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ABSTRACT

These lecture notes provide a comprehensive, self-contained
introduction to the analysis of Wishart matrix moments.
This study may act as an introduction to some particular
aspects of random matrix theory, or as a self-contained
exposition of Wishart matrix moments.

Random matrix theory plays a central role in statistical
physics, computational mathematics and engineering sci-
ences, including data assimilation, signal processing, combi-
natorial optimization, compressed sensing, econometrics and
mathematical finance, among numerous others. The mathe-
matical foundations of the theory of random matrices lies at
the intersection of combinatorics, non-commutative algebra,
geometry, multivariate functional and spectral analysis, and
of course statistics and probability theory. As a result, most
of the classical topics in random matrix theory are technical,
and mathematically difficult to penetrate for non-experts
and regular users and practitioners.

The technical aim of these notes is to review and extend some
important results in random matrix theory in the specific

Adrian N. Bishop, Pierre Del Moral and Angèle Niclas (2018), “An Introduction to
Wishart Matrix Moments”, Foundations and TrendsR© in Machine Learning: Vol. 11,
No. 2, pp 97–218. DOI: 10.1561/2200000072.
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2

context of real random Wishart matrices. This special class
of Gaussian-type sample covariance matrix plays an impor-
tant role in multivariate analysis and in statistical theory. We
derive non-asymptotic formulae for the full matrix moments
of real valued Wishart random matrices. As a corollary, we
derive and extend a number of spectral and trace-type re-
sults for the case of non-isotropic Wishart random matrices.
We also derive the full matrix moment analogues of some
classic spectral and trace-type moment results. For example,
we derive semi-circle and Marchencko–Pastur-type laws in
the non-isotropic and full matrix cases. Laplace matrix trans-
forms and matrix moment estimates are also studied, along
with new spectral and trace concentration-type inequalities.
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1
Introduction

Let X be a centered Gaussian random column vector with covariance
matrix P on Rr, for some dimension parameter r ≥ 1. The rescaled
sample covariance matrix associated with (N + 1) independent copies
Xi of X is given by the random matrix

PN = 1
N

∑
1≤i≤N+1

(
Xi −mN

) (
Xi −mN

)′
with the sample mean

mN := 1
N + 1

∑
1≤i≤N+1

Xi

Here, (.)′ denotes the transpose operator. The random matrix PN has a
Wishart distribution with N degrees of freedom and covariance matrix
N−1P (a.k.a. the scale matrix). When N ≥ r,the distribution of the
Wishart matrix PN on the cone of symmetric positive definite matrices
is defined by

Probability(PN ∈ dQ)

= det(Q)(N−r−1)/2

2Nr/2Γr(N/2)det(P/N)N/2 exp
[
−1

2Tr
(
(P/N)−1Q

)]
γ(dQ)

3
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4 Introduction

where det(Q) denotes the determinant of Q and γ(dQ) is the Lebesgue
measure on the cone of symmetric positive definite matrices, and Γr is
the multivariate gamma function

Γr(z) = πr(r−1)/4 ∏
1≤k≤r

Γ
(
z − k − 1

2

)

We also have the equivalent formulations

PN
law= N−1 ∑

1≤i≤N
Xi = XX ′

with the (r ×N)-random matrix X defined by

X = 1√
N

[X1, . . . , XN ]

In the above display, Xi stand for N independent copies of the rank one
random matrix X = XX ′. The superscript (.)′ denotes the transposition
operation.

Random matrices, sample covariance matrices, and more specifically
Wishart random matrices, play a role in finance and statistics, physics,
and engineering sciences. Their interpretation depends on the application
model motivating their study.

For example, in Bayesian inference, Wishart matrices often represent
the prior precision matrix of multivariate Gaussian data sets. In this
context, the posterior distribution of the random covariance given the
multivariate-normal vector is again a Wishart distribution with a scale
matrix that depends on the measurements. In other words, Wishart
distributions are conjugate priors of the inverse covariance-matrix of a
multivariate normal random vector [8, 64].

In multivariate analysis and machine learning, the vectors Xi may
represent some statistical data such as image, curves and text data. In
this case, P may be defined in terms of some covariance function as in
Gaussian processes [72]. As its name indicates, the sample covariance
matrix PN attempts to capture the shape of the data; such as the spread
around their sample mean as well as the sample correlation between
the features dimensions. Principal component analysis and related
techniques amount to finding the eigenvalues and the corresponding

Full text available at: http://dx.doi.org/10.1561/2200000072
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eigenvectors of sample covariance matrices. The largest eigenvalues
represents the dimensions with the strongest correlation in the data
set. Expressing the data on the eigenvectors associated with the largest
eigenvalues is often used to compress high dimensional data. For a more
thorough discussion on this subject we refer to the articles [2, 7, 46, 69],
as well as the monographs [8, 72, 63] and the references therein.

