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Abstract

Markov switching models (MSMs) are probabilistic models that em-
ploy multiple sets of parameters to describe different dynamic regimes
that a time series may exhibit at different periods of time. The
switching mechanism between regimes is controlled by unobserved ran-
dom variables that form a first-order Markov chain. Explicit-duration
MSMs contain additional variables that explicitly model the distribu-
tion of time spent in each regime. This allows to define duration distri-
butions of any form, but also to impose complex dependence between
the observations and to reset the dynamics to initial conditions. Models
that focus on the first two properties are most commonly known as hid-
den semi-Markov models or segment models, whilst models that focus
on the third property are most commonly known as changepoint models
or reset models. In this monograph, we provide a description of explicit-
duration modelling by categorizing the different approaches into three
groups, which differ in encoding in the explicit-duration variables differ-
ent information about regime change/reset boundaries. The approaches
are described using the formalism of graphical models, which allows to
graphically represent and assess statistical dependence and therefore
to easily describe the structure of complex models and derive infer-
ence routines. The presentation is intended to be pedagogical, focusing
on providing a characterization of the three groups in terms of model
structure constraints and inference properties. The monograph is sup-
plemented with a software package that contains most of the models
and examples described1. The material presented should be useful to
both researchers wishing to learn about these models and researchers
wishing to develop them further.

S. Chiappa. Explicit-Duration Markov Switching Models. Foundations and
TrendsR© in Machine Learning, vol. 7, no. 6, pp. 803–886, 2014.
DOI: 10.1561/2200000054.

1More information about the package is available at www.nowpublishers.com.
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1
Introduction

Markov switching models (MSMs) are probabilistic models that employ
multiple sets of parameters to describe different dynamic regimes that
a time series may exhibit at different periods of time. The switching
mechanism between regimes is controlled by unobserved variables that
form a first-order Markov chain.

MSMs are commonly used for segmenting time series or to retrieve
the hidden dynamics underlying noisy observations.

Consider, for example, the time series displayed in Figure 1.1(a),
which corresponds to the measured leg positions of an individual per-
forming repetitions of the actions low/high jumping and hopping on
the left/right foot. A segmentation of the time series into the underly-
ing actions could be obtained with a MSM in which each action forms a
separate regime, e.g. by computing the regimes with highest posterior
probabilities1.

As another example, consider the time series displayed with dots in
Figure 1.1(b), which corresponds to noisy observations of the positions
of a two-wheeled robot moving in the two-dimensional space according
to straight movements, left-wheel rotations and right-wheel rotations

1This example is discussed in detail in §3.5.3.

2
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Low Jump High Jump Hop Left Foot Hop Right Foot

(a) (b)

Figure 1.1: (a): Body-marker recording of an individual performing repetitions
of the actions low jumping up and down, high jumping up and down, hopping on
the left foot and hopping on the right foot (CMU Graphics Lab Motion Capture
Database). (b): Actual positions (continuous line) and measured positions (dots) of a
two-wheeled robot moving in the two-dimensional space. The initial actual position
is indicated with a star.

(the actual positions are displayed with a continuous line). Denoised
estimates of the positions could be obtained with a MSM in which the
robot movements are described with continuous unobserved variables
and in which each type of movement forms a separate regime, e.g. by
computing the posterior means of the continuous variables2.

In standard MSMs, the regime variables implicitly define a geomet-
ric distribution on the time spent in each regime. In explicit-duration
MSMs, this constraint is relaxed by using additional unobserved vari-
ables that allow to define duration distributions of any form. Explicit-
duration variables also allow to impose complex dependence between
the observations and to reset the dynamics to initial conditions.

Explicit-duration MSMs were first introduced in the speech com-
munity [Ferguson, 1980] and are mostly used to achieve more powerful
modelling than standard MSMs through the specification of more accu-
rate duration distributions and dependencies between the observations.
In this case, the models are most commonly known with the names of

2This example is discussed in detail in §3.5 and in Appendix A.4.
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4 Introduction

hidden semi-Markov models or segment models. However, the possibil-
ity to reset the dynamics to initial conditions has recently led to the use
of explicit-duration variables also for Bayesian approaches to abrupt-
change detection, for identifying repetitions of patterns (such as, e.g.,
the action repetitions underlying the time series in Figure 1.1(a)), and
for performing/approximating inference3 [Fearnhead, 2006, Fearnhead
and Vasileiou, 2009, Chiappa and Peters, 2010, Bracegirdle and Bar-
ber, 2011]. In these cases, the models are most commonly known with
the names of changepoint models or reset models.

