
Data Analytics on Graphs
Part I: Graphs and Spectra

on Graphs

Full text available at: http://dx.doi.org/10.1561/2200000078-3



Other titles in Foundations and Trends® in Machine Learning

Spectral Learning on Matrices and Tensors
Majid Janzamin, Rong Ge, Jean Kossaifi and Anima Anandkumar
ISBN: 978-1-68083-640-0

An Introduction to Variational Autoencoders
Diederik P. Kingma and Max Welling
ISBN: 978-1-68083-622-6

Elements of Sequential Monte Carlo
Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schon
ISBN: 978-1-68083-632-5

Introduction to Multi-Armed Bandits
Aleksandrs Slivkins
ISBN: 978-1-68083-620-2

Full text available at: http://dx.doi.org/10.1561/2200000078-3



Data Analytics on Graphs Part I:
Graphs and Spectra on Graphs

Ljubiša Stanković
University of Montenegro
Montenegro
ljubisa@ucg.ac.me

Danilo Mandic
Imperial College London
UK
d.mandic@imperial.ac.uk

Miloš Daković
University of Montenegro
Montenegro
milos@ucg.ac.me

Miloš Brajović
University of Montenegro
Montenegro
milosb@ucg.ac.me

Bruno Scalzo
Imperial College London
UK
bruno.scalzo-dees12@imperial.ac.uk

Shengxi Li
Imperial College London
UK
shengxi.li17@imperial.ac.uk

Anthony G. Constantinides
Imperial College London
UK
a.constantinides@imperial.ac.uk

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2200000078-3



Foundations and Trends R© in Machine Learning

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo, S. Li and A. G.
Constantinides. Data Analytics on Graphs Part I: Graphs and Spectra on Graphs.
Foundations and TrendsR© in Machine Learning, vol. 13, no. 1, pp. 1–157, 2020.

ISBN: 978-1-68083-983-8
c© 2020 L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo, S. Li and
A. G. Constantinides

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2200000078-3



Foundations and Trends R© in Machine Learning
Volume 13, Issue 1, 2020

Editorial Board

Editor-in-Chief
Michael Jordan
University of California, Berkeley
United States

Editors

Peter Bartlett
UC Berkeley

Yoshua Bengio
Université de Montréal

Avrim Blum
Toyota Technological
Institute

Craig Boutilier
University of Toronto

Stephen Boyd
Stanford University

Carla Brodley
Northeastern University

Inderjit Dhillon
Texas at Austin

Jerome Friedman
Stanford University

Kenji Fukumizu
ISM

Zoubin Ghahramani
Cambridge University

David Heckerman
Amazon

Tom Heskes
Radboud University

Geoffrey Hinton
University of Toronto

Aapo Hyvarinen
Helsinki IIT

Leslie Pack Kaelbling
MIT

Michael Kearns
UPenn

Daphne Koller
Stanford University

John Lafferty
Yale

Michael Littman
Brown University

Gabor Lugosi
Pompeu Fabra

David Madigan
Columbia University

Pascal Massart
Université de Paris-Sud

Andrew McCallum
University of
Massachusetts Amherst

Marina Meila
University of Washington

Andrew Moore
CMU

John Platt
Microsoft Research

Luc de Raedt
KU Leuven

Christian Robert
Paris-Dauphine

Sunita Sarawagi
IIT Bombay

Robert Schapire
Microsoft Research

Bernhard Schoelkopf
Max Planck Institute

Richard Sutton
University of Alberta

Larry Wasserman
CMU

Bin Yu
UC Berkeley

Full text available at: http://dx.doi.org/10.1561/2200000078-3



Editorial Scope
Topics

Foundations and Trends R© in Machine Learning publishes survey and tutorial
articles in the following topics:

