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ABSTRACT
Modern data analytics applications on graphs often operate
on domains where graph topology is not known a priori,
and hence its determination becomes part of the problem
definition, rather than serving as prior knowledge which aids
the problem solution. Part III of this monograph starts by a
comprehensive account of ways to learn the pertinent graph
topology, ranging from the simplest case where the physics
of the problem already suggest a possible graph structure,
through to general cases where the graph structure is to
be learned from the data observed on a graph. A particu-
lar emphasis is placed on the use of standard “relationship
measures” in this context, including the correlation and
precision matrices, together with the ways to combine these
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with the available prior knowledge and structural conditions,
such as the smoothness of the graph signals or sparsity of
graph connections. Next, for learning sparse graphs (that
is, graphs with a small number of edges), the utility of the
least absolute shrinkage and selection operator, known as
(LASSO) is addressed, along with its graph specific variant,
the graphical LASSO. For completeness, both variants of
LASSO are derived in an intuitive way, starting from basic
principles. An in-depth elaboration of the graph topology
learning paradigm is provided through examples on physi-
cally well defined graphs, such as electric circuits, linear heat
transfer, social and computer networks, and spring-mass sys-
tems. We also review main trends in graph neural networks
(GNN) and graph convolutional networks (GCN) from the
perspective of graph signal filtering. Particular insight is
given to the role of diffusion processes over graphs, to show
that GCNs can be understood from the graph diffusion per-
spective. Given the largely heuristic nature of the existing
GCNs, their treatment through graph diffusion processes
may also serve as a basis for new designs of GCNs. Tensor
representation of lattice-structured graphs is next consid-
ered, and it is shown that tensors (multidimensional data
arrays) can be treated as a special class of graph signals,
whereby the graph vertices reside on a high-dimensional reg-
ular lattice structure. Finally, the concept of graph tensor
networks is shown to provide a unifying framework for learn-
ing of big data on irregular domains. This part of monograph
concludes with an in-dept account of emerging applications
in financial data processing and underground transportation
network modeling. More specifically, by means of portfolio
cuts of an asset graph, we show how domain knowledge
can be meaningfully incorporated into investment analysis,
while the underground transportation example addresses

Full text available at: http://dx.doi.org/10.1561/2200000078-3
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vulnerability of stations in the London underground network
to traffic disruption.

Keywords: graph theory; random data on graphs; big data on graphs;
signal processing on graphs; machine learning on graphs; graph
topology learning; systems on graphs; vertex-frequency estimation;
graph neural networks; graphs and tensors.
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1
Introduction

Graph data analytics have already shown enormous potential, as their
flexibility in the choice of graph topologies (irregular data domains) and
connections between the entities (vertices) allows for both a rigorous
account of irregularly spaced information such as locations and social
connections, and also for the incorporation of semantic and contextual
cues, even for otherwise regular structures such as images.

In Part I and Part II of this monograph, it was assumed that
the graph itself is already defined prior to analyzing data on graphs.
The focus of Part I has been on defining graph properties through the
mathematical formalism of linear algebra, while Part II introduces graph
counterparts of several important standard data analytics algorithms,
again for a given graph. However, in many modern applications, graph
topology is not known a priori (Cioacă et al., 2019; Das et al., 2017;
Dong et al., 2015, 2016; Epskamp and Fried, 2018; Friedman et al., 2008;
Hamon et al., 2019, Meinshausen et al., 2006; Pavez and Ortega, 2016;
Pourahmadi, 2011; Rabiei et al., 2019; Stanković et al., 2018, 2020),
and the focus of this part is therefore on simultaneous estimation of
data on a graph and the underlying graph topology. Without loss of
generality, it is convenient to assume that the vertices are given, while

4
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the edges and their associated weights are part of the solution to the
problem considered and need to be estimated from the vertex geometry
and/or the observed data (Bohannon et al., 2019; Caetano et al., 2009;
Camponogara and Nazari, 2015; Dal Col et al., 2019; Gu and Wang,
2019; Mao and Gu, 2019; Pasdeloup et al., 2019; Slawski and Hein, 2015;
Segarra et al., 2016; Stanković and Sejdić, 2019; Stanković et al., 2017;
Tanaka and Sakiyama, 2019; Thanou et al., 2014; Ubaru et al., 2017;
Yankelevsky and Elad, 2016; Zhao et al., 2012; Zheng et al., 2011).

Three scenarios for the estimation of graph edges from vertex geom-
etry or data are considered in this part of the monograph.

• Based on the geometry of vertex positions. In various sensor net-
work setups (such as temperature, pressure, and transportation),
the locations of the sensing positions (vertices) are known before-
hand, while the vertex distances convey physical meaning about
data dependence and thus may be employed for edge/weight
determination.

• Based on data association and data similarity. Various statisti-
cal measures are available to serve as data association metrics,
with the covariance and precision matrices most commonly used.
A strong correlation between data on two vertices would indicate
a large weight associated with the corresponding edge. A small
degree of correlation would indicate nonexistence of an edge (after
weight thresholding).

• Based on physically well defined relations among the sensing
positions. Examples include electric circuits, power networks, linear
heat transfer, social and computer networks, spring-mass systems,
to mention but a few. In these cases, edge weighting can usually
be well defined based on the underlying context of the considered
problem.

After a detailed elaboration of graph definition and graph topology
learning techniques, a summary of graph topology learning from data
using probabilistic generative models is given. This followed by an
account of graph neural networks (GNN), with a special emphasis on

Full text available at: http://dx.doi.org/10.1561/2200000078-3



6 Introduction

graph convolutional networks (GCN). The analysis is considered from
the perspective of graph signal filtering presented in Part II. Graph
data analysis is further generalized to the tensor representation of
lattice-structured graphs, whereby the graph vertices reside on a high-
dimensional tensor structure. Finally, two applications of graph-based
data analysis are given: (i) an example where domain knowledge is
incorporated into financial data analysis (the investment analysis), by
means of portfolio cuts; (ii) London underground transportation system.
The latter example demonstrates how graph theory can be used to
identify the stations in the London underground network which have
the greatest influence on the functionality of the traffic, and also to
assess the impact of a station closure on service levels across the city.

Full text available at: http://dx.doi.org/10.1561/2200000078-3
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