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ABSTRACT

Spectral methods have been the mainstay in several domains
such as machine learning, applied mathematics and scientific
computing. They involve finding a certain kind of spectral
decomposition to obtain basis functions that can capture
important structures or directions for the problem at hand.
The most common spectral method is the principal compo-
nent analysis (PCA). It utilizes the principal components
or the top eigenvectors of the data covariance matrix to
carry out dimensionality reduction as one of its applications.
This data pre-processing step is often effective in separating
signal from noise.

PCA and other spectral techniques applied to matrices have
several limitations. By limiting to only pairwise moments,
they are effectively making a Gaussian approximation on
the underlying data. Hence, they fail on data with hidden
variables which lead to non-Gaussianity. However, in almost
any data set, there are latent effects that cannot be directly
observed, e.g., topics in a document corpus, or underlying
causes of a disease. By extending the spectral decomposition

Majid Janzamin, Rong Ge, Jean Kossaifi and Anima Anandkumar (2019), Spectral
Learning on Matrices and Tensors, Foundations and TrendsR© in Machine Learning:
Vol. 12, No. 5-6, pp 393–536. DOI: 10.1561/2200000057.
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methods to higher order moments, we demonstrate the abil-
ity to learn a wide range of latent variable models efficiently.
Higher-order moments can be represented by tensors, and
intuitively, they can encode more information than just pair-
wise moment matrices. More crucially, tensor decomposition
can pick up latent effects that are missed by matrix methods.
For instance, tensor decomposition can uniquely identify
non-orthogonal components. Exploiting these aspects turns
out to be fruitful for provable unsupervised learning of a
wide range of latent variable models.

We also outline the computational techniques to design
efficient tensor decomposition methods. They are embarrass-
ingly parallel and thus scalable to large data sets. Whilst
there exist many optimized linear algebra software packages,
efficient tensor algebra packages are also beginning to be de-
veloped. We introduce Tensorly, which has a simple python
interface for expressing tensor operations. It has a flexible
back-end system supporting NumPy, PyTorch, TensorFlow
and MXNet amongst others. This allows it to carry out
multi-GPU and CPU operations, and can also be seamlessly
integrated with deep-learning functionalities.
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1
Introduction

Probabilistic models form an important area of machine learning. They
attempt to model the probability distribution of the observed data, such
as documents, speech and images. Often, this entails relating observed
data to latent or hidden variables, e.g., topics for documents, words for
speech and objects for images. The goal of learning is to then discover
the latent variables and their relationships to the observed data.

Latent variable models have shown to be useful to provide a good
explanation of the observed data, where they can capture the effect of
hidden causes which are not directly observed. Learning these hidden
factors is central to many applications, e.g., identifying latent diseases
through observed symptoms, and identifying latent communities through
observed social ties. Furthermore, latent representations are very useful
in feature learning. Raw data is in general very complex and redundant
and feature learning is about extracting informative features from raw
data. Learning efficient and useful features is crucial for the performance
of learning tasks, e.g., the classification task that we perform using the
learned features.

Learning latent variable models is challenging since the latent vari-
ables cannot, by definition, be directly observed. In extreme cases, when

3
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4 Introduction

there are more latent variables than observations, learning is theoreti-
cally impossible because of the lack of data, unless further constraints are
imposed. More generally, learning latent variable models raises several
questions. How much data do we need to observe in order to uniquely
determine the model’s parameters? Are there efficient algorithms to
effectively learn these parameters? Can we get provable guarantees on
the running time of the algorithm and the number of samples required
to estimate the parameters? These are all important questions about
learning latent variable models that we will try to address here.

In this monograph, we survey recent progress in using spectral
methods including matrix and tensor decomposition techniques to learn
many popular latent variable models. With careful implementation,
tensor-based methods can run efficiently in practice, and in many cases
they are the only algorithms with provable guarantees on running time
and sample complexity.

There exist other surveys and overviews on tensor decomposition
and its applications in machine learning and beyond. Among them, the
work by Kolda and Bader (2009) is very well-received in the community
where they provide a comprehensive introduction to major tensor de-
composition forms and algorithms and discuss some of their applications
in science and engineering. More recently, Sidiropoulos et al. (2017)
provide an overview of different types of tensor decompositions and
some of their applications in signal processing and machine learning.
Papalexakis et al. (2017) discuss several applications of tensor decom-
positions in data mining. Rabanser et al. (2017) review some basic
concepts of tensor decompositions and a few applications. Debals and
De Lathauwer (2017) review several tensorization techniques which had
been proposed in the literature. Here, tensorization is the mapping of a
vector or matrix to a tensor to enable us using tensor tools.

