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Abstract

Monte Carlo methods, in particular those based on Markov chains and
on interacting particle systems, are by now tools that are routinely
used in machine learning. These methods have had a profound impact
on statistical inference in a wide range of application areas where
probabilistic models are used. Moreover, there are many algorithms
in machine learning which are based on the idea of processing the data
sequentially, first in the forward direction and then in the backward
direction. In this tutorial, we will review a branch of Monte Carlo
methods based on the forward—backward idea, referred to as backward
simulators. These methods are useful for learning and inference in prob-
abilistic models containing latent stochastic processes. The theory and
practice of backward simulation algorithms have undergone a signifi-
cant development in recent years and the algorithms keep finding new
applications. The foundation for these methods is sequential Monte
Carlo (SMC). SMC-based backward simulators are capable of address-
ing smoothing problems in sequential latent variable models, such as
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general, nonlinear /non-Gaussian state-space models (SSMs). However,
we will also clearly show that the underlying backward simulation idea
is by no means restricted to SSMs. Furthermore, backward simulation
plays an important role in recent developments of Markov chain Monte
Carlo (MCMC) methods. Particle MCMC is a systematic way of using
SMC within MCMC. In this framework, backward simulation gives us
a way to significantly improve the performance of the samplers. We
review and discuss several related backward-simulation-based methods
for state inference as well as learning of static parameters, both using
a frequentistic and a Bayesian approach.
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1

Introduction

A basic strategy to address many inferential problems in machine
learning is to process data sequentially, first in the forward direc-
tion and then in the backward direction. Examples of this approach
are the well-known forward-backward algorithm for hidden Markov
models (HMMs) and the Rauch-Tung-Striebel smoother [I19] for lin-
ear Gaussian state-space models. Moreover, two decades of research on
sequential Monte Carlo and Markov chain Monte Carlo have enabled
inference in increasingly more challenging models. Many developments
have been made in order to make use of the forward—backward idea
together with these Monte Carlo methods, providing inferential tech-
niques collectively referred to as backward simulation. This tutorial
provides a unifying view of these methods. In this introductory section
we review some relevant background materials and also derive a first
backward simulator for the special case of linear Gaussian state-space
models.

1.1 Background and Motivation

For over half a century, Monte Carlo methods have been recog-
nized as potent tools for statistical inference in complex probabilistic

1
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models; see [I03] for an early discussion. A continuous development
and refinement of these methods have enabled inference in increasingly
more challenging models. A key milestone in this development was the
introduction of Markov chain Monte Carlo (MCMC) methods through
the inventions of the Metropolis—Hastings algorithm [71l [102] and the
Gibbs sampler [58]. Parallel to this, sequential importance sampling
[70] and sampling/importance resampling [122] laid the foundation of
sequential Monte Carlo (SMC). In its modern form, SMC was first
introduced in [64, 129]. During the 1990s, several independent develop-
ments were made by, among others, [77, [83]. Recently, SMC and MCMC
have been combined in a systematic manner through the developments
of pseudo-marginal methods [6], [11] and particle MCMC [3].

Backward simulation is a strategy which is useful as a Monte Carlo
method for learning of probabilistic models containing latent stochastic
processes. In particular, we will consider inference in dynamical sys-
tems, i.e., systems that evolve over time. Dynamical systems play a
central role in a wide range of scientific fields, such as signal pro-
cessing, automatic control, epidemiology and econometrics, to mention
a few.

One of the most widely used models of a dynamical system is the
state-space model (SSM), reviewed in more detail in Sections
The structure of an SSM can be seen as influenced by the notion of
a physical system. At each time t, the system is assumed to be in a
certain state x;. The state contains all relevant information about the
system, i.e., if we would know the state of the system we would have
full insight into its internal condition. However, the state is typically
not known. Instead, we measure some quantity y; which depend on the
state in some way. Given a sequence of observations yi.7 2 (y1, ..., y7),
we seek to draw inference about the latent state process xi.p (state
inference), as well as about unknown static parameters of the model
(parameter inference).

