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ABSTRACT

Variational autoencoders provide a principled framework
for learning deep latent-variable models and corresponding
inference models. In this work, we provide an introduction
to variational autoencoders and some important extensions.
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1
Introduction

1.1 Motivation

One major division in machine learning is generative versus discrimi-
native modeling. While in discriminative modeling one aims to learn a
predictor given the observations, in generative modeling one aims to
solve the more general problem of learning a joint distribution over all
the variables. A generative model simulates how the data is generated
in the real world. “Modeling” is understood in almost every science as
unveiling this generating process by hypothesizing theories and testing
these theories through observations. For instance, when meteorologists
model the weather they use highly complex partial differential equations
to express the underlying physics of the weather. Or when an astronomer
models the formation of galaxies s/he encodes in his/her equations of
motion the physical laws under which stellar bodies interact. The same
is true for biologists, chemists, economists and so on. Modeling in the
sciences is in fact almost always generative modeling.

There are many reasons why generative modeling is attractive. First,
we can express physical laws and constraints into the generative process
while details that we don’t know or care about, i.e. nuisance variables,
are treated as noise. The resulting models are usually highly intuitive

2
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1.1. Motivation 3

and interpretable and by testing them against observations we can
confirm or reject our theories about how the world works.

Another reason for trying to understand the generative process of
data is that it naturally expresses causal relations of the world. Causal
relations have the great advantage that they generalize much better to
new situations than mere correlations. For instance, once we understand
the generative process of an earthquake, we can use that knowledge
both in California and in Chile.

To turn a generative model into a discriminator, we need to use
Bayes rule. For instance, we have a generative model for an earthquake
of type A and another for type B, then seeing which of the two describes
the data best we can compute a probability for whether earthquake A
or B happened. Applying Bayes rule is however often computationally
expensive.

In discriminative methods we directly learn a map in the same
direction as we intend to make future predictions in. This is in the
opposite direction than the generative model. For instance, one can
argue that an image is generated in the world by first identifying the
object, then generating the object in 3D and then projecting it onto an
pixel grid. A discriminative model takes these pixel values directly as
input and maps them to the labels. While generative models can learn
efficiently from data, they also tend to make stronger assumptions on
the data than their purely discriminative counterparts, often leading
to higher asymptotic bias (Banerjee, 2007) when the model is wrong.
For this reason, if the model is wrong (and it almost always is to some
degree!), if one is solely interested in learning to discriminate, and
one is in a regime with a sufficiently large amount of data, then purely
discriminative models typically will lead to fewer errors in discriminative
tasks. Nevertheless, depending on how much data is around, it may pay
off to study the data generating process as a way to guide the training
of the discriminator, such as a classifier. For instance, one may have
few labeled examples and many more unlabeled examples. In this semi-
supervised learning setting, one can use the generative model of the data
to improve classification (Kingma et al., 2014; Sønderby et al., 2016a).

Generative modeling can be useful more generally. One can think
of it as an auxiliary task. For instance, predicting the immediate future
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4 Introduction

may help us build useful abstractions of the world that can be used
for multiple prediction tasks downstream. This quest for disentangled,
semantically meaningful, statistically independent and causal factors
of variation in data is generally known as unsupervised representation
learning, and the variational autoencoder (VAE) has been extensively
employed for that purpose. Alternatively, one may view this as an
implicit form of regularization: by forcing the representations to be
meaningful for data generation, we bias the inverse of that process, which
maps from input to representation, into a certain mould. The auxiliary
task of predicting the world is used to better understand the world at
an abstract level and thus to better make downstream predictions.

The VAE can be viewed as two coupled, but independently parame-
terized models: the encoder or recognition model, and the decoder or
generative model. These two models support each other. The recogni-
tion model delivers to the generative model an approximation to its
posterior over latent random variables, which it needs to update its
parameters inside an iteration of “expectation maximization” learning.
Reversely, the generative model is a scaffolding of sorts for the recogni-
tion model to learn meaningful representations of the data, including
possibly class-labels. The recognition model is the approximate inverse
of the generative model according to Bayes rule.