In the context of multiple-input multiple-output systems, more
general random matrices may be related to the channel gain matrix [77,
99]. Similarly, the covariance matrix in Gaussian process-based inference
may be considered a random matrix defined by the particular covariance
structure [72]. In data assimilation problems and filtering theory, non-
independent sample covariance matrices arise as the control gain in
ensemble (Kalman-type) filters; see e.g. [11, 23, 9] and the references
therein. Similar (non-independent) sample covariance matrices may be
computed with the particles in classical Markov Chain Monte Carlo and
sequential Monte Carlo methods [21]; and in this case often represent
the uncertainty in an estimation theoretic sense. In finance, sample
covariance matrices arise in risk management and asset allocation; e.g.
random matrices may represent the correlated fluctuations of assets [57,
13, 27].

Because of their practical importance, we may illustrate the above
specific model via the so-called Wishart process. Consider a time-varying
linear-Gaussian diffusion of the following form,

dX(t) = A(t)X(t) dt+R(t)1/2 dB(t) (1.1)

where B(t) is an r-dimensional Brownian motion, X0 is a r-dimensional
Gaussian random variable with mean and variance (E(X0), P0), inde-
pendent of B(t), and A(t) ∈ Rr×r, and R(t) > 0 is a positive definite
symmetric matrix. The covariance matrices

P (t) = E
(
[X(t)− E(X(t))] [X(t)− E(X(t))]′

)
satisfy the (linear) matrix-valued differential equation,

∂tP (t) = A(t)P (t) + P (t)A(t)′ +R(t)

The solution of the preceding equation is given easily via the transi-
tion/fundamental matrix defined by A(t). More precisely, the solution

Full text available at: http://dx.doi.org/10.1561/2200000072



6 Introduction

of the above equation is given by the formula

P (t) = e
∮ t

0 A(s)ds P (0)
[
e
∮ t

0 A(s)ds
]′

+
∫ t

0
e
∮ t
s
A(u)du R(s)

[
e
∮ t
s
A(u)du

]′
ds

In the above display, Es,t := e
∮ t
s
A(u)du denotes the matrix exponential

semigroup, or the transition matrix, defined by

∂t Es,t = At Es,t and ∂s Es,t = −Es,tAs with Es,s = I

For time homogeneous models (A(t), R(t)) = (A,R) the above formula
reduces to

P (t) = etAP (0) +
∫ t

0
e(t−s)A R e(t−s)A′ ds

The rescaled sample covariance matrices associated with (N + 1) inde-
pendent copies (Xi(t))1≤i≤N+1 of the process X(t) are defined by

PN (t) := 1
N

∑
1≤i≤N+1

[
Xi(t)−mN (t)

] [
Xi(t)−mN (t)

]′
with the sample mean

mN (t) := 1
N + 1

∑
1≤i≤N+1

Xi(t)

Up to a change of probability space, the process PN (t) satisfies the
matrix diffusion equation

dPN (t) = A(t)PN (t) + PN (t)A(t)′ +R(t) + 1√
N

MN (t)

with the matrix-valued martingale

dMN (t) = PN (t)1/2 dW(t) R(t)1/2 +R(t)1/2 dW(t) PN (t)1/2

where Wt denotes an (r× r)-matrix with independent Brownian entries.
The above diffusion coincides with the Wishart process considered in [15].
When r = 1 this Wishart model coincides with the Cox–Ingersoll–Ross
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process (a.k.a. squared Bessel process) introduced in [19]. For a more
detailed discussion on Wishart processes and related affine diffusions,
we refer to the articles [20, 40, 58], and the references therein.

The preceding exposition is by no means exhaustive of applications
of random, and more specifically Wishart, matrices and we point to
[26, 30, 59, 89, 97, 98] for further applications and motivators. The
typical technical questions arising in practice revolve around the calcu-
lation of the spectrum distribution, and the corresponding eigenvector
distribution of these random matrices.

The analysis of Wishart matrices started in 1928 with the pioneering
work of J. Wishart [100]. Since this, the theory of random matrices has
been a fruitful contact point between statistics, pure and applied prob-
ability, combinatorics, non-commutative algebra, as well as differential
geometry and functional analysis.

The joint distribution of the eigenvalues of real valued Wishart
matrices is only known for full rank and isotropic models; that is when
the sample size is greater than the dimension, and the covariance matrix
P ∝ I is proportional to the identity matrix I; see for instance [34,
62]. In this situation, the matrix of random eigenvectors is uniformly
distributed on the manifold of unitary matrices equipped with the Haar
measure. In this context, marginal distributions for these uncorrelated
models can also be computed in a tractable form only for the smallest and
the largest eigenvalues. Sophisticated integral formulae for the marginal
distribution of intermediate eigenvalues are provided by Zanella–Chiani–
Win [104]. Upper bounds on the marginal distribution of the ordered
eigenvalues are given in [67].

