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Abstract

Datasets are growing not just in size but in complexity, creating a de-
mand for rich models and quantification of uncertainty. Bayesian meth-
ods are an excellent fit for this demand, but scaling Bayesian inference
is a challenge. In response to this challenge, there has been consider-
able recent work based on varying assumptions about model structure,
underlying computational resources, and the importance of asymptotic
correctness. As a result, there is a zoo of ideas with a wide range of
assumptions and applicability.

In this paper, we seek to identify unifying principles, patterns, and
intuitions for scaling Bayesian inference. We review existing work on
utilizing modern computing resources with both MCMC and varia-
tional approximation techniques. From this taxonomy of ideas, we char-
acterize the general principles that have proven successful for designing
scalable inference procedures and comment on the path forward.

E. Angelino, M. J. Johnson, and R. P. Adams. Patterns of Scalable Bayesian
Inference. Foundations and TrendsR© in Machine Learning, vol. 9, no. 2-3,
pp. 119–247, 2016.
DOI: 10.1561/2200000052.
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1
Introduction

We have entered a new era of scientific discovery, in which compu-
tational insights are being integrated with large-scale statistical data
analysis to enable researchers to ask both grander and more subtle ques-
tions about our natural world. This viewpoint asserts that we need not
be limited to the narrow hypotheses that can be framed by traditional
small-scale analysis techniques. Supporting new kinds of data-driven
queries, however, requires that new methods be developed for statisti-
cal inference that can scale up along multiple axes — more samples,
more dimensions, and greater model complexity — as well as scale out
by taking advantage of modern parallel compute environments.

There are a variety of methodological frameworks for statistical
inference; here we are concerned with the Bayesian formalism. In the
Bayesian setting, inference queries are framed as interrogations of a pos-
terior distribution over parameters, missing data, and other unknowns.
By treating these unobserved quantities as random variables and con-
ditioning on observed data, the Bayesian aims to make inferences and
quantify uncertainty in a way that can coherently incorporate new data
and other sources of information.

2
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1.1. Why be Bayesian with big data? 3

Coherently managing probabilistic uncertainty is central to
Bayesian analysis, and so the computations associated with most infer-
ence tasks — estimation, prediction, hypothesis testing — are typically
integrations. In some special situations it is possible to perform such
integrations exactly, for example by taking advantage of tractable prior
distributions and conjugacy in the prior-likelihood pair, or by using dy-
namic programming when the dependencies between random variables
are relatively simple. Unfortunately, many inference problems are not
amenable to these exact integration procedures, and so most of the
interest in Bayesian computation focuses on methods of approximate
inference.

There are two dominant paradigms for approximate inference in
Bayesian models: Monte Carlo sampling methods and variational ap-
proximations. The Monte Carlo approach observes that integrations
performed to query posterior distributions can be framed as expecta-
tions, and thus estimated with samples; such samples are most often
generated via simulation from carefully designed Markov chains. Vari-
ational inference instead seeks to compute these integrals by approx-
imating the posterior distribution with a more tractable alternative,
finding the best approximation with powerful optimization algorithms.

In this paper, we examine how these techniques can be scaled up to
larger problems and scaled out across parallel computational resources.
This is not an exhaustive survey of a rapidly-evolving area of research;
rather, we seek to identify the main ideas and themes that are emerging
in this area, and articulate what we believe are some of the significant
open questions and challenges.

1.1 Why be Bayesian with big data?

The Bayesian paradigm is fundamentally about integration: integra-
tion computes posterior estimates and measures of uncertainty, elimi-
nates nuisance variables or missing data, and averages models to com-
pute predictions or perform model comparison. While some statistical
methods, such as MAP estimation, can be described from a Bayesian
perspective, in which case the prior serves simply as a regularizer in an

Full text available at: http://dx.doi.org/10.1561/2200000052



4 Introduction

optimization problem, such methods are not inherently or exclusively
Bayesian. Posterior integration is the distinguishing characteristic of
Bayesian statistics, and so a defense of Bayesian ideas in the big data
regime rests on the utility of integration.