One advantage of the VAE framework, relative to ordinary Varia-
tional Inference (VI), is that the recognition model (also called inference
model) is now a (stochastic) function of the input variables. This in
contrast to VI where each data-case has a separate variational distribu-
tion, which is inefficient for large data-sets. The recognition model uses
one set of parameters to model the relation between input and latent
variables and as such is called “amortized inference”. This recognition
model can be arbitrary complex but is still reasonably fast because
by construction it can be done using a single feedforward pass from
input to latent variables. However the price we pay is that this sampling
induces sampling noise in the gradients required for learning. Perhaps
the greatest contribution of the VAE framework is the realization that
we can counteract this variance by using what is now known as the
“reparameterization trick”, a simple procedure to reorganize our gradient
computation that reduces variance in the gradients.
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1.1. Motivation 5

The VAE is inspired by the Helmholtz Machine (Dayan et al., 1995)
which was perhaps the first model that employed a recognition model.
However, its wake-sleep algorithm was inefficient and didn’t optimize a
single objective. The VAE learning rules instead follow from a single
approximation to the maximum likelihood objective.

VAEs marry graphical models and deep learning. The generative
model is a Bayesian network of the form p(x|z)p(z), or, if there are
multiple stochastic latent layers, a hierarchy such as p(x|zL)p(zL|zL−1)
...p(z1|z0). Similarly, the recognition model is also a conditional Bayesian
network of the form q(z|x) or as a hierarchy, such as q(z0|z1)...q(zL|X).
But inside each conditional may hide a complex (deep) neural network,
e.g. z|x ∼ f(x, ε), with f a neural network mapping and ε a noise
random variable. Its learning algorithm is a mix of classical (amortized,
variational) expectation maximization but through the reparameteri-
zation trick ends up backpropagating through the many layers of the
deep neural networks embedded inside of it.

Since its inception, the VAE framework has been extended in many
directions, e.g. to dynamical models (Johnson et al., 2016), models with
attention (Gregor et al., 2015), models with multiple levels of stochastic
latent variables (Kingma et al., 2016), and many more. It has proven
itself as a fertile framework to build new models in. More recently,
another generative modeling paradigm has gained significant attention:
the generative adversarial network (GAN) (Goodfellow et al., 2014).
VAEs and GANs seem to have complementary properties: while GANs
can generate images of high subjective perceptual quality, they tend
to lack full support over the data (Grover et al., 2018), as opposed to
likelihood-based generative models. VAEs, like other likelihood-based
models, generate more dispersed samples, but are better density models
in terms of the likelihood criterion. As such many hybrid models have
been proposed to try to represent the best of both worlds (Dumoulin
et al., 2017; Grover et al., 2018; Rosca et al., 2018).

As a community we seem to have embraced the fact that generative
models and unsupervised learning play an important role in building
intelligent machines. We hope that the VAE provides a useful piece of
that puzzle.
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6 Introduction

1.2 Aim

The framework of variational autoencoders (VAEs) (Kingma andWelling,
2014; Rezende et al., 2014) provides a principled method for jointly
learning deep latent-variable models and corresponding inference models
using stochastic gradient descent. The framework has a wide array
of applications from generative modeling, semi-supervised learning to
representation learning.

This work is meant as an expanded version of our earlier work
(Kingma and Welling, 2014), allowing us to explain the topic in finer
detail and to discuss a selection of important follow-up work. This is
not aimed to be a comprehensive review of all related work. We assume
that the reader has basic knowledge of algebra, calculus and probability
theory.

In this chapter we discuss background material: probabilistic models,
directed graphical models, the marriage of directed graphical models
with neural networks, learning in fully observed models and deep latent-
variable models (DLVMs). In chapter 2 we explain the basics of VAEs.
In chapter 3 we explain advanced inference techniques, followed by an
explanation of advanced generative models in chapter 4. Please refer to
section A.1 for more information on mathematical notation.

1.3 Probabilistic Models and Variational Inference

In the field of machine learning, we are often interested in learning prob-
abilistic models of various natural and artificial phenomena from data.
Probabilistic models are mathematical descriptions of such phenomena.
They are useful for understanding such phenomena, for prediction of
unknowns in the future, and for various forms of assisted or automated
decision making. As such, probabilistic models formalize the notion of
knowledge and skill, and are central constructs in the field of machine
learning and AI.

