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ABSTRACT
Spectral methods have emerged as a simple yet surprisingly
effective approach for extracting information from massive,
noisy and incomplete data. In a nutshell, spectral methods
refer to a collection of algorithms built upon the eigenvalues
(resp. singular values) and eigenvectors (resp. singular vec-
tors) of some properly designed matrices constructed from
data. A diverse array of applications have been found in
machine learning, imaging science, financial and economet-
ric modeling, and signal processing, including recommen-
dation systems, community detection, ranking, structured
matrix recovery, tensor data estimation, joint shape match-
ing, blind deconvolution, financial investments, risk man-
agements, treatment evaluations, causal inference, amongst
others. Due to their simplicity and effectiveness, spectral
methods are not only used as a stand-alone estimator, but
also frequently employed to facilitate other more sophisti-
cated algorithms to enhance performance.
While the studies of spectral methods can be traced back
to classical matrix perturbation theory and the method of

Yuxin Chen, Yuejie Chi, Jianqing Fan and Cong Ma (2021), “Spectral Methods
for Data Science: A Statistical Perspective”, Foundations and Trends® in Machine
Learning: Vol. 14, No. 5, pp 566–806. DOI: 10.1561/2200000079.
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moments, the past decade has witnessed tremendous theo-
retical advances in demystifying their efficacy through the
lens of statistical modeling, with the aid of concentration
inequalities and non-asymptotic random matrix theory. This
monograph aims to present a systematic, comprehensive, yet
accessible introduction to spectral methods from a modern
statistical perspective, highlighting their algorithmic impli-
cations in diverse large-scale applications. In particular, our
exposition gravitates around several central questions that
span various applications: how to characterize the sample
efficiency of spectral methods in reaching a target level of
statistical accuracy, and how to assess their stability in the
face of random noise, missing data, and adversarial corrup-
tions? In addition to conventional ℓ2 perturbation analysis,
we present a systematic ℓ∞ and ℓ2,∞ perturbation theory
for eigenspace and singular subspaces, which has only re-
cently become available owing to a powerful “leave-one-out”
analysis framework.

Full text available at: http://dx.doi.org/10.1561/2200000079



1
Introduction

In contemporary science and engineering applications, the volume of
available data is growing at an enormous rate. The emergence of this
trend is due to recent technological advances that have enabled the
collection, transmission, storage and processing of data from every
corner of our life, in the forms of images, videos, network traffic, email
logs, electronic health records, genomic and genetic measurements, high-
frequency financial trades, grocery transactions, online exchanges, and
so on. In the meantime, modern applications often require reasonings
about an unprecedented scale of features or parameters of interest.
This gives rise to the pressing demand of developing low-complexity
algorithms that can effectively distill actionable insights from large-scale
and high-dimensional data. In addition to the curse of dimensionality,
the challenge is further compounded when the data in hand are noisy,
messy, and contain missing features.

Towards addressing the above challenges, spectral methods have
emerged as a simple yet surprisingly effective approach to informa-
tion extraction from massive and noisy data. In a nutshell, spectral
methods refer to a collection of algorithms built upon the eigenvectors
(resp. singular vectors) and eigenvalues (resp. singular values) of some

3
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4 Introduction

properly designed matrices generated from data. Remarkably, spectral
methods lend themselves to a diverse array of applications in practice,
including community detection in networks (Newman, 2006; Abbe, 2017;
Rohe et al., 2011; McSherry, 2001), angular synchronization in cryo-
EM (Singer and Shkolnisky, 2011; Singer, 2011), joint image alignment
(Chen and Candès, 2018), clustering (Von Luxburg, 2007; Ng et al.,
2002), ranking (Negahban et al., 2016; Chen and Suh, 2015; Chen et al.,
2019b), dimensionality reduction (Belkin and Niyogi, 2003), low-rank
matrix estimation (Achlioptas and McSherry, 2007; Keshavan et al.,
2010), tensor estimation (Montanari and Sun, 2018; Cai et al., 2019a),
covariance and precision matrix estimation (Fan et al., 2013; Fan et al.,
2021b), shape reconstruction (Li and Hero, 2004), econometric and
financial modeling (Fan et al., 2021a), among others. Motivated by their
applicability to numerous real-world problems, this monograph seeks to
offer a unified and comprehensive treatment towards establishing the
theoretical underpinnings for spectral methods, particularly through a
statistical lens.