The big data setting might seem to be precisely where integration
isn’t so important: as the dataset grows, shouldn’t the posterior dis-
tribution concentrate towards a point mass? If big data means we end
up making predictions using concentrated posteriors, why not focus on
point estimation and avoid the specification of priors and the burden of
approximate integration? These objections certainly apply to settings
where the number of parameters is small and fixed (“tall data”). How-
ever, many models of interest have many parameters (“wide data”), or
indeed have a number of parameters that grows along with the amount
of data.

For example, an Internet company making inferences about its
users’ viewing and buying habits may have terabytes of data in to-
tal but only a few observations for its newest customers, the ones most
important to impress with personalized recommendations. Moreover,
it may wish to adapt its model in an online way as data arrive, a task
that benefits from calibrated posterior uncertainties [Stern et al., 2009].
As another example, consider a healthcare company. As its dataset
grows, it might hope to make more detailed and complex inferences
about populations while also making careful predictions with calibrated
uncertainty for each patient, even in the presence of massive missing
data [Lawrence, 2015]. These scaling issues also arise in astronomy,
where hundreds of billions of light sources, such as stars, galaxies, and
quasars, each have latent variables that must be estimated from very
weak observations, and are coupled in a large hierarchical model [Regier
et al., 2015]. In Microsoft Bing’s sponsored search advertising, predic-
tive probabilities inform the pricing in the keyword auction mechanism.
This problem nevertheless must be solved at scale, with tens of millions
of impressions per hour [Graepel et al., 2010].

These are the regimes where big data can be small [Lawrence, 2015]
and the number and complexity of statistical hypotheses grows with
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1.2. The accuracy of approximate integration 5

the data. The Bayesian inference methods we survey in this paper may
provide solutions to these challenges.

1.2 The accuracy of approximate integration

Bayesian inference may be important in some modern big data regimes,
but exact integration in general is computationally out of reach. While
decades of research in Bayesian inference in both statistics and ma-
chine learning have produced many powerful approximate inference
algorithms, the big data setting poses some new challenges. Iterative
algorithms that read the entire dataset before making each update
become prohibitively expensive. Sequential computation is at a sig-
nificant and growing disadvantage compared to computation that can
leverage parallel and distributed computing resources. Insisting on zero
asymptotic bias from Monte Carlo estimates of expectations may leave
us swamped in errors from high variance [Korattikara et al., 2014] or
transient bias.

These challenges, and the tradeoffs that may be necessary to address
them, can be viewed in terms of how accurate the integration in our
approximate inference algorithms must be. Markov chain Monte Carlo
(MCMC) algorithms that admit the exact posterior as a stationary dis-
tribution may be the gold standard for generically estimating posterior
expectations, but if standard MCMC algorithms become intractable
in the big data regime we must find alternatives and understand their
tradeoffs. Indeed, someone using Bayesian methods for machine learn-
ing may be less constrained than a classical Bayesian statistician: if the
ultimate goal is to form predictions that perform well according to a
specific loss function, computational gains at the expense of the inter-
nal posterior representation may be worthwhile. The methods studied
here cover a range of such approximate integration tradeoffs.

1.3 Outline

The remainder of this review is organized as five chapters. In Chap-
ter 2, we provide relevant background material on exponential fami-
lies, MCMC inference, mean field variational inference, and stochastic
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6 Introduction

gradient optimization. The next three chapters survey recent algorith-
mic ideas for scaling Bayesian inference, highlighting theoretical results
where possible. Each of these central technical chapters ends with a
summary and discussion, identifying emergent themes and patterns as
well as open questions. Chapters 3 and 4 focus on MCMC algorithms,
which are inherently serial and often slow to converge; the algorithms
in the first of these use various forms of data subsampling to scale
up serial MCMC and in the second use a diverse array of strategies to
scale out on parallel resources. In Chapter 5 we discuss two recent tech-
niques for scaling variational mean field algorithms. Both process data
in minibatches: the first applies stochastic gradient optimization meth-
ods and the second is based on incremental posterior updating. Finally,
in Chapter 6 we provide an overarching discussion of the ideas we sur-
vey, focusing on challenges and open questions in large-scale Bayesian
inference.
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