• Adaptive control and signal
processing

• Applications and case studies

• Behavioral, cognitive and
neural learning

• Bayesian learning

• Classification and prediction

• Clustering

• Data mining

• Dimensionality reduction

• Evaluation

• Game theoretic learning

• Graphical models

• Independent component
analysis

• Inductive logic programming

• Kernel methods

• Markov chain Monte Carlo

• Model choice

• Nonparametric methods

• Online learning

• Optimization

• Reinforcement learning

• Relational learning

• Robustness

• Spectral methods

• Statistical learning theory

• Variational inference

• Visualization

Information for Librarians

Foundations and Trends R© in Machine Learning, 2020, Volume 13, 6
issues. ISSN paper version 1935-8237. ISSN online version 1935-8245.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2200000078-3



Contents

1 Introduction 3

2 Graph Definitions and Properties 7
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Some Frequently Used Graph Topologies . . . . . . . . . . 14
2.3 Properties of Graphs and Associated Matrices . . . . . . . 19

3 Spectral Decomposition of Graph Matrices 29
3.1 Eigenvalue Decomposition of the Adjacency Matrix . . . . 29
3.2 Spectral Graph Theory . . . . . . . . . . . . . . . . . . . 32
3.3 Eigenvalue Decomposition of the Graph Laplacian . . . . . 39

4 Vertex Clustering and Mapping 49
4.1 Clustering Based on Graph Topology . . . . . . . . . . . . 50
4.2 Spectral Methods for Graph Clustering . . . . . . . . . . . 58
4.3 Spectral Clustering Implementation . . . . . . . . . . . . . 75
4.4 Vertex Dimensionality Reduction Using the

Laplacian Eigenmaps . . . . . . . . . . . . . . . . . . . . 91
4.5 Pseudo-Inverse of Graph Laplacian-Based Mappings . . . . 104
4.6 Summary of Embedding Mappings . . . . . . . . . . . . . 116

Full text available at: http://dx.doi.org/10.1561/2200000078-3



5 Graph Sampling Strategies 118
5.1 Graph Down-Sampling Strategies . . . . . . . . . . . . . . 118
5.2 Graph Sparsification . . . . . . . . . . . . . . . . . . . . . 120
5.3 Graph Coarsening . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Kron Reduction of Graphs . . . . . . . . . . . . . . . . . . 133

6 Conclusion 134

Appendices 136

A Power Method for Eigenanalysis 137

B Algorithm for Graph Laplacian Eigenmaps 141

C Other Graph Laplacian Forms 143
C.1 Graph Laplacian for Directed Graphs . . . . . . . . . . . . 143
C.2 Signed Graphs and Signed Graph Laplacian . . . . . . . . 145
C.3 Graph p-Laplacian . . . . . . . . . . . . . . . . . . . . . . 146

Acknowledgments 148

References 149

Full text available at: http://dx.doi.org/10.1561/2200000078-3



Data Analytics on Graphs Part I:
Graphs and Spectra on Graphs
Ljubiša Stanković1, Danilo Mandic2, Miloš Daković3, Miloš
Brajović4, Bruno Scalzo5, Shengxi Li6 and Anthony G. Constantinides7

1University of Montenegro, Montenegro; ljubisa@ucg.ac.me
2Imperial College London, UK; d.mandic@imperial.ac.uk
3University of Montenegro, Montenegro; milos@ucg.ac.me
4University of Montenegro, Montenegro; milosb@ucg.ac.me
5Imperial College London, UK; bruno.scalzo-dees12@imperial.ac.uk
6Imperial College London, UK; shengxi.li17@imperial.ac.uk
7Imperial College London, UK; a.constantinides@imperial.ac.uk

ABSTRACT
The area of Data Analytics on graphs promises a paradigm
shift, as we approach information processing of new classes
of data which are typically acquired on irregular but struc-
tured domains (such as social networks, various ad-hoc sen-
sor networks). Yet, despite the long history of Graph Theory,
current approaches tend to focus on aspects of optimisation
of graphs themselves rather than on eliciting strategies rel-
evant to the objective application of the graph paradigm,
such as detection, estimation, statistical and probabilistic
inference, clustering and separation from signals and data
acquired on graphs. In order to bridge this gap, we first
revisit graph topologies from a Data Analytics point of
view, to establish a taxonomy of graph networks through
a linear algebraic formalism of graph topology (vertices,
connections, directivity). This serves as a basis for spectral