The cumulative distribution of the largest eigenvalue of real Wishart
random matrices can be expressed explicitly in terms of the hyper-
geometric function of a matrix argument. These functionals can also
be described in terms of zonal polynomials. The smallest and largest
eigenvalue distributions can also be expressed in terms of Tricomi func-
tions [26]. For a detailed discussion on these objects we refer the reader
to the book of Muirhead [62]. As shown in [45], these hypergeometric
functions depends on alternating series involving zonal polynomials
which converge very slowly even in low dimensions. Some explicit calcu-
lations for r = 1, 2, 3 can be found in [88].

Full text available at: http://dx.doi.org/10.1561/2200000072



8 Introduction

Non-necessarily isotropic Wishart models can be considered if we
restrict our attention to linear transforms and other trace-type mathe-
matical objects. We refer to the articles of Letac and his co-authors [29,
47, 48, 91] and the tutorial [49]. See also [35, 50] for a description of
the joint distribution of traces of Wishart matrices.

To bypass the complexity of finding computable and tractable closed
form solutions, one natural and common method for obtaining useful
information is to derive limiting distributions as the dimension tends to
∞. In this context, one can analyze the convergence of the histogram of
the eigenvalues when the dimension tends to∞. This approach is central
in random matrix theory. We refer the reader to the pioneering article by
E. Wigner [98] published in 1955, the lectures notes of A. Guionnet [30],
the research monographs by M.L. Mehta [59] and T. Tao [89], and
the references therein. This commonly used limiting theory has some
drawbacks. Firstly, as the name suggests, these limiting techniques
cannot capture nor control the non-asymptotic fluctuations arising in
practical problems. Moreover, the limiting techniques developed in the
literature often yield information only on the limiting behaviour of trace
or spectral-type properties of random matrix powers. In addition, in
the context of Wishart matrices, these limiting spectral-type techniques
only apply to asymptotically isotropic-type models. To be more precise,
the convergence analysis relies on strong hypotheses on the bias and
the variance of the random matrix entries which are satisfied only for
Wishart matrices with a covariance matrix close to the identity (up
to some ad-hoc scaling factor). When P 6= I, the distribution of the
eigenvalues and the corresponding eigenvectors is much more involved.
The distribution of the sample eigenvalues depends on sophisticated
Harish-Chandra integrals [31].

Importantly, all the spectral and trace-type approaches discussed
above (whether in the limit or not) give no information on the random
matrix moments themselves, but rather on their eigenvalues or trace, etc.
Conversely, in many practical situations, such as in data assimilation
theory and signal processing (e.g. ensemble Kalman filter theory [11, 23,
9] and particle filtering [21]), we are typically interested in the direct
analysis of full matrix moments of interacting-type (non-independent)
sample covariance matrices. This study concerns a step in this latter
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1.1. Organisation 9

direction. Specifically, we derive formulae for the full matrix moments
of real valued Wishart random matrices. As a corollary, we derive and
extend a number of spectral and trace-type results for the case of non-
isotropic Wishart random matrices. Laplace matrix transforms and
matrix moment estimates are also studied, along with new spectral and
trace concentration-type inequalities.

1.1 Organisation

Section 1.2 is concerned with the description of real random Wishart
matrices and their fluctuation analysis. We also review some central
result in random matrix theory, such as the semi-circle law and the
Marchenko–Pastur law for isotropic Wishart matrices.

Section 1.3 provides a brief description of the main results of these
notes. We provide a closed form Taylor-type formula to compute the
matrix moments of PN , and its fluctuations defined in (1.2), w.r.t. the
precision parameter 1/N . We also present the full matrix version of
the semi-circle law and the Marchenko–Pastur law for non-necessarily
isotropic Wishart matrices. Non-asymptotic matrix moments and expo-
nential Laplace transforms are also provided. The last part of the section
is concerned with exponential concentration inequalities for operator
norms of fluctuation matrices and the eigenvalues of sample covariance
matrices.

The rest of these lecture notes is concerned with the precise statement
and proof of the theorems in Section 1.3. Some auxiliary outcomes and
discussion surrounding these results are also given.

Section 2 reviews some useful mathematical background on Laplace
and exponential inequalities, matrix norms, spectral analysis, tensor
products, Fréchet derivatives, and fluctuation-type results. This sec-
tion also contains a brief review of non-crossing partitions, Catalan,
Narayana, and Riordan numbers, Bell polynomials, and Murasaki and
circular-type representations of non-crossing partitions. The last part of
this section discusses Fréchet differentiable functionals on matrix spaces
and Taylor-type approximations.

Section 3 concerns closed form polynomial formulae for computing
the matrix moments of PN , and its fluctuations in (1.2), in terms of

Full text available at: http://dx.doi.org/10.1561/2200000072



10 Introduction

the precision parameter 1/N and some partition-type matrix moments.
The isotropic semi-circle law (1.8) and the Marchenko–Pastur law (1.10)
are simple consequences of these matrix moments expansions. New
matrix versions of the semi-circle and the Marchenko–Pastur law for
non-necessarily isotropic Wishart matrices are discussed in Section 3.2
and in Section 3.3.