The class of SSMs will play a central role in this tutorial. Indeed,
many of the inferential methods that we will review have been
developed explicitly for SSMs. However, as will become apparent in
Sections [4] and [5, most of the methods are more general and can be
used for learning interesting models outside the class of SSMs.
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Backward simulation is based on the forward—backward idea. That
is, the data is processed first in the forward direction and then in the
backward direction. In the backward pass, the state process is simu-
lated backward in time, i.e., by first simulating x7, then x7_1 etc., until
a complete state trajectory xi.7 is generated. This procedure gives us
a tool to address the state smoothing problem in models for which no
closed form solution is available. This is done by simulating multiple
backward trajectories from the smoothing distribution, i.e., condition-
ally on the observations y;.7, which can then be used for Monte Carlo
integration. State smoothing is of key relevance, e.g., to obtain refined
state estimates in offline settings. Furthermore, it lies at the core of
many parameter inference methods (see Section and it can be used
to address problems in optimal control (see Section .

Backward simulation is also useful in MCMC, as a way of grouping
variables to improve the mixing of the sampler. A common way to con-
struct an MCMC sampler for an SSM is to sample the state variables z,
for different ¢, one at a time (referred to as single-state sampling). How-
ever, since the states are often strongly dependent across time, this can
lead to poor performance. Backward simulation provides a mean of
grouping the state variables and sampling the entire trajectory xq.p
as one entity. As we will illustrate in Section this can lead to a
considerable improvement upon the single-state sampler.

In Section [I.7 we will derive a first backward simulator for the
class of linear Gaussian state-space (LGSS) models. Apart from LGSS
models, exact backward simulation is tractable, basically only for finite
state-space HMMs (see also Section. The main focus in this tuto-
rial will be on models outside these restricted classes, for which exact
backward simulation is not possible. Instead, we will make use of SMC
(and MCMC) to enable backward simulation in challenging probabilis-
tic models, such as nonlinear /non-Gaussian SSMs, as well as more gen-
eral non-Markovian latent variable models.

1.2 Notation and Definitions

For any sequence {zj}reny and integers m <n we write Tn, 2

(Tm, ..., Tn). Welet A be the minimum operator, i.e., a A b 2 min(a,b).
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For a matrix A, the matrix transpose is written as AT. For two prob-
ability distributions p; and pg, the total variation distance is given
by |1 — pallTv 2 supy |u1(A) — u2(A)|. A Dirac point-mass located
at some point =’ is denoted as 6,/ (dz). We write X ~ p to mean that
the random variable X is either distributed according to u, or sam-
pled from p. The uniform probability distribution on the interval [a, b]
is written as U([a,b]). Cat({p;}I-,), with > " | p; =1, is the categor-
ical (i.e., discrete) probability distribution on the set {1,...,n}, with
probabilities {p;}_,. Finally, N'(m,%) and N (z;m,X) are the Gaus-
sian (i.e., normal) probability distribution and density function, respec-
tively, with mean vector m, covariance matrix ¥ and argument .

1.3 A Preview Example

Before we continue with this section on background theory, we con-
sider an example to illustrate the potential benefit of using backward
simulation. A simple stochastic volatility SSM is given by,

Tyl = axy + vy, vy ~ N(0,q), (1.1a)
yr = erexp (324), er ~N(0,1), (1.1b)

where the state process {z;};>1 is latent and observations are made
only via the measurement process {y;}+>1. Similar models have been
used to generalize the Black—Scholes option pricing equation to allow
for the variance to change over time [27, [I01]. The same model was used
by [30] to illustrate the poor mixing of a single-state Gibbs sampler; an
example which is replicated here.

For simplicity, we assume that the parameters a = 0.99 and ¢ = 0.01
are known. We seek the density p(x1.7 | y1.7), i.e., the conditional den-
sity of the state process x1.7 given a sequence of observations yi.r
for some fixed final time point 7. This conditional density is referred
to as the joint smoothing density (JSD). For the model under study,
the JSD is not available in closed form due to the nonlinear measure-
ment Equation . To remedy this, we construct an MCMC method
to approximately sample from it. MCMC will be reviewed in more
detail in Section However, the basic idea is to simulate a Markov
chain which is constructed in such a way that it admits the target
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distribution as limiting distribution. The sample path from the Markov
chain can then be used to draw inference about the target density
p(zir | yi1)