1.1 Motivating applications

At the heart of spectral methods is the idea that the eigenvectors or
singular vectors of certain data matrices reveal crucial information
pertaining to the targets of interest. We single out a few examples that
epitomize this idea.

Clustering. Clustering corresponds to the grouping of individuals
based on their mutual similarities, which constitutes a fundamental
task in unsupervised learning and spans numerous applications such
as image segmentation (e.g., grouping pixels based on the objects they
represent in an image) (Browet et al., 2011) and community detection
(e.g., grouping users on the basis of their social circles) (Fortunato and
Hric, 2016). For concreteness, let us take a look at a simple scenario
with n individuals such that: (1) there exists a latent partitioning that
divides all individuals into two groups, with the first n/2 individuals
belonging to the first group and the rest belonging to the second group
(without loss of generality); and (2) we observe pairwise similarity

Full text available at: http://dx.doi.org/10.1561/2200000079
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Figure 1.1: Spectral methods for clustering. We plot in (a) an ideal structure of the
adjacency matrix A in (1.1), and in (b) a noisy version which is a realization from
the stochastic block model, where Ai,j is an independent Bernoulli variable with
mean 1+δ

2 (resp. 1−δ
2 ) if i and j belong to the same group (resp. different groups). We

report in (c) the empirical success rate of the spectral method over 200 Monte Carlo
trials in correctly clustering n = 100 individuals as the mean difference δ varies.

measurements generated based on their group memberships. Ideally, if
we know whether any two individuals belong to the same group or not,
then we can form an adjacency matrix A = [Ai,j ]1≤i,j≤n such that

Ai,j =





1, if (i, j) belongs to the same group,

0, else.
(1.1)

As a key observation, this matrix A, as illustrated in Figure 1.1(a),
turns out to be a rank-2 matrix

A =
[

1n/21⊤
n/2

1n/21⊤
n/2

]
= 1

21n1⊤
n +1

2

[
1n/2

−1n/2

] [
1⊤

n/2 −1⊤
n/2

]
,

where 1n represents an n-dimensional all-one vector. After subtracting
1
21n1⊤

n from A, the eigenvector u2 := [ 1⊤
n/2 −1⊤

n/2 ] of the remain-
ing component uncovers the underlying group structure; namely, all
positive entries of u2 represent one group, with all negative entries of
u2 reflecting another group. In reality, however, we typically only get
to collect imprecise information about whether two individuals belong
to the same group, thus resulting in a corrupted version of A (see
Figure 1.1(b)). Fortunately, the eigenvector (the one corresponding to
u2 above) of the observed data matrix (with proper arrangement) might

Full text available at: http://dx.doi.org/10.1561/2200000079
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Figure 1.2: Illustration of spectral clustering for 62 dolphins residing in Doubtful
Sound, New Zealand. (a) plots the spectrum of the Laplacian matrix of an undirected
social network of frequent associations, and (b) illustrates the two communities
recovered using the penultimate eigenvector of the Laplacian matrix. Data source:
Lusseau et al. (2003).

continue to be informative, as long as the noise level is not overly high.
To illustrate the practical applicability, we plot in Figure 1.1(c) the
numerical performance of this approach, which allows for perfect clus-
tering of all individuals for a wide range of noisy scenarios. Similar ideas
continue to fare well on the clustering of real data, where we illustrate in
Figure 1.2 that the penultimate eigenvector of a Laplacian matrix (also
known as the Fiedler vector) of an undirected social network reveals two
communities of 62 dolphins residing in Doubtful Sound, New Zealand.