Section 4 is concerned with some matrix moment estimates and
Laplace matrix transforms of the fluctuation matrix. Spectral and trace-
type concentration-type inequalities are discussed in Section 5. Section 6
is dedicated to the proof of the main theorems.

An appendix is also given containing the proof of a number of
technical results required throughout these notes.

1.2 Description of the models

We recall the multivariate central limit theorem

PN = P + 1√
N
HN

with
HN

law:= 1√
N

∑
1≤i≤N

(Xi − P ) ↪−→N→∞ H (1.2)

where H is a symmetric (r × r)-matrix with centered Gaussian entries
equipped with a symmetric Kronecker covariance structure

(H⊗H)] = 2 (P _⊗ P ) = E
[
(HN ⊗HN )]

]
(1.3)

where (A ⊗ B)] and (A _⊗ B) are the entry-wise and the symmetric
tensor product of matrices A and B. These products are defined at the
beginning of Section 2.3.

A detailed discussion on the fluctuation result (1.2) can be found
in [41]; see also [14] for non-necessarily Gaussian variables. The fluctua-
tion result (1.2) can also be deduced from the Laplace matrix transform
estimates stated in theorem 1.5 and corollary 4.5.

Combining a perturbation analysis with the continuous mapping
theorem, the central limit result (1.2) can be used to analyze the
fluctuation of smooth matrix functionals of the sample covariance matrix.
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1.2. Description of the models 11

Roughly speaking, given some smooth Fréchet differentiable mapping
Υ : Sr 7→ B from symmetric matrices Sr to some Banach space B, we
have the Taylor expansion

HΥ
N :=

√
N [Υ(PN )−Υ(P )]

= ∇Υ(P ) · HN + 1
2
√
N
∇2Υ(P ) · (HN ,HN ) + . . .

Using the unbiasedness properties of the sample covariance matrix, the
second order term gives the bias of the estimate Υ(PN ); that is we have
that

E
[
HΥ
N

]
= 1

2
√
N

E
[
∇2Υ(P ) · (H,H)

]
+ O

( 1
N

)
Equivalently, we have

E [Υ(PN )] = Υ(P ) + 1
2N E

[
∇2Υ(P ) · (H,H)

]
+ O

( 1
N3/2

)
For a more precise statement and several illustrations we refer the
reader to Section 2.6, theorem 2.2. For instance, for power functions
Υn(Q) := Qn, for any 1 ≤ m ≤ n we have

E
[
∇mΥn(P ) · H⊗mN

]

= m!
∑

0≤i1<...<im≤n
E

 ∏
1≤k≤m

[
P ik−ik−1−1 HN

]
= (n)m E(HmN ) when P = I

(1.4)

with the Pochhammer symbol (n)m := n!/(n−m)!, and the convention
(i0, im+1) = (0, n). In this context, the m-moments of the fluctuation
matrices HN represents the mean-error of order m. This property also
holds for rational powers. For instance, we have the non-asymptotic
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estimate on the Frobenius norm,∥∥∥E (√PN)−√P
+ 1

2N
√
P

[1
4 I +

∫ ∞
0

t Tr
(
P e−t

√
P
)
e−t
√
P dt

]∥∥∥∥
F

≤ r

4
1

N
√
N

λmin(P )−5/2
[
Tr(P 2) + Tr(P )2

]
(1.5)

The proof of this assertion is provided in Section 2.6.
To summarise the consequences of the preceding discussion, to

analyze these approximations at any order it is therefore necessary to
be able to compute the m-moments of the fluctuation matrices HN .

Gaussian approximation techniques also require one to estimate the
fluctuations of the moment E(HmN ) around those of E(Hm) given in
terms of the limiting Gaussian matrix H, and with respect to the sample
size parameter. Moreover, one often wants to control the behavior of
these objects when the dimension parameter tends to ∞.

The limiting random matrix model H discussed above is closely
related to Gaussian orthogonal ensembles arising in random matrix
theory. To be more precise, we can check that

H law= P 1/2
(W +W ′√

2

)
P 1/2 (1.6)

where W = (Wi,j)1≤i,j≤r is a matrix of independent, centred Gaussian
elements of unit variance.

When P = I, the random matrix H introduced in (1.6) reduces to
a Gaussian orthogonal ensemble. In this situation, we have

r−2 E
(
Tr
[
H2
])

= 1+r−1 and r−3 E
(
Tr
[
H4
])

= 2+5 r−2 +5 r−1

(1.7)
The trace of the higher moments E (Hn) can be estimated using the
semi-circle law (1.8) in large dimensions. This celebrated limiting result
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is proved using the convergence of moment property

r−1 E
(
Tr
([ H√

r

]n))
= 12N(n) Cn/2 +O (1/r) (1.8)

= 1
2π

∫ 2

−2
xn
√

4− x2 dx+O (1/r)

for any n ≥ 1, with the Catalan numbers

Cn := 1
n+ 1

(
2n
n

)
(1.9)

A proof of the above assertion via Wick’s theorem, including detailed
reference pointers is given in [30, Section 1.4], see also [60, Chapter 1].