As an initial attempt, we try a single-state Gibbs sampler. That is,
we sample each state x; conditionally on {x1.4—1,2¢11.7} (and the obser-
vations y1.7). At each iteration of the Gibbs sampler we thus simulate
according to,

@)~ p(x1 | 22, y1:7);

/ /
Ty~ p(mt | $1;t_1axt+1:TaylzT)§

x,T ~ p(or | 95/1:T71,y1::r)-

This procedure will leave p(z1.7 | y1.7) invariant (see Section for
more on Gibbs sampling) and it results in a valid MCMC sampler.
The conditional densities p(z¢ | 1.t—1,%Z¢+1.7,y1:7) are not available in
closed form. However, for this model (Equation ), they are log-
concave and we can employ the efficient rejection sampling strategy by
[145] to sample exactly from these distributions.

The single-state Gibbs sampler will indeed converge to samples from
p(x1.7 | y1.7). However, it is well recognized that single-state samplers
can suffer from poor mixing, due to the often strong dependencies
between consecutive state variables. That is, the convergence can be
slow in the sense that we need to iterate the above sampling scheme a
large number of times to get reliable samples.

To analyze this, we generate T =100 samples from the model
(Equation (L.1)) and run the Gibbs sampler for 100000 iterations (in
each iteration, we loop over all the state variables for t =1, ..., T'). The
first 10000 iterations are discarded, to avoid transient effects. We then
compute the empirical autocorrelation function (ACF) of the state x5,
which is given in Figure As can be seen, the ACF decreases very
slowly, indicating a poorly mixing Gibbs kernel. This simply reflects
the fact that, when the state variables are highly correlated, the single-
state sampler will be inefficient at exploring the state-space. This is a
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10000 15000 20000 10000 15000 20000
Iteration number Iteration number

1 T T T T T T T
| Single-state Gibbs
0.8 - - -PG-BS -
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0 20 40 60 80 100 120 140 160 180 200
Lag

Fig. 1.1 (Top left) Part of sample path for the single-state Gibbs sampler; (Top right)
Part of sample path for PGBS; (Bottom) Empirical ACF for x50 for the single-state Gibbs
sampler and for PGBS using N = 15 particles.

common and well-recognized problem when addressing the state infer-
ence problem for SSMs.

One way to remedy this is to group the variables and sample a full
state trajectory xi.r jointly. This is what a backward simulator aims
to accomplish. Grouping variables in a Gibbs sampler will in general
improve upon the mixing of the single-state sampler [97, Section 6.7],
and in practice the improvement can be quite considerable.

To illustrate this, we have included the ACF for a backward-
simulation-based method in Figure Since the model (Equa-
tion (L.1)) is nonlinear, exact backward simulation is not possible.
Instead, the results reported here are from a backward simulator based
on SMC, using (only) N =15 particles. The specific method that
we have used is denoted as particle Gibbs with backward simulation
(PGBS), and it will be discussed in detail in Section[5.4] For the PGBS,
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the ACF drops off much more rapidly, indicating a more efficient sam-
pler. Furthermore, a key property of PGBS is that, despite the fact
that it relies on a crude SMC approximation, it does not alter the sta-
tionary distribution of the Gibbs sampler, nor does it introduce any
additional bias. That is, PGBS will, just as the single-state Gibbs sam-
pler, target the exact JSD p(x1.7 | y1.7). This property is known as
exact approximation, a concept that we will return to in Section

1.4 State-Space Models

State-space models (SSMs) are commonly used to model time series and
dynamical systems. Additionally, many models that are not sequential
“by nature” can also be written on state-space form. It is a compre-
hensive and important class of models, and it serves as a good starting
point for introducing the concepts that will be discussed throughout
this tutorial.