In contrast to the above works, our focus in this monograph is on a
special type of tensor decomposition called CP decomposition (see (1.3)
as an example), and we cover a wide range of algorithms to find the
components of such tensor decomposition. We also discuss the usefulness
of this decomposition by reviewing several probabilistic models that
can be learned using such tensor methods.

Full text available at: http://dx.doi.org/10.1561/2200000057



1.1. Method of Moments and Moment Tensors 5

1.1 Method of Moments and Moment Tensors

How can we learn latent variable models, even though we cannot observe
the latent variables? The key lies in understanding the relationship
between latent variables and observed variables. A common framework
for such relationship is known as the method of moments which
dates back to Pearson (1894).

Pearson’s 1-d Example: The main idea of method of moments is
to first estimate moments of the data, and use these estimates to
learn the unknown parameters of the probabilistic model. For a one-
dimensional random variable X ∈ R, the r-th order moment is denoted
by E[Xr], where r is a positive integer and E[·] is the expectation
operator. Consider a simple example where X is a mixture of two
Gaussian variables. More precisely, with probability p1, X is drawn
from a Gaussian distribution with mean µ1 and variance σ2

1, and with
probability p2, X is drawn from a Gaussian distribution with mean
µ2 and variance σ2

2. Here we have p1 + p2 = 1. Let us consider the
problem of estimating these unknown parameters given samples of X.
The random variable X can be viewed as drawn from a latent variable
model because given a sample of X, we do not know which Gaussian
it came from. Let latent variable Z ∈ {1, 2} be a random variable
with probability p1 of being 1. Then given Z, X is just a Gaussian
distribution as

[X|Z = z] ∼ N (µz, σ2
z).

As noted by Pearson (1894), even though we cannot observe Z,
the moments of X are closely related to the unknown parameters
(probabilities p1, p2, means µ1, µ2, standard deviations σ1, σ2) we desire
to estimate. More precisely, for the first three moments we have

E[X] = p1µ1 + p2µ2,

E[X2] = p1(µ2
1 + σ2

1) + p2(µ2
2 + σ2

2),
E[X3] = p1(µ3

1 + 3µ1σ
2
1) + p2(µ3

2 + 3µ2σ
2
2).

Full text available at: http://dx.doi.org/10.1561/2200000057



6 Introduction

The moments E[X],E[X2],E[X3], . . . can be empirically estimated
given observed data. Therefore, the equations above can be interpreted
as a system of equations on the six unknown parameters stated above.
Pearson (1894) showed that with the first 6-th moments, we have enough
equations to uniquely determine the values of the parameters.

Moments for Multivariate Random Variables of Higher Dimensions:
For a scalar random variable, its p-th moment is just a scalar number.
However, for a random vector, higher order moments can reveal much
more information. Let us consider a random vector X ∈ Rd. The first
moment of this variable is a vector µ ∈ Rd such that µi = E[Xi],∀i ∈ [d],
where [d] := {1, 2, . . . , d}. For the second order moment, we are not
only interested in the second moments of individual coordinates E[X2

i ],
but also in the correlation between different coordinates E[XiXj ], i 6= j.
Therefore, it is convenient to represent the second order moment as a
d× d symmetric matrix M , where Mi,j = E[XiXj ].

This becomes more complicated when we look at higher order mo-
ments. For 3rd order moment, we are interested in the correlation
between all triplets of variables. In order to represent this compactly, we
use a 3-dimensional d×d×d object T , also known as a 3rd order tensor.
The tensor is constructed such that Ti,j,k = E[XiXjXk], ∀i, j, k ∈ [d].
This tensor has d3 elements or

(d+2
3
)
distinct entries. In general, p-th

order moment can be represented as a p-th order tensor with dp entries.
These tensors are called moment tensors. Vectors and matrices are
special cases of moment tensors of order 1 and 2, respectively.

In applications, it is often crucial to define what the random variable
X is, and examine what moments of X we can estimate from the data.
We now provide a simple example to elaborate on how to form a useful
moment and defer the proposal of many more examples to Section 4.

1.2 Warm-up: Learning a Simple Model with Tensors

In this section, we will give a simple example to demonstrate what is
a tensor decomposition, and how it can be applied to learning latent
variable models. Similar ideas can be applied to more complicated
models, which we will discuss in Section 4.

Full text available at: http://dx.doi.org/10.1561/2200000057



1.2. Warm-up: Learning a Simple Model with Tensors 7

h

x1 x2 xl· · ·

Figure 1.1: Pure Topic Model

Pure Topic Model: The model we consider is a very simple topic
model (Papadimitriou et al., 2000; Hofmann, 1999). In this model, there
are k unknown topics. Each topic entails a probability distribution
over words in the vocabulary. Intuitively, the probabilities represent the
likelihood of using a particular word when talking about a specific topic.
As an example, the word “snow” should have a high probability in the
topic “weather” but not the topic “politics”. These probabilities are
represented as a matrix A ∈ Rd×k, where d is the size of the vocabulary
and every column represents a topic. So, the columns of matrix A

correspond to the probabilities over vocabulary that each topic entails.
We will use µj ∈ Rd, j ∈ [k] to denote these probability distribution of
words given j-th topic (j-th column of matrix A).