When P = I and N = r/ρ for some parameter ρ > 0, another
important result is the Marchenko–Pastur law

lim
r→∞

r−1 E [Tr (PnN )]

=
∑

0≤m<n

ρm

m+ 1

(
n

m

) (
n− 1
m

)

=
∫ a+(ρ)

a−(ρ)
xn
[(

1− 1
ρ

)
+
δ0(dx) + 1

2πρx

√
[a+(ρ)− x] [x− a−(ρ)] dx

]

with the parameters

a−(ρ) := (1−√ρ)2 and a+(ρ) := (1 +√ρ)2

The proof of the above integral formula can be found in [101, lemma
5.2], see also [28, 65] and the pioneering article by Vladimir Marchenko
and Leonid Pastur [56]. A new proof of this result follows from the full
matrix version of the Marchenko–Pastur law given in corollary 3.3 of
these notes.

When P 6= I, formula (1.6) can be combined with Isserlis’ theo-
rem [33] (or Wick’s theorem [97]) to compute the matrix moments of
the random matrix H. For instance, we have E(H2n+1) = 0, for any
n ≥ 0. After some lengthy combinatorial computations we also find the
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matrix polynomials

E
(
H2
)

= P 2 + Tr(P )P

E
(
H4
)

= 5P 4 + 3Tr(P )P 3 +
[
Tr(P 2) + Tr(P )2

]
P 2

+
[
Tr(P 3) + Tr(P )Tr(P 2)

]
P

Although these matrix moments are given by a closed form formula, their
complex combinatorial structure cannot be used in simple calculations.
For example, the calculation of E

(
H2n) requires the matrix moments

associated with 2−n (2n)!/n! partitions over [2n] := {1, . . . , 2n} with
n-blocks. For n = 4, more than one hundred moments need to be
computed. The computational complexity to numerically compute the
central moments of the multivariate normal distribution is discussed
in [68]; see also [3, p. 49], [38, proposition 1], [62, p. 46], and the matrix
derivative formula in [92].

The above formulae also show that we cannot expect to have a
semi-circle-type law as in (1.7) for any covariance matrix. Different
types of behaviour can be expected depending on the behavior of the
eigenvalues of P w.r.t. the dimension parameter r. For instance, if the
largest eigenvalue is λ1(P ) = r, we have 1 ≤ r−1 Tr(P ) ≤ 2 but

E
(
Tr
[
H4
])
≥ 5 r4 =⇒ r−1 E

(
Tr
([ H√

r

]4
))
−→r→∞ ∞

1.3 Statement of some main results

One of the main objectives of these lecture notes is to analyze the
properties of real Wishart matrix moments. Let Pn be the set of all par-
titions π of [n] := {1, . . . , n}, Pn,m ⊂ Pn be the subset of all partitions
with m blocks π1 ≤ . . . ≤ πm ordered in a canonical way w.r.t. their
smallest element.

Let Qn ⊂ Pn and Qn,m ⊂ Pn,m be the subset of partitions without
the singleton. Also let απ :=

∑
1≤i≤m i 1πi . In other words, απ(i) is the

index of the block of π containing index i.
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1.3. Statement of some main results 15

The π-matrix moments M [Q]
π (P ) and M

◦,[Q]
π (P ) associated with

some collection of (r × r) matrices (Qi)i≥1 are defined by

M [Q]
π (P ) := E

(
[X− P ]Qπ

)
and M◦,[Q]

π (P ) := E
(
XQπ
)

(1.10)

with the random matrices

XQπ :=
∏

1≤i≤n

[
QiXαπ(i)

]
and

[X− P ]Qπ :=
∏

1≤i≤n

[
Qi(Xαπ(i) − P )

]
We also consider the matrix moments

M [Q]
n,m(P ) :=

∑
π∈Qn,m

M [Q]
π (P ) and M◦,[Q]

n,m (P ) :=
∑

π∈Pn,m
M◦,[Q]
π (P )

Our first main result provides polynomial formulae w.r.t. the preci-
sion parameter 1/N .

Theorem 1.1. For any collection of matrices Qn, and any 2N ≥ n ≥ 1,
we have the polynomial formulae

E [(Q1HN ) . . . (QnHN )] =
∑

1≤m≤bn/2c

1
Nn/2−m ∂[Q]

n,m(P ) (1.11)

with
∂[Q]
n,m(P ) :=

∑
m≤l≤bn/2c

s(l,m) M [Q]
n,l (P )

In addition, we have

E [(Q1PN ) . . . (QnPN )] =
∑

1≤m≤n

1
Nn−m ∂◦,[Q]

n,m (P ) (1.12)

with
∂◦,[Q]
n,m (P ) =

∑
m≤l≤n

s(l,m) M◦,[Q]
n,l (P )

In the above displayed formulae, s(l,m) are the Stirling numbers of the
first kind.
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For the detailed discussion of these matrix moments, including
several corollaries and examples, we refer to Section 3.1; see for example
theorem 3.1 when Qi = I.