Explicit-duration MSMs have been used in many application areas
including speech analysis [Russell and Moore, 1985, Levinson, 1986,
Rabiner, 1989, Gu et al., 1991, Gales and Young, 1993, Russell, 1993,
Ostendorf et al., 1996, Moore and Savic, 2004, Liang et al., 2011], hand-
writing recognition [Chen et al., 1995], activity recognition [Yu and
Kobayashi, 2003b, Huang et al., 2006, Oh et al., 2008, Chiappa and Pe-
ters, 2010], musical pattern recognition [Pikrakis et al., 2006], financial
time series analysis [Bulla and Bulla, 2006], rainfall time series analysis
[Sansom and Thomson, 2001], protein structure segmentation [Schmi-
dler et al., 2000], gene finding [Winters-Hilt et al., 2010], DNA analysis
[Barbu and Limnios, 2008, Fearnhead and Vasileiou, 2009], plant anal-
ysis [Guédon et al., 2001], MRI sequence analysis [Faisan et al., 2002],
ECG segmentation [Hughes et al., 2004], and waveform modelling [Kim
and Smyth, 2006]; see references in Yu [2010] for more examples.

Explicit-duration MSMs originated from the idea of explicitly mod-
elling the duration distribution by defining a semi-Markov process on
the regime variables, namely a process in which the trajectories are
piecewise constant functions – with interval durations drawn from an
explicitly defined duration distribution – and in which the variables
at jump times form a Markov chain. The first and currently standard
approach achieves that with variables indicating the interval duration,
and derives inference recursions using only jump times [Rabiner, 1989,
Gales and Young, 1993, Ostendorf et al., 1996, Yu, 2010]. To simplify
the derivations of posterior distributions at times that are different

3By inference we mean the computation of posterior distributions, namely dis-
tributions of unobserved variables conditioned on the observations.
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5

from jump times, Chiappa and Peters [2010] use count variables in
addition to duration variables, such that the combined regime and
count-duration variables form a first-order Markov chain. Other meth-
ods that explicitly model the duration distribution have been proposed
with different goals and in different communities. These methods can
all be viewed as different ways to define a first-order Markov chain
on the combined regime and explicit-duration variables that induces a
semi-Markov process on the regime variables.

In this monograph we provide a description of explicit-duration
modelling that aims at elucidating the characteristics of the different
approaches and at clarifying and unifying the literature. We identify
three fundamentally different ways to define the first-order Markov
chain on the combined regime and explicit-duration variables, which
differ in encoding in the explicit-duration variables the location of (i)
the preceding, (ii) the following, or (iii) both the preceding and follow-
ing regime change or reset. We discuss each encoding in the context of
MSMs of simple unobserved structure and of MSMs that contain extra
unobserved variables related by first-order Markovian dependence. The
models are described using the formalism of graphical models, which
allows to graphically represent and assess statistical dependence, and
therefore to easily describe the structure of complex models and derive
inference routines.

The remainder of the manuscript is organized as follows. Chapter
2 contains some background material. We start with a general descrip-
tion of MSMs and by showing that the regime variables implicitly de-
fine a geometric duration distribution. In §2.1 we introduce the hidden
Markov model, which represents the simplest MSM, and explain how
to obtain a negative binomial duration distribution with regime copies.
In §2.2 we introduce the framework of graphical models, and explain
how to graphically assess statistical independence in a particular type
of graphical models, called belief networks, that will be used for de-
scribing the models. In §2.2.1 we illustrate how belief networks can
be used to easily derive the standard inference recursions of MSMs.
In §2.3 we give a general explanation of the expectation maximization
algorithm, which represents the most popular algorithm for parameter

Full text available at: http://dx.doi.org/10.1561/2200000054



6 Introduction

learning in probabilistic models with unobserved variables. In Chapter
3 we describe the different approaches to explicit-duration modelling by
categorizing them into three groups. The groups are introduced in §3.1,
§3.2 and §3.3. In §3.4 we discuss in detail explicit-duration modelling
in MSMs containing only regime variables, explicit-duration variables,
and observations. In §3.5 we discuss in detail explicit-duration mod-
elling in a popular MSM containing additional unobserved variables
related by first-order Markovian dependence, namely the switching lin-
ear Gaussian state-space model, and discuss how the findings general-
ize to similar models with unobserved variables related by first-order
Markovian dependence. The case of more complex unobserved struc-
ture is not considered. In §3.6 we describe approximation schemes to
reduce the computational cost of inference. In Chapter 4 we summarize
the most important points of our exposition and make some historical
remarks.
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