Principal component analysis (PCA). PCA is arguably one of the
most commonly employed tools for data exploration and visualization.
Given a collection of data samples x1, · · · , xn ∈ Rp, PCA seeks to
identify a rank-r subspace that explains most of the variability of the
data. This is particularly well-grounded when, say, the sample vectors
{xi}1≤i≤n reside primarily within a common rank-r subspace—denoted
by U⋆. To extract out this principal subspace, it is instrumental to
examine the following sample covariance matrix

M = 1
n

n∑

i=1
xix

⊤
i .
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1.1. Motivating applications 7

If all sample vectors approximately lie within U⋆, then one might be
able to infer U⋆ by inspecting the rank-r leading eigenspace of M

(or its variants), provided that the signal-to-noise ratio exceeds some
reasonable level. This reflects the role of spectral methods in enabling
meaningful dimensionality reduction and factor analysis.

In practice, a key benefit of PCA is its ability to remove nuance
factors in, and extract out salient features from, each data point. As
an illustration, the first four images of Figure 1.3 are representative
ones sampled from a face dataset (Georghiades et al., 2001), which
correspond to faces of the same person under different illumination and
occlusion conditions. In contrast, the “eigenface” (Turk and Pentland,
1991) depicted in the last image of Figure 1.3 corresponds to the first
principal component (i.e., r = 1), which effectively removes the nuance
factors and highlights the feature of the face.

Figure 1.3: Illustration of the eigenface using the Cropped YaleB dataset (Georghi-
ades et al., 2001). The first four images are sampled from this dataset, representing
typical images taken under different illumination conditions with various occlusions.
The last one represents the eigenface (i.e., the first principal component) of this
dataset.

Matrix recovery in the face of missing data. A proliferation of big-
data applications has to deal with matrix estimation in the presence
of missing data, either due to the infeasibility to acquire complete
observations of a massive data matrix (Davenport and Romberg, 2016)
such as the Netflix problem in recommender systems (as users only
watch and rate a small fraction of movies), or because of the incentive
to accelerate computation by means of sub-sampling (Mahoney, 2016).
Imagine that we are asked to estimate a large matrix M⋆ = [M⋆

i,j ]1≤i,j≤n,
even though a dominant fraction of its entries are unseen. While in
general we cannot predict anything about the missing entries, reliable
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Figure 1.4: Spectral methods for matrix recovery with missing data, where (a) is
an illustration of missing data and (b) reports the empirical estimation errors of
spectral methods as the sampling rate p varies. Both the relative Euclidean error
∥M̂−M⋆∥F

∥M⋆∥F
and the relative entrywise error ∥M̂−M⋆∥∞

∥M⋆∥∞
are plotted (with M̂ denoting

the matrix estimate and ∥ · ∥∞ the entrywise ℓ∞ norm).

estimation might become possible if M⋆ is known a priori to enjoy a
low-rank structure, as is the case in many applications like structure
from motion (Tomasi and Kanade, 1992) and sensor network localization
(Javanmard and Montanari, 2013). This low-rank assumption motivates
the use of spectral methods. More specifically, suppose the entries of M⋆

are randomly sampled such that each entry is observed independently
with probability p ∈ (0, 1]. An unbiased estimate M = [Mi,j ]1≤i,j≤n of
M⋆ can be readily obtained via rescaling and zero filling (also called
the inverse probability weighting method):

Mi,j =





1
pM⋆

i,j , if the (i, j)-th entry is observed,

0, else.

To capture the assumed low-rank structure of M⋆, it is natural to
resort to the best rank-r approximation of M (with r the true rank of
M⋆), computable through the rank-r singular value decomposition of
M . Given its (trivial) success when p = 1, we expect the algorithm to
perform well when p is close to 1. The key question, however, is where
the algorithm stands if the vast majority of the entries is missing. While
we shall illuminate this in Chapters 3 and 4, Figure 1.4 provides some
immediate numerical assessment, which demonstrates the appealing
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performance of spectral methods—in terms of both Euclidean and
entrywise estimation errors—even when the missing rate is quite high.