To simplify notation, for homogeneous models Qi = I and sequences
of matrices P : r 7→ P (r) we suppress the indices (.)[I] and r, and write

(∂n,m(P ), ∂◦n,m(P ),Mπ(P ),M◦π(P ),Mn,l(P ),M◦n,l(P ))

instead of

(∂[I]
n,m(P (r)), ∂◦,[I]n,m (P (r)),M [I]

π (P ),M◦,[I]π (P ),M [I]
n,l(P (r)),M◦,[I]n,l (P (r)))

The polynomial formula (1.11) differs from the invariant moments
which can be derived using the algorithm presented in [47]. In the latter,
the authors provide an elegant spectral technique to interpret these
moments in terms of spherical polynomials and matrix-eigenfunctions
of Wishart integral operators; see [47, e.g. proposition 4.3]. A drawback
of this spectral method is that it requires one to diagonalize and invert
complex combinatorial matrices. It is difficult to use this technique
to derive estimates w.r.t. the sample size parameter. Matrix moment
formulae can also be derived from [73]. Nevertheless the resulting Isserlis-
type decompositions will involve complex series of summations over pair
partitions.

Beside the fact that the matrix moments M [Q]
n,l (P ) can be computed

using Isserlis’ theorem, to be the best of our knowledge no explicit and
closed form polynomial formulae in terms of P are known. In the further
development of these notes, we provide estimates of the fluctuation
matrix moments w.r.t. the sample size in terms of the dominating term
of the sum (1.11). A brief description of these estimates are provided in
theorem 1.5 below.

To move one step further in our discussion we assume that Qi = I

and n = 2m. In this situation the single dominating term in (1.11) is
given by the central matrix moments

∂2m,m(P ) = M2m,m(P ) (1.13)

This implies that

E
[
H2m
N

]
= M2m,m(P ) + O

( 1
N

)
I
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1.3. Statement of some main results 17

We say a partition is a crossing partition whenever we can find
i < j < k < l with i, k in a block and j, l in the other block. Let
Nn ⊂ Pn and Nn,m ⊂ Pn,m be the subsets of non-crossing partitions.

We denote by Σn(P ) the matrix polynomial given by

Σn(P ) := Tr(P )
∑
π∈Nn

∏
i≥0

Tr
(
P 1+i

)ri(π)
 P |π1|

Tr(P |π1|+1)
(1.14)

In the above display, r0(π) := n−
∑
i≥1 ri(π) where ri(π) is the number

of blocks of size i ≥ 1 in the partition π.
Also let Σ◦n,m(P ) be the matrix polynomial given by

Σ◦n,m(P ) :=
∑

π∈Nn,m

∏
i≥1

Tr(P i)ri(Ξ(π))

 P ι(π)

Tr
(
P ι(π)) (1.15)

In the above display, ι(π) denotes the number of blocks visible from
above in the Murasaki diagram associated with π; see Section 2.5 for
examples. The partition Ξ(π) ∈ Nn+1−m is defined in terms of a circular
representation of π. That is, firstly, we subdivide the n arcs of π ∈ Nn,m
by a new series of n nodes placed clockwise. Then Ξ(π) is the coarsest
non-crossing partition of these nodes whose chords don’t cross those of
π. For a detailed description of the mapping Ξ, and examples, we refer
Section 2.5; see e.g. (2.20).

Lets further assume that P : r 7→ P (r) is a collection of possibly
random matrices satisfying for any n ≥ 1 the almost sure convergence
of the moments

r−1 τn (P (r)) := r−1 Tr(P (r)n) −→r→∞ τn(P ) (1.16)

Also, let HN (r) and H(r) be the random matrix model defined as in
(1.2) and (1.6) by replacing P by P (r).

To simplify notation, we write

(H,HN ,M2n,n(P ),M◦n,m(P ),Σn(P ),Σ◦n,m(P ))

instead of

(H(r),HN (r),M2n,n(P (r)),M◦n,m(P (r)),Σn(P (r)),Σ◦n,m(P (r)))
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In this notation, the next theorem relates the matrix moments (Σn(P ),
Σ◦n,m(P )) with the matrix moments (Mn,m(P ),M◦n,m(P )) and the ones
of the Gaussian matrix H.

Theorem 1.2. Let P : r 7→ P (r) be a collection of possibly random
matrices satisfying the condition (1.16). In this situation, the central
matrix moments M2n,n(P ) coincide with the ones of the limiting Gaus-
sian matrix. In addition, for any n ≥ m ≥ 1 we have the matrix moment
estimates

M2n,n(P ) = E
(
H2n

)
= Σn(P ) + O

(
rn−1

)
I

M◦n,m(P ) = Σ◦n,m(P ) + O
(
rn−m−1

)
I

(1.17)

For a proof and a more detailed discussion on these matrix moment
relations we refer to Section 3.2 and Section 3.3; see e.g. theorem 3.4,
theorem 3.5 and theorem 3.7.