As probabilistic models contain unknowns and the data rarely paints
a complete picture of the unknowns, we typically need to assume some
level of uncertainty over aspects of the model. The degree and nature
of this uncertainty is specified in terms of (conditional) probability dis-
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1.3. Probabilistic Models and Variational Inference 7

tributions. Models may consist of both continuous-valued variables and
discrete-valued variables. The, in some sense, most complete forms of
probabilistic models specify all correlations and higher-order dependen-
cies between the variables in the model, in the form of a joint probability
distribution over those variables.

Let’s use x as the vector representing the set of all observed variables
whose joint distribution we would like to model. Note that for notational
simplicity and to avoid clutter, we use lower case bold (e.g. x) to denote
the underlying set of observed random variables, i.e. flattened and
concatenated such that the set is represented as a single vector. See
section A.1 for more on notation.

We assume the observed variable x is a random sample from an
unknown underlying process, whose true (probability) distribution p∗(x)
is unknown. We attempt to approximate this underlying process with a
chosen model pθ(x), with parameters θ:

x ∼ pθ(x) (1.1)

Learning is, most commonly, the process of searching for a value of
the parameters θ such that the probability distribution function given
by the model, pθ(x), approximates the true distribution of the data,
denoted by p∗(x), such that for any observed x:

pθ(x) ≈ p∗(x) (1.2)

Naturally, we wish pθ(x) to be sufficiently flexible to be able to
adapt to the data, such that we have a chance of obtaining a sufficiently
accurate model. At the same time, we wish to be able to incorporate
knowledge about the distribution of data into the model that is known
a priori.

1.3.1 Conditional Models

Often, such as in case of classification or regression problems, we are not
interested in learning an unconditional model pθ(x), but a conditional
model pθ(y|x) that approximates the underlying conditional distribution
p∗(y|x): a distribution over the values of variable y, conditioned on the
value of an observed variable x. In this case, x is often called the input
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8 Introduction

of the model. Like in the unconditional case, a model pθ(y|x) is chosen,
and optimized to be close to the unknown underlying distribution, such
that for any x and y:

pθ(y|x) ≈ p∗(y|x) (1.3)

A relatively common and simple example of conditional modeling is
image classification, where x is an image, and y is the image’s class, as
labeled by a human, which we wish to predict. In this case, pθ(y|x) is
typically chosen to be a categorical distribution, whose parameters are
computed from x.

Conditional models become more difficult to learn when the pre-
dicted variables are very high-dimensional, such as images, video or
sound. One example is the reverse of the image classification prob-
lem: prediction of a distribution over images, conditioned on the class
label. Another example with both high-dimensional input, and high-
dimensional output, is time series prediction, such as text or video
prediction.

To avoid notational clutter we will often assume unconditional mod-
eling, but one should always keep in mind that the methods introduced
in this work are, in almost all cases, equally applicable to conditional
models. The data on which the model is conditioned, can be treated as
inputs to the model, similar to the parameters of the model, with the
obvious difference that one doesn’t optimize over their value.

1.4 Parameterizing Conditional Distributions with Neural Networks

Differentiable feed-forward neural networks, from here just called neural
networks, are a particularly flexible and computationally scalable type
of function approximator. Learning of models based on neural networks
with multiple ’hidden’ layers of artificial neurons is often referred to
as deep learning (Goodfellow et al., 2016; LeCun et al., 2015). A
particularly interesting application is probabilistic models, i.e. the use of
neural networks for probability density functions (PDFs) or probability
mass functions (PMFs) in probabilistic models. Probabilistic models
based on neural networks are computationally scalable since they allow
for stochastic gradient-based optimization which, as we will explain,
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1.5. Directed Graphical Models and Neural Networks 9

allows scaling to large models and large datasets. We will denote a deep
neural network as a vector function: NeuralNet(.).

At the time of writing, deep learning has been shown to work well for
a large variety of classification and regression problems, as summarized
in (LeCun et al., 2015; Goodfellow et al., 2016). In case of neural-
network based image classification LeCun et al., 1998, for example,
neural networks parameterize a categorical distribution pθ(y|x) over a
class label y, conditioned on an image x.

p = NeuralNet(x) (1.4)
pθ(y|x) = Categorical(y; p) (1.5)

where the last operation of NeuralNet(.) is typically a softmax() function
such that

∑
i pi = 1.