We consider here discrete-time SSMs on a general state-space X.
The system state is a Markov process {x:}+>1 on X, evolving according
to a Markov transition kernel F'(dxy4+ | ;) and with initial distribution
v(dzy). The state x; is assumed to summarize all relevant information
about the system at time t. However, the state process is latent and it is
observed only implicitly through the observations {y: }+>1, taking values
in some set Y. Given z;, the measurement y; is conditionally indepen-
dent of past and future states and observations, and it is distributed
according to a kernel G(dy; | z;). A graphical model, illustrating the
conditional dependencies in an SSM, is given in Figure

Fig. 1.2 Graphical model of an SSM. The white nodes represent latent variables and the
gray nodes represent observed variables.
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We shall assume that the observation kernel G admits a probability
density g w.r.t. some dominating measure, which we simply denote dy.
Such models are referred to as partially dominated. If, in addition,
the transition kernel F' admits a density f and the initial distribution
v admits a density p, both w.r.t. some dominating measure dz, the
model is called fully dominated. In summary, a fully dominated SSM
can be expressed as,

Ty ~ f(@en | we), (1.2a)

Y ~ g(ye | 1), (1.2b)

and 1 ~ p(z1). Two examples of SSMs follow below.

Example 1.1 (Finite state-space hidden Markov model). A
finite state-space HMM, or simply HMM, is an SSM with X =
{1,..., K} for some finite K. The transition density (w.r.t. counting
measure) can be summarized in a K x K transition matrix II, where
the (4,7)th entry is given by,

Uij=Pxy1 =3z =1)= f(j|1)

Hence, f(j|i) denotes the probability of moving from state i at time
t, to state 5 at time ¢ + 1.

Example 1.2 (Additive noise model). In engineering applications,
SSMs are often expressed on functional form with additive noise,

Typ1 = a(xt) + vy,

yr = c(xt) + ey,

for some functions a and c. Here, the noises vy and e; are commonly
referred to as process noise and measurement noise, respectively. If the
noise distributions admit densities w.r.t. dominating measures, then
the model is fully dominated. The transition density is then given
by f(xi41 | ©) = py, (2441 — a(zy)) and similarly for the observation
density.
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Throughout this tutorial, we will mostly be concerned with fully
dominated SSMs and therefore do most of our derivations in terms of
probability densities. There are, however, several examples of interest-
ing models that are degenerate, i.e., that are not fully dominated. We
will return to this in the sequel and discuss how it affects the methods
presented in here.

1.5 Parameter Learning in SSMs

The basic inference problem for SSMs is typically that of state
inference, i.e., to infer the latent states given measurements from the
system. In fact, even when the actual task is to learn a model of the
system dynamics, state inference tends to play a crucial role as an inter-
mediate step of the learning algorithm. To illustrate this, assume that
the SSM (Equation ({1.2))) is parameterized by some unknown parame-
ter 6 € ©,

Tip1 ~ fo(Tegr | 2¢), (1.3a)

Ye ~ 9oyt | 71), (1.3b)

and 21 ~ pg(z1). Given a batch of measurements y1.7, we wish to draw
inference about 6. In the Bayesian setting, a prior distribution 7(0) is
assigned to the parameter and the learning problem amounts to com-
puting the posterior distribution p(6 | y1.7).

A complicating factor is that the likelihood p(yi.r | 6) in general
cannot be computed in closed form. To address this difficulty, it is
common to make use of data augmentation [130,[132]. That is, we target
the joint state and parameter posterior p(6,z1.7 | y1.7), rather than
the marginal posterior p(6 | y1.7). The latent states are thus viewed
as auxiliary variables. This opens up for using Gibbs sampling (see
Section [2.2)), for instance by initializing 6[0] € © and iterating;

(i) Draw x1.p[r] ~ p(x1.7 | 0]r — 1),y1.7);
(ii) Draw O[r] ~ p(0 | z1.7[r],y1.7).

Under weak assumptions, this procedure will generate a Markov chain
{0[r],x1.7[r]}r>1 with stationary distribution p(0,z1.7 | y1.7). Conse-
quently, the stationary distribution of the subchain {6[r|},>1 will be the
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marginal parameter posterior distribution p(# | y1.7). Note that Step (i)
of the above sampling scheme requires the computation of the JSD, for
a fixed value of the parameter 6. That is, we need to address an inter-
mediate smoothing problem in order to implement this Gibbs sampler.

