
Machine Learning for Automated
Theorem Proving: Learning to

Solve SAT and QSAT

Full text available at: http://dx.doi.org/10.1561/2200000081

Other titles in Foundations and Trends® in Machine Learning

Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen, Yuejie Chi, Jianqing Fan and Cong Ma
ISBN: 978-1-68083-896-1

Tensor Regression
Jiani Liu, Ce Zhu, Zhen Long and Yipeng Liu
ISBN: 978-1-68083-886-2

Minimum-Distortion Embedding
Akshay Agrawal, Alnur Ali and Stephen Boyd
ISBN: 978-1-68083-888-6

Graph Kernels: State-of-the-Art and Future Challenges
Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie
O’Bray and Bastian Rieck
ISBN: 978-1-68083-770-4

Data Analytics on Graphs Part III: Machine Learning on Graphs, from
Graph Topology to Applications
Ljubiša Stanković, Danilo Mandic, Miloš Daković, Miloš Brajović, Bruno
Scalzo, Shengxi Li and Anthony G. Constantinides
ISBN: 978-1-68083-982-16

Data Analytics on Graphs Part II: Signals on Graphso
Ljubiša Stanković, Danilo Mandic, Miloš Daković, Miloš Brajović, Bruno
Scalzo, Shengxi Li and Anthony G. Constantinides
ISBN: 978-1-68083-982-1

Data Analytics on Graphs Part I: Graphs and Spectra on Graphs
Ljubiša Stanković, Danilo Mandic, Miloš Daković, Miloš Brajović, Bruno
Scalzo, Shengxi Li and Anthony G. Constantinides
ISBN: 978-1-68083-982-1

Full text available at: http://dx.doi.org/10.1561/2200000081

Machine Learning for Automated
Theorem Proving: Learning to Solve

SAT and QSAT

Sean B. Holden
University of Cambridge

UK
sbh11@cl.cam.ac.uk

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2200000081

Foundations and Trends® in Machine Learning

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S.B. Holden. Machine Learning for Automated Theorem Proving: Learning to Solve
SAT and QSAT. Foundations and Trends® in Machine Learning, vol. 14, no. 6,
pp. 807–989, 2021.

ISBN: 978-1-68083-899-2
© 2021 S.B. Holden

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2200000081

Foundations and Trends® in Machine Learning
Volume 14, Issue 6, 2021

Editorial Board

Editor-in-Chief
Michael Jordan
University of California, Berkeley
United States

Editors

Peter Bartlett
UC Berkeley

Yoshua Bengio
Université de Montréal

Avrim Blum
Toyota Technological
Institute

Craig Boutilier
University of Toronto

Stephen Boyd
Stanford University

Carla Brodley
Northeastern University

Inderjit Dhillon
Texas at Austin

Jerome Friedman
Stanford University

Kenji Fukumizu
ISM

Zoubin Ghahramani
Cambridge University

David Heckerman
Amazon

Tom Heskes
Radboud University

Geoffrey Hinton
University of Toronto

Aapo Hyvarinen
Helsinki IIT

Leslie Pack Kaelbling
MIT

Michael Kearns
UPenn

Daphne Koller
Stanford University

John Lafferty
Yale

Michael Littman
Brown University

Gabor Lugosi
Pompeu Fabra

David Madigan
Columbia University

Pascal Massart
Université de Paris-Sud

Andrew McCallum
University of
Massachusetts Amherst

Marina Meila
University of Washington

Andrew Moore
CMU

John Platt
Microsoft Research

Luc de Raedt
KU Leuven

Christian Robert
Paris-Dauphine

Sunita Sarawagi
IIT Bombay

Robert Schapire
Microsoft Research

Bernhard Schoelkopf
Max Planck Institute

Richard Sutton
University of Alberta

Larry Wasserman
CMU

Bin Yu
UC Berkeley

Full text available at: http://dx.doi.org/10.1561/2200000081

Editorial Scope
Topics

Foundations and Trends® in Machine Learning publishes survey and tutorial
articles in the following topics:

• Adaptive control and signal
processing

• Applications and case studies

• Behavioral, cognitive and
neural learning

• Bayesian learning

• Classification and prediction

• Clustering

• Data mining

• Dimensionality reduction

• Evaluation

• Game theoretic learning

• Graphical models

• Independent component
analysis

• Inductive logic programming

• Kernel methods

• Markov chain Monte Carlo

• Model choice

• Nonparametric methods

• Online learning

• Optimization

• Reinforcement learning

• Relational learning

• Robustness

• Spectral methods

• Statistical learning theory

• Variational inference

• Visualization

Information for Librarians

Foundations and Trends® in Machine Learning, 2021, Volume 14, 6
issues. ISSN paper version 1935-8237. ISSN online version 1935-8245.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2200000081

Contents

1 Introduction 2
1.1 Coverage . 3
1.2 Outline of the review . 4
1.3 Limits to Coverage . 6
1.4 What Should the Reader Gain? 7

2 Algorithms for Solving SAT 8
2.1 The SAT Problem . 8
2.2 The DPLL Algorithm . 10
2.3 Local search SAT solvers 11
2.4 Conflict-Driven Clause Learning 13
2.5 Portfolio Solvers . 24
2.6 Standard Input File Formats 25

3 Machine Learning 26
3.1 Supervised Learning . 27
3.2 Unsupervised Learning . 35
3.3 Multi-Armed Bandits . 36
3.4 Reinforcement Learning 37
3.5 Neural Networks . 38
3.6 Genetic Algorithms and Genetic Programming 46
3.7 Choosing a Learning Algorithm 49
3.8 Sources of Data . 51

Full text available at: http://dx.doi.org/10.1561/2200000081

4 Extracting Features from a Formula 52
4.1 Feature-Engineered Representations 53
4.2 Graph Representations . 57
4.3 Discussion . 59

5 Learning to Identify Satisfiability Directly 61
5.1 Early Approaches to SAT as Classification 62
5.2 GAs for Solving SAT Directly 63
5.3 SAT as Classification Using GNNs and NNs 64
5.4 Learning to Recognize Sequents 69
5.5 Differentiable Solvers . 71
5.6 Discussion . 73

6 Learning for Portfolio SAT Solvers 77
6.1 Empirical Hardness Models 78
6.2 Portfolios: Learning to Select a SAT Solver 79
6.3 Learning Portfolios using Latent Classes 81
6.4 Simplified Approaches to Portfolio SAT Solvers 82
6.5 NNs for Portfolio Solvers 84
6.6 Discussion . 85

7 Learning for CDCL Solvers 87
7.1 Learning to Select a Preprocessor 88
7.2 Learning to Select a Heuristic 89
7.3 Learning to Select Decision Variables 91
7.4 Learning to Select a Restart Strategy 102
7.5 Learning to Delete Learned Clauses 106
7.6 GAs for Learning CDCL Heuristics 108
7.7 Learning to Select Solver Parameters 109
7.8 Specializing a SAT Solver at the Source Code Level 112
7.9 Discussion . 113

8 Learning to Improve Local-Search SAT Solvers 118
8.1 Standard Variable Selection Heuristics for Local Search . . 119
8.2 Evolutionary Learning of Local Search Heuristics 120
8.3 Learning Good Parameters for Local Search Solvers 123

Full text available at: http://dx.doi.org/10.1561/2200000081

8.4 GNNs for Learning in Local Search 124
8.5 Other Approaches to Learning in Local Search 125
8.6 Discussion . 125

9 Learning to Solve Quantified Boolean Formulas 127
9.1 Learning for Portfolios of QSAT Solvers 129
9.2 Learning in Non-Portfolio QSAT Solvers 132
9.3 Discussion . 137

10 Learning for Intuitionistic Propositional Logic 139
10.1 Methods Employing the Curry-Howard Correspondence . . 140
10.2 Methods Employing Sequent Calculus 141
10.3 Discussion . 143