1.5 Directed Graphical Models and Neural Networks

We work with directed probabilistic models, also called directed proba-
bilistic graphical models (PGMs), or Bayesian networks. Directed graph-
ical models are a type of probabilistic models where all the variables
are topologically organized into a directed acyclic graph. The joint
distribution over the variables of such models factorizes as a product of
prior and conditional distributions:

pθ(x1, ...,xM ) =
M∏
j=1

pθ(xj |Pa(xj)) (1.6)

where Pa(xj) is the set of parent variables of node j in the directed graph.
For non-root-nodes, we condition on the parents. For root nodes, the set
of parents is the empty set, such that the distribution is unconditional.

Traditionally, each conditional probability distribution pθ(xj |Pa(xj))
is parameterized as a lookup table or a linear model (Koller and Fried-
man, 2009). As we explained above, a more flexible way to parameterize
such conditional distributions is with neural networks. In this case,
neural networks take as input the parents of a variable in a directed
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10 Introduction

graph, and produce the distributional parameters η over that variable:

η = NeuralNet(Pa(x)) (1.7)
pθ(x|Pa(x)) = pθ(x|η) (1.8)

We will now discuss how to learn the parameters of such models, if
all the variables are observed in the data.

1.6 Learning in Fully Observed Models with Neural Nets

If all variables in the directed graphical model are observed in the data,
then we can compute and differentiate the log-probability of the data
under the model, leading to relatively straightforward optimization.

1.6.1 Dataset

We often collect a dataset D consisting of N ≥ 1 datapoints:

D = {x(1),x(2), ...,x(N)} ≡ {x(i)}Ni=1 ≡ x(1:N) (1.9)

The datapoints are assumed to be independent samples from an un-
changing underlying distribution. In other words, the dataset is assumed
to consist of distinct, independent measurements from the same (un-
changing) system. In this case, the observations D = {x(i)}Ni=1 are said
to be i.i.d., for independently and identically distributed. Under the
i.i.d. assumption, the probability of the datapoints given the parame-
ters factorizes as a product of individual datapoint probabilities. The
log-probability assigned to the data by the model is therefore given by:

log pθ(D) =
∑
x∈D

log pθ(x) (1.10)

1.6.2 Maximum Likelihood and Minibatch SGD

The most common criterion for probabilistic models is maximum log-
likelihood (ML). As we will explain, maximization of the log-likelihood
criterion is equivalent to minimization of a Kullback Leibler divergence
between the data and model distributions.

Under the ML criterion, we attempt to find the parameters θ that
maximize the sum, or equivalently the average, of the log-probabilities
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1.6. Learning in Fully Observed Models with Neural Nets 11

assigned to the data by the model. With i.i.d. dataset D of size ND,
the maximum likelihood objective is to maximize the log-probability
given by equation (1.10).

Using calculus’ chain rule and automatic differentiation tools, we can
efficiently compute gradients of this objective, i.e. the first derivatives
of the objective w.r.t. its parameters θ. We can use such gradients to
iteratively hill-climb to a local optimum of the ML objective. If we
compute such gradients using all datapoints, ∇θ log pθ(D), then this
is known as batch gradient descent. Computation of this derivative is,
however, an expensive operation for large dataset size ND, since it scales
linearly with ND.

A more efficient method for optimization is stochastic gradient
descent (SGD) (section A.3), which uses randomly drawn minibatches
of data M ⊂ D of size NM. With such minibatches we can form an
unbiased estimator of the ML criterion:

1
ND

log pθ(D) ' 1
NM

log pθ(M) = 1
NM

∑
x∈M

log pθ(x) (1.11)

The ' symbol means that one of the two sides is an unbiased estimator
of the other side. So one side (in this case the right-hand side) is a
random variable due to some noise source, and the two sides are equal
when averaged over the noise distribution. The noise source, in this case,
is the randomly drawn minibatch of dataM. The unbiased estimator
log pθ(M) is differentiable, yielding the unbiased stochastic gradients:

1
ND
∇θ log pθ(D) ' 1

NM
∇θ log pθ(M) = 1

NM

∑
x∈M

∇θ log pθ(x)

(1.12)

These gradients can be plugged into stochastic gradient-based optimizers;
see section A.3 for further discussion. In a nutshell, we can optimize the
objective function by repeatedly taking small steps in the direction of
the stochastic gradient.

1.6.3 Bayesian inference

From a Bayesian perspective, we can improve upon ML through maxi-
mum a posteriori (MAP) estimation (section section A.2.1), or, going
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12 Introduction

even further, inference of a full approximate posterior distribution over
the parameters (see section A.1.4).