Data augmentation is commonly used also in the frequentistic
setting. Assume that we, instead of the posterior distribution, seek
the maximum likelihood estimator (MLE),

Onir, = argmax logpg(y1.7), (1.4)
0cO

where pg(y1.7) is the likelihood of the observed data for a given value
of the system parameter 6. Again, since the log-likelihood logpg(y1.7)
is not available in closed form, direct maximization in Equation is
problematic. Instead, we can make use of the expectation maximization
(EM) algorithm [33] (see also [100]). The EM algorithm is an iterative
method, which maximizes py(y;.7) by iteratively maximizing an auxil-
iary quantity,

Q0,0') = /logpe(aflzT,yLT)Pe'(ﬂm:T | y1.7) dx1.7. (1.5)

The EM algorithm is useful when maximization of 6 — Q(6,6’), for
fixed 0, is simpler than direct maximization of the log-likelihood,
0 — logpg(y1.7). The procedure is initialized at some 0[0] € © and then
iterates between two steps, expectation (E) and maximization (M);

(E) Compute Q(0,0[r — 1]);
(M) Compute 0[r] = argmaxgeg Q(6,0[r — 1]).

The resulting sequence {0[r]},>0 will, under weak assumptions, con-
verge to a stationary point of the likelihood py(y1.7) [148)].

Using the conditional independence properties of an SSM, we can
write the complete data log-likelihood as

IOgPQ(ml:Tayl:T)
T T—1

—logpg(z1) + Y _logga(y: | ) + > _log fo(zera [ @), (1.6)
=1 =1
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From Equation , we note that the auxiliary quantity is defined as
the expectation of expression under the JSD. Hence, to carry out
the E-step of the EM algorithm, we again need to address an interme-
diate smoothing problem for fixed values of the system parameters.

1.6 Smoothing Recursions

As noted above, the JSD is a quantity of central interest for learning and
inference problems in SSMs. It summarizes all the information about
the latent states which is available in the observations. Many densities
that arise in various state inference problems are given as marginals
of the JSD. There are a few that are of particular interest, which we
summarize in Table To avoid a cluttered notation, we now drop the
(possible) dependence on an unknown parameter 6 from the notation
and write the JSD as p(x1.7 | y1.7)-

As in Equation , the conditional independence properties of an
SSM implies that the complete data likelihood can be written as,

T T—-1
prr,yir) = p(z) [ ot o) T £ [20). (1.7)
t=1 t=1
The JSD is related to the above expression by Bayes’ rule,
Z1.T,Y1:
p(xir | y1r) = p(zur Y1) (1.8)

~ [p(zir,yir) derr

Despite the simplicity of this expression, it is of limited use in practice
due to the high-dimensional integration needed to compute the nor-
malization factor in the denominator. Instead, most practical methods

Table 1.1 Filtering and smoothing densities of particular interest.

Density
Filtering® p(we | y1:¢)
Joint smoothing p(rr.r | y1.1)
Marginal smoothing (¢t <T) p(zt | y1.1)
Fixed-interval smoothing (s <t < T) p(xs:e | y1:1)
Fixed-lag smoothing (¢ fixed)® P(Te—pq1:¢ | Y1:t)

@ The filtering and fixed-lag smoothing densities are marginals of
the JSD at time ¢, p(@1:¢ | y1:¢)-
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(and in particular the ones discussed in this tutorial) are based on a
recursive evaluation of the JSD.
Again by using Bayes’ rule, we get the following two-step procedure,

9yt | e)p(z1:e | Y1:6-1)
Pt | y1:4—1)
P14 | Y1) = f(@egr | ze)p(@ree | yie)- (1.9b)

(1 | Y1) = , (1.9a)

The above equations will be denoted as the forward recursion for the

JSD, since they evolve forward in time. Step is often referred
to as the measurement update, since the current measurement y; is
taken into account. Step is known as the time update, moving
the density forward in time, from ¢ to ¢ + 1.

An interesting fact about SSMs is that, conditioned on yi.7, the
state process {z;}._; is an inhomogeneous Markov process. Under weak
assumptions (see [23, Section 3.3.2] for details), the same holds true for
the time-reversed chain, starting at time 7" and evolving backward in
time according to the so-called backward kernel,

Bt(A | :L't+1) £ P(l‘t cA | $t+1,y1;T). (1.10)

Note that the backward kernel is time inhomogeneous. In the general
case, it is not possible to give an explicit expression for the backward
kernel. However, for a fully dominated model, this can always be done,
and its density is given by

f (@i [ @e)p(@e | yu:e)

p(ae | w1, yr) = TF et | 20p(re [ gre) doe (1.11)

