developments were crucial.

• Decoupling the randomization from the linear
algebra. This was originally implicit within the analysis
of the second generation of randomized matrix algorithms,
and then it was made explicit. By making this decoupling
explicit, not only were improved quality-of-approximation
bounds achieved, but also much finer control was achieved in
the application of randomization. For example, it permitted
easier exploitation of domain expertise, in both numerical
analysis and data analysis applications.
• Importance of statistical leverage scores. Although

these scores have been used historically for outlier detection
in statistical regression diagnostics, they have also been cru-
cial in the recent development of randomized matrix algo-
rithms. Roughly, the best random sampling algorithms use
these scores to construct an importance sampling distribu-
tion to sample with respect to; and the best random pro-
jection algorithms rotate to a basis where these scores are
approximately uniform and thus in which uniform sampling
is appropriate.

As will become clear, these two developments are very related. For
example, once the randomization was decoupled from the linear
algebra, it became nearly obvious that the “right” importance sam-
pling probabilities to use in random sampling algorithms are those given
by the statistical leverage scores, and it became clear how to improve
the analysis and numerical implementation of random projection algo-
rithms. It is remarkable, though, that statistical leverage scores define
the non-uniformity structure that is relevant not only to obtain the
strongest worst-case bounds, but also to lead to high-quality numerical
implementations (by numerical analysts) as well as algorithms that are
useful in downstream scientific applications (by machine learners and
data analysts).

Most of this review will focus on random sampling algorithms and
random projection algorithms for versions of the linear least-squares

Full text available at: http://dx.doi.org/10.1561/2200000035
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problem and the low-rank matrix approximation problem. Here is a
brief summary of some of the highlights of what follows.

• Least-squares approximation. Given an m × n matrix
A, with m� n, and an m-dimensional vector b, the over-
constrained least-squares approximation problem looks for
the vector xopt = argminx||Ax − b||2. This problem typically
arises in statistical models where the rows of A and ele-
ments of b correspond to constraints and the columns of A
and elements of x correspond to variables. Classical meth-
ods, including the Cholesky decomposition, versions of the
QR decomposition, and the Singular Value Decomposition,
compute a solution in O(mn2) time. Randomized methods
solve this problem by constructing a randomized sketch of
the matrix A — for random sampling methods, the sketch
consists of a small number of carefully-sampled and rescaled
rows of A (and the corresponding elements of b), while for
random projection methods, the sketch consists of a small
number of linear combinations of the rows of A and elements
of b. If one then solves the (still overconstrained) subproblem
induced on the sketch, then very fine relative-error approxi-
mations to the solution of the original problem are obtained.
In addition, for a wide range of values ofm and n, the running
time is o(mn2) — for random sampling algorithms, the com-
putational bottleneck is computing appropriate importance
sampling probabilities, while for random projection algo-
rithms, the computational bottleneck is implementing the
random projection operation. Alternatively, if one uses the
sketch to compute a preconditioner for the original problem,
then very high-precision approximations can be obtained by
then calling classical numerical iterative algorithms. Depend-
ing on the specifics of the situation, these numerical imple-
mentations run in o(mn2) time; they are faster in terms
of clock-time than the best previously-existing determinis-
tic numerical implementations; or they can be implemented
in parallel computing environments where existing numerical
algorithms fail to run at all.
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6 Introduction

• Low-rank matrix approximation. Given an m × n
matrix A and a rank parameter k, the low-rank matrix
approximation problem is to find a good approximation to A
of rank k� min{m,n}. The Singular Value Decomposition
provides the best rank-k approximation to A, in the sense
that by projecting A onto its top k left or right singular
vectors, then one obtains the best approximation to A with
respect to the spectral and Frobenius norms. The running
time for classical low-rank matrix approximation algorithms
depends strongly on the specifics of the situation — for
dense matrices, the running time is typically O(mnk); while
for sparse matrices, classical Krylov subspace methods are
used. As with the least-squares problem, randomized meth-
ods for the low-rank matrix approximation problem con-
struct a randomized sketch — consisting of a small number
of either actual columns or linear combinations of columns —
of the input A, and then this sketch is manipulated depend-
ing on the specifics of the situation. For example, random
sampling methods can use the sketch directly to construct
relative-error low-rank approximations such as CUR decom-
positions that approximate A based on a small number of
actual columns of the input matrix. Alternatively, random
projection methods can improve the running time for dense
problems to O(mn logk); and while they only match the run-
ning time for classical methods on sparse matrices, they lead
to more robust algorithms that can be reorganized to exploit
parallel computing architectures.

These two problems are the main focus of this review since they are
both fundamental in theory and ubiquitous in practice and since in
both cases novel theoretical ideas have already yielded practical results.
Although not the main focus of this review, other related matrix-based
problems to which randomized methods have been applied will be ref-
erenced at appropriate points.

Clearly, when a very new paradigm is compared with very well-
established methods, a näıve implementation of the new ideas will
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perform poorly by traditional metrics. Thus, in both data analysis
and numerical analysis applications of this randomized matrix algo-
rithm paradigm, the best results have been achieved when coupling
closely with more traditional methods. For example, in data analysis
applications, this has meant working closely with geneticists and other
domain experts to understand how the non-uniformity structure in the
data is useful for their downstream applications. Similarly, in scien-
tific computation applications, this has meant coupling with traditional
numerical methods for improving quantities like condition numbers and
convergence rates. When coupling in this manner, however, qualita-
tively improved results have already been achieved. For example, in
their empirical evaluation of the random projection algorithm for the
least-squares approximation problem, to be described in Sections 4.4
and 4.5 below, Avron, Maymounkov, and Toledo [9] began by observing
that “Randomization is arguably the most exciting and innovative idea
to have hit linear algebra in a long time;” and since their implemen-
tation “beats Lapack’s2 direct dense least-squares solver by a large
margin on essentially any dense tall matrix,” they concluded that their
empirical results “show the potential of random sampling algorithms
and suggest that random projection algorithms should be incorporated
into future versions of Lapack.”

The remainder of this review will cover these topics in greater
detail. To do so, we will start in Section 2 with a few motivating
applications from one scientific domain where these randomized matrix
algorithms have already found application, and we will describe in
Section 3 general background on randomized matrix algorithms, includ-
ing precursors to those that are the main subject of this review. Then,
in the next two sections, we will describe randomized matrix algo-
rithms for two fundamental matrix problems: Section 4 will be devoted
to describing several related algorithms for the least-squares approx-
imation problem; and Section 5 will be devoted to describing several
related algorithms for the problem of low-rank matrix approximation.
Then, Section 6 will describe in more detail some of these issues from

2Lapack (short for Linear Algebra PACKage) is a high-quality and widely-used software
library of numerical routines for solving a wide range of numerical linear algebra problems.
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8 Introduction

an empirical perspective, with an emphasis on the ways that statisti-
cal leverage scores have been used more generally in large-scale data
analysis; Section 7 will provide some more general thought on this suc-
cessful technology transfer experience; and Section 8 will provide a brief
conclusion.
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