1.7 Learning and Inference in Deep Latent Variable Models

1.7.1 Latent Variables

We can extend fully-observed directed models, discussed in the previous
section, into directed models with latent variables. Latent variables are
variables that are part of the model, but which we don’t observe, and
are therefore not part of the dataset. We typically use z to denote such
latent variables. In case of unconditional modeling of observed variable
x, the directed graphical model would then represent a joint distribution
pθ(x, z) over both the observed variables x and the latent variables z.
The marginal distribution over the observed variables pθ(x), is given
by:

pθ(x) =
∫
pθ(x, z) dz (1.13)

This is also called the (single datapoint) marginal likelihood or the model
evidence, when taken as a function of θ.

Such an implicit distribution over x can be quite flexible. If z is
discrete and pθ(x|z) is a Gaussian distribution, then pθ(x) is a mixture-
of-Gaussians distribution. For continuous z, pθ(x) can be seen as an
infinite mixture, which are potentially more powerful than discrete mix-
tures. Such marginal distributions are also called compound probability
distributions.

1.7.2 Deep Latent Variable Models

We use the term deep latent variable model (DLVM) to denote a latent
variable model pθ(x, z) whose distributions are parameterized by neu-
ral networks. Such a model can be conditioned on some context, like
pθ(x, z|y). One important advantage of DLVMs, is that even when each
factor (prior or conditional distribution) in the directed model is rela-
tively simple (such as conditional Gaussian), the marginal distribution
pθ(x) can be very complex, i.e. contain almost arbitrary dependen-
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cies. This expressivity makes deep latent-variable models attractive for
approximating complicated underlying distributions p∗(x).

Perhaps the simplest, and most common, DLVM is one that is
specified as factorization with the following structure:

pθ(x, z) = pθ(z)pθ(x|z) (1.14)

where pθ(z) and/or pθ(x|z) are specified. The distribution p(z) is often
called the prior distribution over z, since it is not conditioned on any
observations.

1.7.3 Example DLVM for multivariate Bernoulli data

A simple example DLVM, used in (Kingma and Welling, 2014) for
binary data x, is with a spherical Gaussian latent space, and a factorized
Bernoulli observation model:

p(z) = N (z; 0, I) (1.15)
p = DecoderNeuralNetθ(z) (1.16)

log p(x|z) =
D∑
j=1

log p(xj |z) =
D∑
j=1

logBernoulli(xj ; pj) (1.17)

=
D∑
j=1

xj log pj + (1− xj) log(1− pj) (1.18)

where ∀pj ∈ p : 0 ≤ pj ≤ 1 (e.g. implemented through a sigmoid
nonlinearity as the last layer of the DecoderNeuralNetθ(.)), where D
is the dimensionality of x, and Bernoulli(.; p) is the probability mass
function (PMF) of the Bernoulli distribution.

1.8 Intractabilities

The main difficulty of maximum likelihood learning in DLVMs is that
the marginal probability of data under the model is typically intractable.
This is due to the integral in equation (1.13) for computing the marginal
likelihood (or model evidence), pθ(x) =

∫
pθ(x, z) dz, not having an

analytic solution or efficient estimator. Due to this intractability, we
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cannot differentiate it w.r.t. its parameters and optimize it, as we can
with fully observed models.

The intractability of pθ(x), is related to the intractability of the
posterior distribution pθ(z|x). Note that the joint distribution pθ(x, z)
is efficient to compute, and that the densities are related through the
basic identity:

pθ(z|x) = pθ(x, z)
pθ(x) (1.19)

Since pθ(x, z) is tractable to compute, a tractable marginal likelihood
pθ(x) leads to a tractable posterior pθ(z|x), and vice versa. Both are
intractable in DLVMs.

Approximate inference techniques (see also section A.2) allow us to
approximate the posterior pθ(z|x) and the marginal likelihood pθ(x) in
DLVMs. Traditional inference methods are relatively expensive. Such
methods, for example, often require a per-datapoint optimization loop,
or yield bad posterior approximations. We would like to avoid such
expensive procedures.