Ranking from pairwise comparisons. Another important application
of spectral methods arises from the context of ranking, a task of central
importance in, say, web search and recommendation systems. In a
variety of scenarios, humans find it difficult to simultaneously rank
many items, but relatively easier to express pairwise preferences. This
gives rise to the problem of ranking based on pairwise comparisons.
More specifically, imagine we are given a collection of n items, and
wish to identify top-ranked items based on pairwise preferences (with
uncertainties in comparison outcomes) between observed pairs of items.
A classical statistical model proposed by Bradley and Terry (1952) and
Luce (2012) postulates the existence of a set of latent positive scores
{w⋆

i }1≤i≤n—each associated with an item—that determines the ranks
of these items. The outcome of the comparison between items i and j

is generated in a way that

P(i beats j) = w⋆
i

w⋆
i + w⋆

j

, 1 ≤ i, j ≤ n.

As it turns out, the preference scores are closely related to the stationary
distribution of a Markov chain associated with the above probability
kernel, thus forming the basis of spectral ranking algorithms. To eluci-
date it in a little more detail, let us construct a probability transition
matrix P ⋆ = [P ⋆

i,j ]1≤i,j≤n with

P ⋆
i,j =





1
n · w⋆

j

w⋆
i +w⋆

j
, if i ̸= j,

1 −∑
l:l ̸=i P ⋆

i,l, if i = j.

Clearly, it forms a probability transition matrix since each element is non-
negative and the entries in each row add up to one. It is straightforward
to verify that the score vector w⋆ := [w⋆

i ]1≤i≤n satisfies w⋆⊤ = w⋆⊤P ⋆,
namely w⋆ is a left eigenvector of P ⋆ associated with eigenvalue one. A
candidate method then consists of (i) forming an unbiased estimate of
P ⋆ (which can be easily obtained using pairwise comparison outcomes),
(ii) computing its left eigenvector (in fact, the leading left eigenvector),
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and (iii) reporting the ranking result in accordance with the order of the
elements in this eigenvector. This spectral ranking scheme, which shares
similar spirit with the celebrated PageRank algorithm (Page et al.,
1999), exhibits intriguing performance when identifying the top-ranked
items, as showcased in the numerical experiments in Figure 1.5(b).
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Figure 1.5: Spectral methods for ranking from pairwise comparisons. (a) illustrates
the latent preference scores {w⋆

i } that govern the ranking of items. The empirical
success rates in correctly identifying the top-ranked item are plotted in (b) as ∆
varies, where ∆ represents the separation between the score of the top item and that
of the second-ranked item.

A unified theme. In all preceding applications, the core ideas underly-
ing the development of spectral methods can be described in a unified
fashion:

1. Identify a key matrix M⋆—which is typically unobserved—whose
eigenvectors or singular vectors disclose the information being
sought after;

2. Construct a surrogate matrix M of M⋆ using the data samples
in hand, and compute the corresponding eigenvectors or singular
vectors of this surrogate matrix.

Viewed in this light, this monograph aims to identify key factors—e.g.,
certain spectral structure of M⋆ as well as the size of the approximation
error M − M⋆—that exert main influences on the efficacy of the
resultant spectral methods.
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1.2 A modern statistical perspective

The idea of spectral methods can be traced back to early statistical
literature on methods of moments (e.g., Pearson (1894) and Hansen
(1982)), where one seeks to extract key parameters of the probability
distributions of interest by examining the empirical moments of data.
While classical matrix perturbation theory lays a sensible foundations
for the analysis of spectral methods (Stewart and Sun, 1990), the
theoretical understanding can be considerably enhanced through the
lens of statistical modeling—a way of thinking that has flourished in
the past decade. To the best of our knowledge, however, a systematic
and comprehensive introduction to the modern statistical foundation of
spectral methods, as well as an overview of recent advances, is previously
unavailable.

The current monograph aims to fill this gap by developing a coherent
and accessible treatment of spectral methods from a modern statistical
perspective. Highlighting algorithmic implications that inform practice,
our exposition gravitates around the following central questions: how
to characterize the sample efficiency of spectral methods in reaching a
prescribed accuracy level, and how to assess the stability of spectral
methods in the face of random noise, missing data, and adversarial cor-
ruptions? We underscore several distinguishing features of our treatment
compared to prior studies:

• In comparison to the worst-case performance guarantees derived
solely based on classical matrix perturbation theory, our statisti-
cal treatment emphasizes the benefit of harnessing the “typical”
behavior of data models, which offers key insights into how to
harvest performance gains by leveraging intrinsic properties of
data generating mechanisms.