Ljubiša Stanković, Danilo Mandic, Miloš Daković, Miloš Brajović, Bruno
Scalzo, Shengxi Li and Anthony G. Constantinides (2020), “Data Analytics on
Graphs Part I: Graphs and Spectra on Graphs”, Foundations and TrendsR© in
Machine Learning: Vol. 13, No. 1, pp 1–157. DOI: 10.1561/2200000078-1.
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analysis of graphs, whereby the eigenvalues and eigenvectors
of graph Laplacian and adjacency matrices are shown to
convey physical meaning related to both graph topology and
higher-order graph properties, such as cuts, walks, paths,
and neighborhoods. Through a number of carefully chosen
examples, we demonstrate that the isomorphic nature of
graphs enables both the basic properties of data observed
on graphs and their descriptors (features) to be preserved
throughout the data analytics process, even in the case of
reordering of graph vertices, where classical approaches fail.
Next, to illustrate the richness and flexibility of estimation
strategies performed on graph signals, spectral analysis of
graphs is introduced through eigenanalysis of mathematical
descriptors of graphs and in a generic way. Finally, benefit-
ing from enhanced degrees of freedom associated with graph
representations, a framework for vertex clustering and graph
segmentation is established based on graph spectral repre-
sentation (eigenanalysis) which demonstrates the power of
graphs in various data association tasks, from image cluster-
ing and segmentation trough to low-dimensional manifold
representation. The supporting examples demonstrate the
promise of Graph Data Analytics in modeling structural and
functional/semantic inferences. At the same time, Part I
serves as a basis for Part II and Part III which deal with
theory, methods and applications of processing Data on
Graphs and Graph Topology Learning from data.

Keywords: graph theory; random data on graphs; big data on graphs;
signal processing on graphs; machine learning on graphs; graph
topology learning; systems on graphs; vertex-frequency estimation;
graph neural networks; graphs and tensors.
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1
Introduction

Data analytics on graphs is a multidisciplinary research area, of which
the roots can be traced back to the 1970s (Afrati and Constantinides,
1978; Christofides, 1975; Morris et al., 1986), one that is witnessing
significant rapid growth. The recent developments, in response to the
requirements posed by radically new classes of data sources, typically
embark upon the classical results on “static” graph topology optimiza-
tion, to treat graphs as irregular data domains, which make it possible
to address completely new paradigms of “information processing on
graphs” and “signal processing on graphs”. This has already resulted
in advanced and physically meaningful solutions in manifold applica-
tions (Grady and Polimeni, 2010; Jordan, 1998; Krim and Hamza, 2015;
Marques et al., 2017; Ray, 2012). For example, while the emerging
areas of Graph Machine Learning (GML) and Graph Signal Process-
ing (GSP) do comprise the classic methods of optimization of graphs
themselves (Bapat, 1996; Bunse-Gerstner and Gragg, 1988; Fujiwara,
1995; Grebenkov and Nguyen, 2013; Jordan, 2004; Maheswari and
Maheswari, 2016; O’Rourke et al., 2016), significant progress has been
made towards redefining basic data analysis objectives (spectral es-
timation, probabilistic inference, filtering, dimensionality reduction,

3
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4 Introduction

clustering, statistical learning), to make them amenable for direct es-
timation of signals on graphs (Chen et al., 2014; Ekambaram, 2014;
Gavili and Zhang, 2017; Hamon et al., 2016a; Moura, 2018; Sandryhaila
and Moura, 2013, 2014a,b; Shuman et al., 2013; Vetterli et al., 2014;
Wainwright et al., 2008). Indeed, this is a necessity in numerous practi-
cal scenarios where the signal domain is not designated by equidistant
instants in time or a regular grid in a space or a transform domain.
Examples include modern Data Analytics for e.g., social network mod-
eling or in smart grid – data domains which are typically irregular
and, in some cases, not even related to the notions of time or space,
where ideally, the data sensing domain should also reflect domain-
specific properties of the considered system/network; for example, in
social or web related networks, the sensing points and their connec-
tivity may be related to specific individuals, objectives, or topics, and
their relations, whereby the processing on irregular domains requires
the consideration of data properties other than time or space relation-
ships. In addition, even for the data sensed in well-defined time and
space domains, the new contextual and semantic-related relations be-
tween the sensing points, introduced through graphs, promise to equip
problem definition with physical relevance, and consequently provide
new insights into analysis and can lead to enhanced data processing
results.