From the conditional independence properties of an SSM, it also holds
that p(z; | i1, y1.17) = (20 | Teg1,y1:0)-

Using the backward kernel, we get an alternative recursion for the
JSD, evolving backward in time,

P(fft:T | yl:T) = p(l‘t | $t+1,ylzt)p($t+1;T | y1;T)> (1~12)

starting with the filtering density at time T, p(x7 | y1.7). This is known
as the backward recursion. At time ¢ = 1, the JSD for the time interval
1,...,T is obtained.
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The backward kernel density at time ¢ depends only on the
transition density f(x¢41 | 2¢) and on the filtering density p(x¢ | y1.¢), a
property which is of key relevance. Hence, to utilise the backward recur-
sion (Equation ) for computing the JSD, the filtering densities
must first be computed for ¢t =1, ..., T. Consequently, this procedure
is generally called forward filtering/backward smoothing.

1.7 Backward Simulation in Linear Gaussian SSMs

An important special case of Equation (1.2)) is the class of linear Gaus-

sian state-space models. A functional representation of an LGSS model
is given by,

Ter1 = Az + vr, v ~N(0,Q), (1.13a)

Yt = C%t + €t, €t ~ N(O,R) (113b)

Here, y; is an n,-dimensional vector of observations, z; is an

n,-dimensional state vector and the system matrices A and C' are of

appropriate dimensions. The process and measurement noises are multi-
variate Gaussian with zero means and covariances () and R, respectively.

Example 1.3 (Partially or fully dominated SSM). Assume that
the measurement noise covariance R in Equation is full rank.
Then, the observation kernel is Gaussian and dominated by Lebesgue
measure. Hence, the model is partially dominated. If, in addition, the
process noise covariance () in Equation is full rank, then the
transition kernel is also Gaussian and dominated by Lebesgue measure.
In this case, the model is fully dominated.

However, for singular @ the model is degenerate (i.e., not fully dom-
inated). Rank deficient process noise covariances arise in many appli-
cations, for instance if there is a physical connection between some of
the states (such as between position and velocity).

A fully dominated LGSS model can equivalently be expressed as in
Equation (1.2]) with,

f@ig1 | ) = N(xp15 Az, Q), (1.14a)

9(ye | 21) = N (yi;Cx, R). (1.14b)
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LGSS models are without doubt one of the most important and
well-studied classes of SSMs. There are basically two reasons for this.
First, LGSS models provide sufficiently accurate descriptions of many
interesting dynamical systems. Second, LGSS models are one of the few
model classes, simple enough to allow for a fully analytical treatment.

When addressing inferential problems for SSMs, we are often asked
to generate samples from the JSD, typically as part of an MCMC sam-
pler used to learn a model of the system dynamics, as discussed above.
For an LGSS model, the JSD is Gaussian and it can be computed using
Kalman filtering and smoothing techniques (see e.g., [80]). Hence, we
can make use of standard results for Gaussian distributions to gener-
ate a sample from p(x1.7 | y1.7). This is possible for small 7', but for
increasing 1" it soon becomes infeasible due to the large matrix inver-
sions involved.

To address this issue, it was recognized by [24, 56] that we can
instead use the backward recursion (Equation ) It follows that
the JSD can be factorized as,

T-1

p(xir | yrr) = (Hp(ft | l‘t+1,y1:t)> p(zr | y1.1). (1.15)

t=1

Initially, we generate a sample from the filtering density at time T,
rr ~p(xr | y1.1)- (1.16a)

We then, successively, augment this backward trajectory by generating
samples from the backward kernel,

Ty~ p(ﬂft | 5t+17y1:t)7 (1-16b)

for t=T —1,...,1. After a complete backward sweep, the back-
ward trajectory Zi.p is (by construction) a realization from the JSD
(Equation (|1.15).