• In contrast to classical asymptotic theory (Van der Vaart, 2000),
we adopt a non-asymptotic (or finite-sample) analysis framework
that draws on tools from recent developments of concentration
inequalities (Tropp, 2015) and high-dimensional statistics (Wain-
wright, 2019). This framework accommodates the scenario where
both the sample size and the number of features are enormous, and
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unveils a clearer and more complete picture about the interplay
and trade-off between salient model parameters.

Another unique feature of this monograph is a principled intro-
duction of fine-grained entrywise analysis (e.g., a theory studying ℓ∞
eigenvector perturbation), which reflects cutting-edge research activities
in this area. This is particularly important when, for example, demon-
strating the feasibility of exact clustering or perfect ranking in the
aforementioned applications. In truth, an effective entrywise analysis
framework cannot be readily obtained from classical matrix analysis
alone, and has only recently become available owing to the emergence
of modern statistical toolboxes. In particular, we shall present a power-
ful framework, called leave-one-out analysis, that proves effective and
versatile for delivering fine-grained performance guarantees for spectral
methods in a variety of problems.

1.3 Organization

We now present a high-level overview of the structure of this monograph.

• Chapter 2 reviews the fundamentals of classical matrix pertur-
bation theory for spectral analysis, focusing on ℓ2-type distances
measured by the spectral norm and the Frobenius norm. This
chapter covers the celebrated Davis-Kahan sin Θ theorem for
eigenspace perturbation, the Wedin theorem for singular subspace
perturbation, and an extension to probability transition matrices,
laying the algebraic foundations for the remaining chapters.

• Chapter 3 explores the utility of ℓ2 matrix perturbation theory
when paired with statistical tools, presenting a unified recipe
for statistical analysis empowered by non-asymptotic matrix tail
bounds. We develop spectral methods for a variety of statisti-
cal data science applications, and derive nearly tight theoretical
guarantees (up to logarithmic factors) based on this unified recipe.

• Chapter 4 develops fine-grained perturbation theory for spectral
analysis in terms of ℓ∞ and ℓ2,∞ metrics, based on a leave-one-out
analysis framework rooted in probability theory. Its effectiveness
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is demonstrated through concrete applications including commu-
nity recovery and matrix completion. This analysis framework
also enables a non-asymptotic distributional theory for spectral
methods, which paves the way for uncertainty quantification in
applications like noisy matrix completion.

• Chapter 5 concludes this monograph by identifying a few directions
that are worthy of future investigation.

While this monograph pursues a coherent and accessible treatment that
might appeal to a broad audience, it does not necessarily deliver the
sharpest possible results for the applications discussed herein in terms of
the logarithmic terms and/or pre-constants. The bibliographic notes at
the end of each chapter contain information about the state-of-the-art
theory for each application as a pointer to further readings.

1.4 What is not here and complementary readings

The topics presented in this monograph do not cover the tensor decompo-
sition methods studied in another recent strand of work (Anandkumar et
al., 2014). While such tensor-based methods are also sometimes referred
to as spectral methods, their primary focus is to invoke tensor decompo-
sition to learn latent variables, based on higher-order moments estimated
from data samples. We elect not to discuss this class of methods but
instead refer the interested reader to the recently published monograph
by Janzamin et al. (2019). Another monograph by Kannan and Vempala
(2009) provides an in-depth computational and algorithmic treatment of
spectral methods from the perspective of theoretical computer science.
The applications and results covered therein (e.g., fast matrix multi-
plication) complement the ones presented in the current monograph.
In addition, spectral methods have been frequently employed to initial-
ize nonconvex optimization algorithms. We will not elaborate on the
nonconvex optimization aspect here but instead recommend the reader
to the recent overview article by Chi et al. (2019). Finally, spectral
methods are widely adopted to estimate high-dimensional covariance
and precision matrices, and extract latent factors for econometric and
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statistical modeling. This topic alone has a huge literature, and we refer
the interested reader to Fan et al. (2020b) for in-depth discussions.