11 Conclusion 145
11.1 The Structure of Solvers 145
11.2 What is the Appropriate Level of Complexity? 146
11.3 What About Parallel Solvers? 147
11.4 Solver Competitions . 147

Acknowledgements 149

Appendices 150

A Abbreviations 151

B Symbols 153

References 156

Full text available at: http://dx.doi.org/10.1561/2200000081

Machine Learning for Automated
Theorem Proving: Learning to Solve
SAT and QSAT
Sean B. Holden1

1University of Cambridge, UK; sbh11@cl.cam.ac.uk

ABSTRACT
The decision problem for Boolean satisfiability, generally
referred to as SAT, is the archetypal NP-complete problem,
and encodings of many problems of practical interest exist
allowing them to be treated as SAT problems. Its generaliza-
tion to quantified SAT (QSAT) is PSPACE-complete, and
is useful for the same reason. Despite the computational
complexity of SAT and QSAT, methods have been devel-
oped allowing large instances to be solved within reasonable
resource constraints. These techniques have largely exploited
algorithmic developments; however machine learning also
exerts a significant influence in the development of state-of-
the-art solvers. Here, the application of machine learning
is delicate, as in many cases, even if a relevant learning
problem can be solved, it may be that incorporating the
result into a SAT or QSAT solver is counterproductive, be-
cause the run-time of such solvers can be sensitive to small
implementation changes. The application of better machine
learning methods in this area is thus an ongoing challenge,
with characteristics unique to the field. This work provides
a comprehensive review of the research to date on incorpo-
rating machine learning into SAT and QSAT solvers, as a
resource for those interested in further advancing the field.

Sean B. Holden (2021), “Machine Learning for Automated Theorem Proving: Learning
to Solve SAT and QSAT”, Foundations and Trends® in Machine Learning: Vol. 14,
No. 6, pp 807–989. DOI: 10.1561/2200000081.

Full text available at: http://dx.doi.org/10.1561/2200000081

1
Introduction

Automated theorem proving represents a significant and long-standing
area of research in computer science, with numerous applications. A
large proportion of the methods developed to date for the implemen-
tation of automated theorem provers (ATPs) have been algorithmic,
sharing a great deal in common with the wider study of heuristic search
algorithms (Harrison, 2009). However in recent years researchers have
begun to incorporate machine learning (ML) methods (Murphy, 2012)
into ATPs in an effort to extract better performance.

ATPs represent a compelling area in which to explore the application
of ML. It is well-known that theorem-proving problems are computa-
tionally intractable, with the exception of specific, limited cases. Even
in the apparently simple case of propositional logic the task is NP-hard,
and adding quantifiers makes the task PSPACE-complete (Garey and
Johnson, 1979). Taking a small step further we arrive at first-order
logic (FOL), which is undecidable (Boolos et al., 2007). In addition
to the general computational complexity of theorem-proving problems,
they have a common property that makes them challenging as a target
for ML: even the most trivial change to the statement of a problem
can have a huge impact on the complexity of any subsequent proof

2

Full text available at: http://dx.doi.org/10.1561/2200000081

1.1. Coverage 3

attempt (Fuchs and Fuchs, 1998; Hutter et al., 2007; Hutter et al., 2009;
Biere and Fröhlich, 2015; Biere and Fröhlich, 2019).

The aim of this work is to review the research that has appeared
to date on incorporating ML methods into solvers for propositional
satisfiability (SAT) problems, and also solvers for its immediate variants
such as quantified SAT (QSAT).