In applications which admit the definition of the data domain as a
graph (such as social networks, power grids, vehicular networks, and
brain connectivity), the role of classic temporal/spatial sampling points
is assumed by graph vertices – the nodes – where the data values
are observed, while the edges between vertices designate the existence
and nature of vertex connections (directionality, strength). In this way,
graphs are perfectly well equipped to exploit the fundamental relations
among both the measured data and the underlying graph topology;
this inherent ability to incorporate physically relevant data properties
has made GSP and GML key technologies in the emerging field of Big
Data Analytics (BDA). Indeed, in applications defined on irregular
data domains, Graph Data Analytics (GDA) has been shown to offer a
quantum step forward from the classical time (or space) series analyses
(Brouwer and Haemers, 2012; Cvetković and Doob, 1985; Cvetković

Full text available at: http://dx.doi.org/10.1561/2200000078-3
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and Gutman 2011; Cvetković et al., 1980; Chung, 1997; Jones, 2013;
Mejia et al., 2017; Stanković et al., 2017b, 2019), including the following
aspects.

• Graph-based data processing approaches can be applied not only
to technological, biological, and social networks, but also they
can lead to both improvements of the existing and even to the
creation of radically new methods in classical signal processing and
machine learning (Dong et al., 2012; Hamon et al., 2016b; Horaud,
2009; Lu et al., 2014; Masoumi and Hamza, 2017; Masoumi et al.,
2016; Stanković et al., 2017a, 2018).

• The involvement of graphs makes it possible for the classical
sensing domains of time and space (which may be represented as
a linear or circular graph) to be structured in a more advanced
way, e.g., by considering the connectivity of sensing points from a
signal similarity or sensor association point of view.

The first step in graph data analytics is to decide on the properties of
the graph as a new signal/information domain. However, while the data
sensing points (graph vertices) may be well-defined by the application
itself, that is not the case with their connectivity (graph edges), where:

• In the case of the various computer, social, road, transportation
and electrical networks, the vertex connectivity is often naturally
defined, resulting in an exact underlying graph topology.

• In many other cases, the data domain definition in a graph form
becomes part of the problem definition itself, as is the case with,
e.g., graphs for sensor networks, in finance or smart cities. In such
cases, a vertex connectivity scheme needs to be determined based
on the properties of the sensing positions or from the acquired data,
as e.g., in the estimation of the temperature field in meteorology
(Stanković et al., 2019).

This additional aspect of the definition of an appropriate graph struc-
ture is of crucial importance for a meaningful and efficient application
of the GML and GSP approaches.

Full text available at: http://dx.doi.org/10.1561/2200000078-3



6 Introduction

With that in mind, this monograph was written in response to
the urgent need of multidisciplinary data analytics communities for a
seamless and rigorous transition from classical data analytics to the
corresponding paradigms which operate directly on irregular graph
domains. To this end, we start our approach from a review of basic
definitions of graphs and their properties, followed by a physical intuition
and step-by-step introduction of graph spectral analysis (eigen-analysis).
Particular emphasis is on eigendecomposition of graph matrices, an area
which serves as a basis for mathematical formalisms in graph signal
and information processing. As an example of the ability of GML and
GSP to generalize standard methodologies for graphs, we elaborate in a
step-by-step way the introduction of Graph Discrete Fourier Transform
(GDFT), and show that it simplifies into standard Discrete Fourier
Transform (DFT) for directed circular graphs; this also exemplifies the
generic nature of graph approaches. Finally, spectral vertex analysis
and spectral graph segmentation are used as the basis for understanding
relations among distinct but physically meaningful regions in graphs; this
is demonstrated through examples of regional infrastructure modeling,
brain connectivity, clustering, and dimensionality reduction.

Full text available at: http://dx.doi.org/10.1561/2200000078-3
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