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ABSTRACT

Online auctions are one of the most fundamental facets
of the modern economy and power an industry generating
hundreds of billions of dollars a year in revenue. Auction
theory has historically focused on the question of designing
the best way to sell a single item to potential buyers, with
the concurrent objectives of maximizing revenue generated
or welfare created. Theoretical results in this area have
typically relied on some prior Bayesian knowledge agents
were assumed to have on each other. This assumption is no
longer satisfied in new markets such as online advertising;:
similar items are sold repeatedly, and agents are unaware of
each other or might try to manipulate each other. On the
other hand, statistical learning theory now provides tools
to supplement those missing pieces of information given
enough data, as agents can learn from their environment to
improve their strategies.

This monograph covers recent advances in learning in re-
peated auctions, starting from the traditional economic
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study of optimal one-shot auctions with a Bayesian prior.
We then focus on the question of learning optimal mecha-
nisms from a dataset of bidders’ past values. The sample
complexity as well as the computational efficiency of differ-
ent methods will be studied. We will also investigate online
variants where gathering data has a cost to be accounted
for, either by sellers or buyers (“earning while learning”).
Later in the monograph, we will further assume that bid-
ders are also adaptive to the mechanism as they interact
repeatedly with the same seller. We will show how strategic
agents can actually manipulate repeated auctions, to their
own advantage. A particularly interesting example is that
of reserve price improvements for strategic buyers in second
price auctions.

All the questions discussed in this monograph are grounded
in real-world applications and many of the ideas and algo-
rithms we describe are used every day to power the Internet
economy.
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1

Introduction: Scope and Motivation

The main purpose of auction theory is to construct a set of rules that
will be used by a seller to sell one or several items to a group of potential
buyers, who will send messages (or bids) to the seller — usually indicating
how much they value the item or how much they are willing to pay to
acquire it. In almost all cases, it is sufficient to define only two rules.
First, the allocation rule describes which buyer wins the auction (if a
unique non-divisible item is sold), depending on the different messages
received; if the item is divisible, the allocation rule describes how the
item is shared between winners. Second, the payment rule indicates to
buyers how much they are going to pay to the seller, again based on the
different messages. Those rules are known publicly before the auction
starts, and they influence the behavior, or strategy, of the different
buyers.

When choosing an allocation and a payment rule, the seller might
have several constraints to respect: 1) maximizing the revenue she
is getting from the auction (revenue maximization); 2) ensuring the
participation of buyers in the auction and making sure they have an
incentive to participate (individual rationality); 3) ensuring that given
the rules of the auction, it is in the best interest of buyers to reveal how
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much they truly value an item (incentive compatibility) as it may make
revenue maximization easier. On the other side of the game, the buyers
strategically adjust the bids sent to the seller depending on auction
rules in order to maximize their own utility.

Historically, auctions have often been designed so that buyers have
an incentive to bid in a way that reflects how much they truly value the
items that are for sale. This constraint still leaves plenty of choices for
auction design, and a large part of the literature has focused on design-
ing auctions that maximize the seller’s revenue, assuming buyers are
rational. However, with the advent of the Internet and the automation of
auctions, the landscape of possible applications has changed drastically,
necessitating more complex settings to accurately study the incentives
and behaviors at play. More recently, the auction literature has aimed
at understanding how the design of an auction platform impacts seller’s
revenue, and the global welfare and behavior of buyers and sellers in
contexts where sellers (and sometimes buyers) participate in a very large
number of auctions each day. These setups reflect situations appearing
in modern online marketplaces.

1.1 Bayesian mechanism design

Auction theory has focused for a long time on the simplest case: there
is a single, non-divisible item to be sold to a set of predefined buyers
in a one-shot auction. The chosen mechanism indicates which buyer (if
any) gets the item and at which price. The seminal works of Vickrey
(1961), Myerson (1981) and Riley and Samuelson (1981) emphasize the
importance of the information structure of an auction system. It consists
of the information owned privately by the buyers and the information
that the seller has on each buyer. This information owned privately by
the buyers is the value they give to the item, i.e, the highest price they
are willing to pay to get the item. The uncertainties upon these different
values lie at the gist of the seller’s optimization problem: otherwise, she
would just have to sell the item to the buyer with the highest value, at
this price or infinitesimally less.