Likewise, the posterior over the parameters of (directed models
parameterized with) neural networks, p(θ|D), is generally intractable
to compute exactly, and requires approximate inference techniques.
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A
Appendix

A.1 Notation and definitions

A.1.1 Notation

Example(s) Description

x,y z With characters in bold we typically denote ran-
dom vectors. We also use this notation for collec-
tions of random variables variables.

x, y, z With characters in italic we typically denote
random scalars, i.e. single real-valued numbers.

X,Y,Z With bold and capitalized letters we typically
denote random matrices.

Pa(z) The parents of random variable z in a directed
graph.

diag(x) Diagonal matrix, with the values of vector x on
the diagonal.
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x� y Element-wise multiplication of two vectors. The
resulting vector is (x1y1, ..., xKyK)T .

θ Parameters of a (generative) model are typically
denoted with the Greek lowercase letter θ (theta).

φ Variational parameters are typically denoted
with the bold Greek letter φ (phi).

p(x), p(z) Probability density functions (PDFs) and proba-
bility mass functions (PMFs), also simply called
distributions, are denoted by p(.), q(.) or r(.).

p(x,y, z) Joint distributions are denoted by p(., .)

p(x|z) Conditional distributions are denoted by p(.|.)

p(.; θ), pθ(x) The parameters of a distribution are denoted
with p(.; θ) or equivalently with subscript pθ(.).

p(x = a),
p(x ≤ a)

We may use an (in-)equality sign within a prob-
ability distribution to distinguish between func-
tion arguments and value at which to evaluate.
So p(x = a) denotes a PDF or PMF over variable
x evaluated at the value of variable a. Likewise,
p(x ≤ a) denotes a CDF evaluated at the value
of a.

p(.), q(.) We use different letters to refer to different
probabilistic models, such as p(.) or q(.). Con-
versely, we use the same letter across different
marginals/conditionals to indicate they relate to
the same probabilistic model.

A.1.2 Definitions

Term Description
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Probability
density func-
tion (PDF)

A function that assigns a probability density to
each possible value of given continuous random
variables.

Cumulative
distribution
function
(CDF)

A function that assigns a cumulative probability
density to each possible value of given univariate
continuous random variables.

Probability
mass function
(PMF)

A function that assigns a probability mass to
given discrete random variable.

A.1.3 Distributions

We overload the notation of distributions (e.g. p(x) = N (x;µ,Σ)) with
two meanings: (1) a distribution from which we can sample, and (2)
the probability density function (PDF) of that distribution.

Term Description

Categorical(x; p) Categorical distribution, with parameter p
such that

∑
i pi = 1.

Bernoulli(x; p) Multivariate distribution of independent
Bernoulli.

Bernoulli(x; p) =
∏
iBernoulli(xi; pi) with

∀i : 0 ≤ pi ≤ 1.

Normal(x;µ,Σ) =
N (x;µ,Σ)

Multivariate Normal distribution with mean
µ and covariance Σ.

Chain rule of probability

p(a,b) = p(a)p(b|a) (A.1)
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Bayes’ Rule

p(a|b) = p(b|a)p(a)/p(b) (A.2)

A.1.4 Bayesian Inference

Let p(θ) be a chosen marginal distribution over its parameters θ, called
a prior distribution. Let D be observed data, p(D|θ) ≡ pθ(D) be the
probability assigned to the data under the model with parameters θ.
Recall the chain rule in probability:

p(θ,D) = p(θ|D)p(D) = p(θ)p(D|θ)

Simply re-arranging terms above, the posterior distribution over the
parameters θ, taking into account the data D, is:

p(θ|D) = p(D|θ)p(θ)
p(D) ∝ p(D|θ)p(θ) (A.3)

where the proportionality (∝) holds since p(D) is a constant that is
not dependent on parameters θ. The formula above is known as Bayes’
rule, a fundamental formula in machine learning and statistics, and is
of special importance to this work.

A principal application of Bayes’ rule is that it allows us to make
predictions about future data x′, that are optimal as long as the prior
p(θ) and model class pθ(x) are correct:

p(x = x′|D) =
∫
pθ(x = x′)p(θ|D)dθ

A.2 Alternative methods for learning in DLVMs

A.2.1 Maximum A Posteriori

From a Bayesian perspective, we can improve upon the maximum
likelihood objective through maximum a posteriori (MAP) estimation,
which maximizes the log-posterior w.r.t. θ. With i.i.d. data D, this is:

LMAP (θ) = log p(θ|D) (A.4)
= log p(θ) + LML(θ) + constant (A.5)
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The prior p(θ) in equation (A.5) has diminishing effect for increasingly
large N . For this reason, in case of optimization with large datasets,
we often choose to simply use the maximum likelihood criterion by
omitting the prior from the objective, which is numerically equivalent
to setting p(θ) = constant.