The first line estimate in (1.17) is a consequence of the decomposition
(3.1) and theorem 3.4. The second line estimate in (1.17) is a consequence
of the estimates (3.18) and theorem 3.7.

Theorem 1.2 together with (1.13) yields the estimates

r−(n+1) E
(
H2n

)
= Σn(P ) + O

(
r−1

)
Ir

as well as

E
[
H2n
N

]
= E

(
H2n

)
+ O

(
N−1

)
I

We also have

r−(n−m+1)M◦n,m(P ) = Σ◦n,m(P ) + O
(
r−1

)
Ir with Ir := r−1 I

with the matrix polynomials (Σn(P ),Σ◦n,m(P )) defined similarly to(
Σn(P ),Σ◦n,m(P )

)
but with the trace operator replaced by the normal-

ized traces
T r(Q) := r−1 Tr(Q)

A more refined estimate between E
[
H2n
N

]
and E

(
H2n) can be found

later in theorem 1.5.
The first line assertion in (1.17) in theorem 1.2 provides a semi-

circle-type asymptotic theorem when the dimension parameter tends
to ∞.
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Corollary 1.3. Under the assumptions of theorem 1.2, we have the
extended semi-circle law

r−1 E
(
Tr
([ H√

r

]2n
))

= σn(P ) +O
(
r−1

)
with

σn(P ) := 2
∑
µ

(
n

µ1 µ2 . . . µn

)
τµ(P ) and τµ(P ) :=

∏
1≤i≤n

τi(P )µi

(1.18)
In the above display, the summation is taken over all collection of
non-negative indices µ = (µ1, . . . , µn) such that∑

1≤i≤n
µi = n+ 1 and

∑
1≤i≤n

iµi = 2n (1.19)

For instance, we have

σ1(P ) = τ1(P )2

σ2(P ) = 2 τ1(P )2 τ2(P )
σ3(P ) = 2 τ1(P )3 τ3(P ) + 3 τ1(P )2 τ2(P )2

σ4(P ) = 2 τ1(P )4 τ4(P ) + 8 τ1(P )3 τ2(P ) τ3(P ) + 4 τ1(P )2 τ2(P )3

σ5(P ) = 2 τ1(P )5 τ5(P ) + 10 τ1(P )4 τ2(P ) τ4(P ) + 5 τ1(P )4 τ3(P )2

+ 20 τ1(P )3 τ2(P )2 τ3(P ) + 5 τ1(P )2 τ2(P )4

Observe that σn(α I) = Cn α
2n, for any α ≥ 0. These formulae can be

checked combining (3.16) and (3.17) with corollary 3.6. Matrix-valued
free probability techniques can also be used to recover the above matrix
moment formula [66, 86, 87, 90, 95].

To the best of our knowledge the extended and matrix version of the
semi-circle law stated in the above theorem have not been considered
in the literature. See also Section 3.2.

Also recall that Carleman’s condition∑
n≥1

σn(P )−1/(2n) =∞

ensures the existence and uniqueness of a random variable with null
odd moments and the (2n)-moments σn(P ) defined in corollary 1.3
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(cf. [1, 16] and p. 296 in [78]). For instance, when P = I we have

σn(I) = Cn '
22n

n3/2√π
≤ 22n

This implies that

σn(I)−1/(2n) ≥ 1
2 =⇒

∑
n≥1

σn(I)−1/(2n) =∞

In this case, the random variable with null odd moments and the
(2n)-moments σn(I) is given by the semi-circle law (1.8).

Another direct consequence of theorem 1.2 is the Marchenko–Pastur
law for non-isotropic Wishart matrices due to Y.Q. Yin [102, 103]; see
also [18] and [80].

Corollary 1.4 ([102, 103]). Consider a collection P : r 7→ P (r) of
possibly random matrices satisfying the condition stated in (1.16). Let
N = r/ρ be a scaling of the sample size in terms of the dimension
associated with some parameter ρ > 0. For any n ≥ 1 we have the
Kreweras-type formula

lim
r→∞

r−1 Tr (E [PnN ]) =
∑

1≤m≤n
ρn−m

∑
µ`[n] : m+|µ|=n+1

K (µ) τµ(P )

with the trace parameters τµ(P ) and the Kreweras numbers K (µ)
defined in (1.18) and later in (2.13).