To handle this deficit of information about buyers, it is standard
to take a “Bayesian” viewpoint and assume that the seller has some
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probabilistic prior on the values given to the item by each bidder.
This prior distribution is usually called the value distribution and it
encompasses the seller’s uncertainty on a specific bidder’s values. There
are of course several possibilities for how this value distribution is
constructed. For instance, in wine or art auctions, it often comes from
expert knowledge about an admissible price for a good wine bottle or
for an important piece of art.

1.2 Learning theory and auction design

It is now possible for Internet platforms to run billions of auctions a day
and store most of the historical data coming from them. This digitization
of auction mechanisms was the first step into gathering data to optimize
selling mechanisms. Auctions are now used in most Internet platforms to
organize interactions between the different stakeholders. eBay was one of
the first big online platforms to use ascending auction to sell objects on
the platform. Google and most search engines companies started to use
auctions to sell ad opportunities on their front page. For instance, they
let advertisers bid on some keywords to get sponsored links above the
first results for a certain user query. Nowadays, Facebook and LinkedIn
are also using them to determine which ad to display, Amazon and
most e-commerce marketplaces decide which products are going to
be sponsored (and/or advertised) through an auction mechanism and
auctions are also used to sell carbon permits by the European Union or
to run large electricity markets.

To exploit this new source of available information (i.e., enormous
datasets of past bids), practitioners used advanced statistical learning
algorithms in connection with the classical Bayesian theory. Indeed,
beyond the Al hype, machine learning algorithms are now widely applied
in the industry for numerous applications: the value distribution is no
longer coming from some given and fixed prior, but learned (hopefully
accurately and efficiently) on historical— bidding—data. The first large-
scale field experiment in production showed how engineers at Yahoo
could handle their huge datasets to learn an optimal reserve price
per key word (Ostrovsky and Schwarz, 2011). This results in data-
driven mechanisms whose design use techniques coming from a large
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variety of fields, including statistics, machine learning, game theory and
Economics. Similarly, bidders on these online platforms also gather data
and use new statistical learning techniques to improve their bidding
strategies against automated mechanisms. This flood of data and the
associated paradigm shift it constitutes opens many new interesting
practical problems, new theoretical questions and new interesting games
to study.

1.2.1 Repeated auctions only from a seller’s standpoint

The first natural repeated game setting consists of understanding how
the seller can learn a revenue-maximizing auction mechanism from a
dataset of bids or values. In the example of eBay marketplace, the
seller (eBay) observes numerous auctions a day for similar items. Hence,
from its point of view, the mechanism is repeated and she can aim
at optimizing some long-term revenue. On the contrary, buyers are
individuals that participate in a few, if not a single, auctions at best.
Then, from their point of the view, the mechanism still looks like a
one-shot auction and they are bound to implement myopic short-term
strategies, optimizing point-wisely their utility (by opposition to long-
term and effectively in expectation). Let us consider the simplifying
assumption where bidder values on the platform are sampled from a
certain unknown distribution, that encompasses the variability in their
readiness to pay a certain price. Assuming the bidders actually bid
their true value (for instance, if the mechanism chosen is fixed and
“incentive-compatible”, i.e., bidding one’s value is optimal for buyers),
the seller has then access at the end of the day to a dataset of buyer
values.

Inspired by the computational learning formalism, Elkind (2007),
Balcan et al. (2008), and Cole and Roughgarden (2014) initiated a line
of research aiming at finding approximations of the revenue-maximizing
auction, if possible, efficiently, with approximation guarantees depending
on the size of the dataset gathered (a.k.a., the sample complexity). This
setting is called the batch learning setting. A variant considers the case
where the flow of buyers is continuously coming on the platform and
the seller can update continuously her mechanism. This is the online
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learning setting introduced in Cesa-Bianchi et al. (2014). In all these
problems, it is crucial that the samples gathered in the dataset have
the same distribution as the samples that will be gathered and treated
in the future.