A.2.2 Variational EM with local variational parameters

Expectation Maximization (EM) is a general strategy for learning
parameters in partially observed models (Dempster et al., 1977). See
section A.2.3 for a discussion of EM using MCMC. The method can be
explained as coordinate ascent on the ELBO (Neal and Hinton, 1998).
In case of of i.i.d. data, traditional variational EM methods estimate
local variational parameters φ(i), i.e. a separate set of variational
parameters per datapoint i in the dataset. In contrast, VAEs employ a
strategy with global variational parameters.

EM starts out with some (random) initial choice of θ and φ(1:N). It
then iteratively applies updates:

∀i = 1, ..., N : φ(i) ← argmax
φ

L(x(i);θ,φ) (E-step) (A.6)

θ ← argmax
θ

N∑
i=1
L(x(i);θ,φ) (M-step) (A.7)

until convergence. Why does this work? Note that at the E-step:

argmax
φ

L(x;θ,φ) (A.8)

= argmax
φ

[log pθ(x)−DKL(qφ(z|x)||pθ(z|x))] (A.9)

= argmin
φ

DKL(qφ(z|x)||pθ(z|x)) (A.10)

so the E-step, sensibly, minimizes the KL divergence of qφ(z|x) from
the true posterior.

Secondly, note that if qφ(z|x) equals pθ(z|x), the ELBO equals the
marginal likelihood, but that for any choice of qφ(z|x), the M -step
optimizes a bound on the marginal likelihood. The tightness of this
bound is defined by DKL(qφ(z|x)||pθ(z|x)).
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A.2.3 MCMC-EM

Another Bayesian approach towards optimizing the likelihood pθ(x)
with DLVMs is Expectation Maximization (EM) with Markov Chain
Monte Carlo (MCMC). In case of MCMC, the posterior is approximated
by a mixture of a set of approximately i.i.d. samples from the posterior,
acquired by running a Markov chain. Note that posterior gradients
in DLVMs are relatively affordable to compute by differentiating the
log-joint distribution w.r.t. z:

∇z log pθ(z|x) = ∇z log[pθ(x, z)/pθ(x)] (A.11)
= ∇z[log pθ(x, z)− log pθ(x)] (A.12)
= ∇z log pθ(x, z)−∇z log pθ(x) (A.13)
= ∇z log pθ(x, z) (A.14)

One version of MCMC which uses such posterior for relatively fast
convergence, is Hamiltonian MCMC (Neal, 2011). A disadvantage of
this approach is the requirement for running an independent MCMC
chain per datapoint.

A.3 Stochastic Gradient Descent

We work with directed models where the objective per datapoint is
scalar, and due to the differentiability of neural networks that compose
them, the objective is differentiable w.r.t. its parameters θ. Due to the
remarkable efficiency of reverse-mode automatic differentiation (also
known as the backpropagation algorithm (Rumelhart et al., 1988)), the
value and gradient (i.e. the vector of partial derivatives) of differentiable
scalar objectives can be computed with equal time complexity. In SGD,
we iteratively update parameters θ:

θt+1 ← θt + αt · ∇θL̃(θ, ξ) (A.15)

where αt is a learning rate or preconditioner, and L̃(θ, ξ) is an unbiased
estimate of the objective L(θ), i.e. Eξ∼p(ξ)

[
L̃(θ, ξ)

]
= L(θ). The ran-

dom variable ξ could e.g. be a datapoint index, uniformly sampled from
{1, ..., N}, but can also include different types of noise such posterior
sampling noise in VAEs. In experiments, we have typically used the
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Adam and Adamax optimization methods for choosing αt (Kingma and
Ba, 2015); these methods are invariant to constant rescaling of the ob-
jective, and invariant to constant re-scalings of the individual gradients.
As a result, L̃(θ, ξ) only needs to be unbiased up to proportionality. We
iteratively apply eq. (A.15) until a stopping criterion is met. A simple
but effective criterion is to stop optimization as soon as the probability
of a holdout set of data starts decreasing; this criterion is called early
stopping.
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