The model assumes each document is generated in the following
way: first a topic h ∈ [k] is chosen with probability wh where w ∈ Rk is
a vector of probabilities; next, l words x1, x2, . . . , xl are independently
sampled from the h-th topic-word probability vector µh. Therefore, we
finally observe words for the documents. See Figure 1.1 for a graphical
illustration of this model. This is clearly a latent variable model, since
we don’t observe the topics. Our goal is to learn the parameters, which
include the topic probability vector w and the topic-word probability
vectors µ1, . . . , µk.

Computing the Moments: First, we need to identify what the inter-
esting moments are in this case. Since all we can observe are words in
documents, and documents are all generated independently at random,
it is natural to consider correlations between words as moments.

We say x ∈ Rd is an indicator vector of a word z in our size-d
vocabulary if the z-th coordinate of x is 1 and all other coordinates of

Full text available at: http://dx.doi.org/10.1561/2200000057



8 Introduction

x are 0. For each document, let x1, x2, x3 ∈ Rd be indicator vectors for
the first three words. Given these word representations, the entries of
the first three moments of x1, x2, x3 can be written as

M1(i) = Pr[x1 = ei],
M2(i1, i2) = Pr[x1 = ei1 , x2 = ei2 ],

M3(i1, i2, i3) = Pr[x1 = ei1 , x2 = ei2 , x3 = ei3 ],

where ei ∈ Rd denotes the i-th basis vector in d-dimensional space.
Intuitively, the first moment M1 represents the probabilities for words;
the second moment M2 represents the probabilities that two words
co-occur; and the third moment M3 represents the probabilities that
three words co-occur.

We can empirically estimate M1,M2,M3 from the observed doc-
uments. Now in order to apply the method of moments, we need to
represent these probabilities based on the unknown parameters of our
model. We can show that

M1 =
k∑

h=1
wh µh, (1.1)

M2 =
k∑

h=1
wh µhµ

>
h , (1.2)

M3 =
k∑

h=1
wh µh ⊗ µh ⊗ µh. (1.3)

The computation follows from the law of total expectations (explained
in more details in Section 4). Here, the first moment M1 is the weighted
average of µh; the second moment M2 is the weighted average of outer-
products µhµ>h ; and the third moment M3 is the weighted average of
tensor-products µh ⊗ µh ⊗ µh. The tensor product µh ⊗ µh ⊗ µh is a
d× d× d array whose (i1, i2, i3)-th entry is equal to µh(i1)µh(i2)µh(i3).
See Section 3 for more precise definition of the tensor product operator
⊗.

Note that the second moment M2 is a matrix of rank at most k,
and Equation (1.2) provides a low-rank matrix decomposition of M2.

Full text available at: http://dx.doi.org/10.1561/2200000057



1.3. What’s Next? 9

Similarly, finding wh and µh from M3 using Equation (1.3) is a problem
called tensor decomposition. Clearly, if we can solve this problem, and
it gives a unique solution, then we have learned the parameters of the
model and we are done.

1.3 What’s Next?

In the rest of this monograph, we will discuss the properties of tensor
decomposition problem, review algorithms to efficiently find the com-
ponents of such decomposition, and explain how they can be applied
to learn the parameters of various probabilistic models such as latent
variable models.

In Section 2, we first give a brief review of some basic matrix
decomposition problems, including the singular value decomposition
(SVD) and canonical correlation analysis (CCA). In particular, we will
emphasize why matrix decomposition is often not enough to learn all
the parameters of the latent variable models.

Section 3 discusses several algorithms for tensor decomposition. We
will highlight under what conditions the tensor decomposition is unique,
which is crucial in identifying the parameters of latent variable models.

In Section 4, we give more examples on how to apply tensor decom-
position to learn different latent variable models. In different situations,
there are many tricks to manipulate the moments in order to get a clean
equation that looks similar to (1.3).

In Section 5, we illustrate how to implement tensor operations in
practice using the Python programming language. We then show how
to efficiently perform tensor learning using TensorLy and scale things
up using PyTorch.

Tensor decomposition and its applications in learning latent variable
models are still active research directions. In the last two sections of
this monograph we discuss some of the more recent results, which deals
with the problem of overcomplete tensors and improves the guarantees
on running time and sample complexity.

Full text available at: http://dx.doi.org/10.1561/2200000057
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