1.2.2 Repeated auctions from seller and bidder standpoint

The crucial assumption of myopic/short-sighted /impatient bidders fac-
ing a patient seller is unfortunately not necessarily satisfied, depend-
ing on the setting. In modern-day practice, typically large online ad
platforms, such as Google DoubleClick or AppNexus, are selling ad
opportunities for large publishers such as some of the biggest online
newspapers. The main difference with the aforementioned eBay example
is that only a few companies are actually bidding in these auctions.
They are furthermore doing so repeatedly and participating in a massive
number of auctions.

Indeed, most companies willing to display ads actually rely on third-
parties, demand-side platforms (DSP), that are buying and displaying
ads for them (because of technical constraints, even sending bids in
real-time might actually be quite complex). These aggregated bidders
are repeatedly interacting with the (same) seller, billions of times a
day. Consequently, this type of buyer can also optimize for long-term
utility and need not be myopic. Thus, even if the seller is using one-shot
incentive compatible auctions - for instance to gather data in order
to later design and switch to a revenue maximizing mechanism -, the
bidder might have an interest in not bidding “truthfully”, as classical
theory would suggest is optimal for them. Indeed, if buyers do not bid
their values, this will modify the distribution of “values” observed by the
seller. Subsequently, the mechanism chosen to optimize their revenue
will be different from what it would have been had the bidders been
naive, to the advantage of the buyers (Tang and Zeng, 2018; Nedelec
et al., 2019b).

Intuitively, this is possible because the information asymmetry that
arose in the eBay example between the seller and the bidders — one
optimizing over the long-term, the other over the short-term — is almost
reversed. If the seller must commit to a specific mechanism or a family



Full text available at: http://dx.doi.org/10.1561/2200000077

8 Introduction: Scope and Motivation

of mechanisms, for instance for contractual reasons, and buyers have
this information, they can strategically leverage it by, for example,
changing their bidding behavior. In the end, the respective utilities of
the seller and buyers will somehow depend on the underlying amount of
asymmetry between them. Several works have started studying various
intermediate settings, for example, when bidders are (almost) identical
(Kanoria and Nazerzadeh, 2014), or are patient, but not as patient as
the seller (Amin et al., 2013), etc.

1.3 Organization of the monograph

In this monograph, our overarching objective is to provide a widely
accessible introduction to the fascinating topics of classical and modern
auction theory while bringing to the fore the statistical and machine
learning lenses to the topic. We will very clearly state the differences
between the different information-asymmetry settings we will review,
and point to cutting edge theoretical and practical solutions adapted to
them. We will also show how new statistical tools can be used to tackle
some important and well-known problems from Economics. Furthermore,
those questions open many new interesting problems in Economics since
algorithms are replacing classical sellers and buyers. We believe that
modern auction theory offers a nice framework to understand what data
and Computer Science can bring to modern Economics.

In Section 2, we survey the main results of the Bayesian auction
literature, initiated with the seminal works of Vickrey and Myerson.
Those results form some of the backbone of classical auction theory and
are widely used in Internet practice. We will recall what is the revenue-
maximizing auction once the seller has a prior on bidder’s valuations
and introduce some approximations of the revenue-maximizing auction
when the seller must use simpler auctions. In Section 3, we focus on
the setting derived from the eBay use case and tackle both the batch
learning setting and the online learning setting. We recall some key
concepts of statistical learning theory, derive the sample complexity of
some of the learning algorithms used to compute a revenue-maximizing
auction and show their computational complexity. In Section 4, we focus
on the less studied but crucially important setting where bidders can
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be strategic regarding the mechanism itself since they have multiple
interactions with the seller. We review some of the main methods
that have been devised to keep bidders from being strategic in that
context, show their limitations and introduce some very new results
and approaches developed for bidders to take advantage of the seller’s
learning process.

This monograph only assumes basic familiarity with standard notions
of Machine Learning, Statistics and Data Science and is written with a
reader having this background in mind. We hope our monograph will
be useful to engineers and researchers looking for an introduction to
the beautiful and fast developing topics of modern auction theory and
applications.
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