In a sense, these are some of the simplest possible ATP problems.
(Any instance of a SAT problem can be represented as a Boolean
formula in conjunctive normal form, and it is undeniably hard to propose
anything much simpler.) But the combination of the computational
challenges such problems present, and the enormous range of significant,
practical applications that can be addressed this way, makes general
solvers for SAT and its friends a compelling target for research. Marques-
Silva (2008) reviews applications of SAT solvers circa 2008, and the
interested reader might consult work applying them to bounded model
checking (Biere et al., 1999; Clarke et al., 2001), planning (Kautz and
Selman, 1992; Kautz, 2006), bioinformatics (Lynce and Marques-Silva,
2006; Graça et al., 2010), allocation of radio spectrum (Fréchette et al.,
2016), and software verification (Babić and Hu, 2007). A further notable
application has been the solution of the Boolean Pythagorean triples
problem by Heule et al. (2016), resulting in what is currently considered
the longest mathematical proof in history.

1.1 Coverage

Work on applying ML in this context appears to have started with Ertel
et al. (1989) and Johnson (1989). At that time the limited availability
of computing power and the limitations of existing solvers made the
studies necessarily small by current standards, in terms of the size of the
problems addressed, and also of the ML methods applied. This review
is the result of a systematic search for literature appearing from then
until late 2020.

SAT/QSAT solving and machine learning are both large and long-
standing areas of research, and each has a correspondingly large litera-
ture. As these are two apparently rather unrelated fields, it is therefore
inevitable that any reader versed in one might feel less confident with

Full text available at: http://dx.doi.org/10.1561/2200000081

4 Introduction

the other. (It has certainly been my experience in talking to researchers
from both domains that this is often the case.) It would not be feasible
to explain either, let alone both, areas in full detail here; and in any
case, this is not intended to be a textbook on either subject. I have
provided an introduction to each, but experts in either area might find
one presentation overly elementary and the other too brief. The aim has
been to provide sufficient information to make this work self-contained
for both sides while maintaining a manageable length; however I expect
that for many there will be areas where further reading will be necessary.

I wrote this work guided by two central aims for what the reader
should gain from it. First, they should know what has been tried. In
presenting the material, I concentrate on the learning methods used
and the way in which they have been incorporated into solvers. As the
literature rarely if ever presents methods not leading to performance
improvements of some kind, less consideration is given to the details of
the level of improvement achieved, because I believe such details are
secondary to my second aim, which is: that the reader should understand
the often complex interaction between ATP and ML that is needed for
success in these undeniably challenging applications.

In order to achieve these aims it was necessary to be quite selective
in the level of detail used to present various methods. Some research
is presented in very great detail, relating to the learning method and
its relationship with a solver, the description of the data used, or
the experimental method employed. Other research is presented in
less detail, although I hope at a level sufficient to allow the reader to
understand what was done, and why. With the exception of the Chapters
on ATP and ML, each Chapter presents a discussion summarizing what
I believe are the central lessons to be taken from it. Where methods
have been presented in greater detail, it is generally in the service of
these arguments.

1.2 Outline of the review

Chapter 2 presents an introduction to the SAT problem, and to con-
temporary methods for its solution. Much of this section is devoted to
summarizing the operation of Conflict-Driven Clause Learning (CDCL)

Full text available at: http://dx.doi.org/10.1561/2200000081

1.2. Outline of the review 5

solvers;1 first, as these form the core of many of the most successful SAT
solvers available; and second, because there are many distinct areas
of their operation that have provided a point at which to introduce
ML, and this therefore provides a road map for a large portion of the
review. This section also briefly describes portfolio solvers and local
search solvers, which have also been targets for ML, and which will be
described further in later Chapters.

Chapter 3 provides a complementary introduction to some of the
ML methods most commonly applied to SAT and QSAT solvers; this
work spans supervised and unsupervised learning in addition to n-
armed bandits, reinforcement learning, neural networks and evolutionary
computing. In addition we describe some of the main sources of problems
available for testing SAT and QSAT solvers; as these are often annotated
such that we know which problems are satisfiable, and which are not,
they provide a valuable resource for training ML methods.