When P = I the above limit result reduces to

lim
r→∞

r−1 E [Tr (PnN )] =
∑

1≤m≤n
ρn−m Nn,m

In this situation, we also have the centered version limiting result

lim
r→∞

r−1E (Tr ([PN − I]n)) =
∑

1≤m≤bn/2c
ρn−m Rn,m

In the above display, Nn,m and Rn,m denote the Narayana and the
Riordan numbers defined later in (2.13) and (2.15). The matrix version
of these isotropic results can be found in corollary 3.3 with the trace-
type Marchenko–Pastur law (1.10) a simple corollary. See Section 3.3
for a new matrix version of a non-isotropic Marchenko–Pastur law.
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Our third main result concerns moment estimates. We let ‖.‖op
and ‖.‖F denote the operator norm and the Frobenius norm. In this
notation, we have the following theorem.

Theorem 1.5. For some sufficiently small time horizon and for any
sufficiently large sample size and any n ≥ 1 we have the estimates

N ‖E
[
H2n
N

]
− E

[
H2n

]
‖F ≤ cn1 (2n)n Tr(P )2n

√
N ‖E (exp (tHN ))− E (exp (tH)) ‖F ≤ c2 (tTr(P ))3

E [‖H‖op] ∧ E [‖HN‖op] ≤ c3
√
r λ1(P )

for some finite universal constants c1, c2, c3 <∞ whose values do not
depend on the dimension parameter, nor on the parameter n.

In the above display, λ1(P ) = ‖P‖op denotes the maximal eigenvalue
of P (cf. 2.2).

A more precise statement with a more detailed description of the
constants is provided in Section 4 and Section 5; see for instance the-
orem 4.1, theorem 4.4, corollary 4.5, and theorem 5.4. The operator
norm estimate stated in the above theorem extends the norm esti-
mate for isotropic random vectors presented in [75] in the context of
Gaussian random matrices. These norm-type bounds are based on non-
commutative versions of Khintchine-type inequalities for Rademacher
series presented in [54, 55]. More sophisticated approaches based on
Burkholder/Rosenthal martingale-type inequalities are also developed
in [36, 37]. Nevertheless these inequalities cannot be used to estimate
random operator norms and the constants are often not explicit.

The last part of these lecture notes is concerned with non-asymptotic
exponential concentration inequalities for traces and the operator norm
of the fluctuation matrix. In this context, our main results can be stated
as follows.

Theorem 1.6. For any symmetric matrix A, any δ ≥ 0, and any suffi-
ciently large sample size the probabilities of the following events

|Tr(AHN )| ≤ c1

√
(δ + 1)

[
Tr((AP )2) + ‖AP‖2F

]
‖HN‖op ≤ c2 λ1(P )

√
δ + r

sup
1≤k≤r

|λk(PN )− λk(P )| ≤ c2 λ1(P )
√

(δ + r)/N
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are greater than 1− e−δ, where c1, c2 denote some universal constants.

In the above display, λi(PN ) and λi(P ) denote the ordered (decreas-
ing in magnitude) eigenvalues of PN , resp. P (cf. 2.2). For a precise
statement of this result and a detailed description of the constants c1, c2
we refer to Section 5; see in particular Section 5.2 and theorem 5.2,
theorem 5.4 and corollary 5.5.

The proof of the trace-type concentration inequality is based on sub-
Gaussian Laplace estimates of well known Wishart trace-type Laplace
transforms (5.5). See Section 5.2 for a description of these sub-Gaussian
estimates; e.g. see (5.7) and the first assertion in theorem 5.2. The
operator norm concentration inequality comes from the variational
formulation

‖HN‖op = sup
x,y∈B

〈HNx, y〉 = sup
A∈A

Tr(AHN ) (1.20)

where B is the unit ball in Rr equipped with the Euclidian distance and
A is the set of matrices

A := {A =
(
xy′ + y′x

)
/2 : x, y ∈ B} (1.21)

The last spectral concentration estimate is a direct consequence of
Weyl’s inequality (2.5).

We end this section with some comparisons of the above concentra-
tion inequalities with existing results in random matrix theory. When
P = I the joint density of the random eigenvalues of PN is explicitly
known; see e.g. [4]. Elegant Sanov-type large deviation principles for
the spectral empirical measures have been developed by G. Ben Arous
and A. Guionnet [5]. The literature also consists of non-asymptotic
concentration inequalities for sums of independent random matrices.
We refer to the seminal book of J. Tropp [93] for the state of the art on
these topics. See also the review [94].

We also emphasize that the Laplace transform-type techniques devel-
oped in the present study differ from the ones based on Lieb’s inequality
(4.13). The latter are often used to control the largest eigenvalue of
a random matrix using trace-type estimates; see proposition 4.4 and
Section 4.5 in [93].
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Other types of models have been considered in the literature leading
to different results. For example, Gaussian concentration inequalities
have been derived for Rademacher and Gaussian series associated with
deterministic self-adjoint matrices; see e.g. theorem 2.1 in [93]. Matrix
Hoeffding, Bernstein and Azuma-type inequalities have been derived for
almost surely bounded random matrices; see theorem 2.8 and theorem 8.1
in [93]. The concentration results developed in the present notes provide
more refined estimates, but of course they are restricted to random
Wishart matrix models.
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