To compute the backward kernel, we first run a forward filter to find
the filtering densities p(z; | y14) for t =1, ..., T. For an LGSS model,
this is done by a standard Kalman filter [81]. It follows that the filtering
densities are Gaussian according to,

p(@e | y1:t) :N(xt;jt\tapt\t)v (1.17)
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for some tractable sequences of mean vectors {Z, }+>1 and covariance
matrices {Pt|t}t217 respectively. From Equation 1.145]), we note that
the transition density function is Gaussian and affine in z;. Using Equa-

tions ([1.11)) and (1.17)) and standard results on affine transformations
of Gaussian variables, it then follows that

p(@e | Te1,y1:0) = N (@ pe, My), (1.18a)

with
e = gy + Py AT(Q + APy AT) Ny — Adyy), (1.18b)
My = Py — Pt|tAT(Q + APt\tAT)_lAPﬂt- (1.18¢)

Note that, if more than one sample is desired, multiple backward tra-
jectories can be generated independently, without having to rerun the
forward Kalman filter. We illustrate the backward simulator in the
example below.

Example 1.4. To illustrate the possibility of generating samples from
the JSD using backward simulation, we consider a first-order LGSS
model,

Tt4+1 = ngt + U, (%7 NN(O,Ol),
Yt = T + e, et ~ N(0,1),

and x1 ~ N (x1;0,10). We simulate T = 50 samples 3.7 from the model.
Since the model is linear Gaussian, the marginal smoothing densities
p(z¢ | y1.7) can be computed by running a Kalman filter followed by
a Rauch-Tung-Striebel smoother [I19]. However, we can also gener-
ate samples from the JSD p(z1.7 | y1.7) by running a backward simula-
tor. We simulate M = 5000 independent trajectories {E{:T}jj\il, by first
running a Kalman filter and then repeating the backward simulation
procedure given by Equations and M times. Histograms
over the simulated states at three specific time points, t = 1, t = 25 and
t = 50, are given in Figure As expected, the histograms are in close
agreement with the true marginal smoothing distributions.

The strategy given by Equation (1.16]), i.e., to sequentially sample
(either exactly or approximately) from the backward kernel to gen-
erate a realization from the JSD, is what we collectively refer to as
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Fig. 1.3 Histograms of {5% }]Ni1 for t =1, t =25 and ¢t = 50 (from left to right). The true
marginal smoothing densities p(z: | y1.7) are shown as black lines.

backward simulation. We will now leave the world of LGSS models.
In the remainder of this tutorial we address backward simulation for
general nonlinear/non-Gaussian models. In these cases, the backward
kernels will in general not be available in closed form. Instead, we will
rely on SMC approximations of the kernels to carry out the backward
simulation.

Before we leave this section, it should be noted that the backward
simulator for LGSS models derived here is provided primarily to illus-
trate the concept. For LGSS models, more efficient samplers exist, e.g.,
based on disturbance simulation. See [30} 47, [146] for further details

and extensions.

1.8 Outline

The rest of this tutorial is organized as follows. Section [2] reviews the
two main Monte Carlo methods that are used throughout SMC and
MCMC. The section is self-contained, but for obvious reasons it does
not provide an in-depth coverage of these methods. Several references
which may be useful for readers with no background in this area are
given in Section [2|

Section [3] addresses SMC-based backward simulation for SSMs.
The focus in this section is on smoothing in general nonlinear/non-
Gaussian SSMs. More precisely, we discuss algorithms for generating
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state trajectories, approximately distributed according to the joint
smoothing distribution. These algorithms can be categorized as par-
ticle smoothers. Hence, readers with particular interest in smoothing
problems may want to focus their attention on this section. However,
smoothing is also addressed in Section [5| (see in particular Section ,
and the methods presented there can be useful alternatives to the par-
ticle smoothers discussed in Section [3]

Section [4] generalizes the backward simulation idea to latent vari-
able models outside the class of SSMs. A general backward simulator
is introduced and we discuss its properties and the type of models for
which it is applicable. As a special case of the general backward simula-
tor, we derive a Rao—Blackwellized particle smoother for conditionally
linear Gaussian SSMs.

In Section |5 we discuss backward simulation in the context of so-
called particle MCMC (PMCMC) methods. The focus in this section
is on parameter inference, primarily in the Bayesian setting, but we
also discuss PMCMC for maximume-likelihood-based inference. As men-
tioned above, the smoothing problem is also addressed. Finally, in
Section [6] we conclude with a discussion about the various methods
reviewed throughout this tutorial and outline possible directions for
future work.
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