1.5 Notation

Before moving forward, let us introduce some notation that will be used
throughout this monograph.

First of all, we reserve boldfaced symbols for vectors, matrices
and tensors. For any matrix A, let σj(A) (resp. λj(A)) represent its
j-th largest singular value (resp. eigenvalue). In particular, σmax(A)
(resp. λmax(A)) stands for the largest singular value (resp. eigenvalue)
of A, while σmin(A) (resp. λmin(A)) indicates the smallest singular
value (resp. eigenvalue) of A. We use A⊤ to denote the transpose of
A, and let Ai,· and A·,i indicate the i-th row and the i-th column of
A, respectively. We follow standard conventions by letting In be the
n × n identity matrix, 1n the n-dimensional all-one vector, and 0n the
n-dimensional all-zero vector; we shall often suppress the subscript as
long as it is clear from the context. The i-th standard basis vector is
denoted by ei throughout. The notation On×r (r ≤ n) represents the
set of all n × r orthonormal matrices (whose columns are orthonormal).
Moreover, we refer to [n] as the set {1, · · · , n}.

Next, we turn to vector and matrix norms. For any vector v, we
denote by ∥v∥2, ∥v∥1 and ∥v∥∞ its ℓ2 norm, ℓ1 norm and ℓ∞ norm,
respectively. For any matrix A = [Ai,j ]1≤i≤m,1≤j≤n, we let ∥A∥, ∥A∥∗,
∥A∥F and ∥A∥∞ represent respectively its spectral norm (i.e., the
largest singular value of A), its nuclear norm (i.e., the sum of singular
values of A), its Frobenius norm (i.e., ∥A∥F :=

√∑
i,j A2

i,j), and its
entrywise ℓ∞ norm (i.e., ∥A∥∞ := maxi,j |Ai,j |). We also refer to ∥A∥2,∞
as the ℓ2,∞ norm of A, defined as ∥A∥2,∞ := maxi ∥Ai,·∥2. Similarly,
we define the ℓ∞,2 norm of A as ∥A∥∞,2 := ∥A⊤∥2,∞. In addition, for
any matrices A = [Ai,j ]1≤i≤m,1≤j≤n and B = [Bi,j ]1≤i≤m,1≤j≤n, the
inner product of A and B is defined as and denoted by ⟨A, B⟩ =∑

1≤i≤m,1≤j≤n Ai,jBi,j = Tr(A⊤B).
When it comes to diagonal matrices, we employ diag([θ1, θ2, · · · , θr])

to abbreviate the diagonal matrix with diagonal elements θ1, · · · , θr. For
any diagonal matrix Θ = diag([θ1, θ2, · · · , θr]), we adopt the shorthand
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notation sin Θ := diag([sin θ1, sin θ2, · · · , sin θr]); the notation sin2 Θ,
cos Θ, and cos2 Θ is defined analogously.

Finally, this monograph makes heavy use of the following standard
notation: (1) f(n) = O (g(n)) or f(n) ≲ g(n) means that there exists
a universal constant c > 0 such that |f(n)| ≤ c|g(n)| holds for all
sufficiently large n; (2) f(n) ≳ g(n) means that there exists a universal
constant c > 0 such that |f(n)| ≥ c |g(n)| holds for all sufficiently large
n; (3) f(n) ≍ g(n) means that there exist universal constants c1, c2 > 0
such that c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| holds for all sufficiently large
n; and (4) f(n) = o(g(n)) indicates that f(n)/g(n) → 0 as n → ∞.
Additionally, we sometimes use f(n) ≫ g(n) (resp. f(n) ≪ g(n)) to
indicate that there exists some sufficiently large (resp. small) universal
constant c > 0 such that |f(n)| ≥ c |g(n)| (resp. |f(n)| ≤ c |g(n)|).
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