Many applications of ML in this domain have required a phase of
feature engineering, whereby a problem, typically expressed in conjunc-
tive normal form (CNF), is converted into a vector of real numbers
suitable for use by an ML method. Chapter 4 reviews common sets of
features that have been used, and that continue to form the basis for
many ongoing studies. More recent work has made significant use of
graph neural networks to (partially) automate the feature engineering
process, and we introduce these here also.

There are, broadly-speaking, four ways in which ML has been applied
to SAT solvers: by treating SAT directly as a classification problem; by
building portfolios of existing SAT solvers; by modifying CDCL solvers;
and by treating the problem as a form of local search.

In Chapter 5 we describe work aiming to identify satisfiability
directly, without necessarily also obtaining a satisfying assignment of
variables if one exists. Here, the SAT problem is treated as a classification

1There is an important distinction to be made here for the avoidance of confusion.
The term ‘learning’ in the context of a CDCL solver is, at least at first glance,
unconnected to the idea of machine learning. It is used to describe the addition of
one or more new clauses to a problem after analysing a conflict during the search for
a satisfying assignment; this is explained in more detail in Section 2.4.4. The use of
the term ‘learning’ in both contexts is ubiquitous however, and we expand on the
distinction a little further in Section 3.1.5.

Full text available at: http://dx.doi.org/10.1561/2200000081

6 Introduction

problem: given a formula f , we aim to return the answer ‘yes’ or ‘no’,
indicating whether or not the problem is satisfiable. In some cases it
may be possible to extract a satisfying assignment as a side-effect.

Portfolio solvers are addressed in Chapter 6. Here, a collection of
different SAT solvers is used in some combination to attack a problem.
Chapter 7 then reviews the application of ML to CDCL solvers, address-
ing in turn the way in which ML has been applied to the individual
elements described in Chapter 2. Chapter 8 describes the application of
ML to local search SAT solvers.

In Chapter 9 we address attempts to introduce ML into solvers for
QSAT. This area has received comparatively little attention, but work
has appeared addressing ML for both portfolio solvers, and individual
solvers.

While this review mainly addresses solvers for SAT and QSAT—
these problems having received considerable attention as they have clear
and significant applications—in Chapter 10 we briefly address machine
learning applied to intuitionistic propositional logic (IPL) (Dalen, 2001).
While this logic is of more foundational interest, having few applications
beyond the philosophy of mathematics, it is related sufficiently closely
to propositional logic that I feel attempts to apply machine learning to
the search for proofs in IPL are relevant.

Chapter 11 concludes.

1.3 Limits to Coverage

A body of research exists addressing methods for automatically con-
figuring algorithms that expose parameters—a process sometimes re-
ferred to as the algorithm configuration problem. Effective methods
such as ParamILS (Hutter et al., 2009) and, perhaps the best-known
system of this kind, Sequential Model-based Algorithm Configuration
(SMAC) (Hutter et al., 2011), are now common. Algorithms in this
class can clearly be applied to SAT/QSAT and related solvers, which
invariably have parameters governing aspects of their operation. In
compiling this review, I have aimed to focus on material that has a
specific emphasis on SAT, QSAT and (closely) related problems. As a
result, I decided not to describe in detail work such as that of Kadioglu

Full text available at: http://dx.doi.org/10.1561/2200000081

1.4. What Should the Reader Gain? 7

et al. (2010) and Malitsky et al. (2013), that develops a general method
for algorithm configuration and uses SAT as a test case, or Hutter et al.
(2007) and Mangla et al. (2020), that is predominantly an application
of an existing algorithm configuration method to SAT. For the same
reasons, I have not included work that mainly relies on the applica-
tion of general methods for selecting an algorithm from a collection of
candidates; see Kotthoff (2016) for a review of such methods.

1.4 What Should the Reader Gain?

It is my hope that ML researchers might gain from this work, an
understanding of state-of-the-art SAT and QSAT solvers that is sufficient
to make new opportunities for applying their own ML research to this
domain clearly visible. It is equally my hope that ATP researchers will
gain a complementary understanding, giving them a clear appreciation
of how state-of-the-art machine learning might help them to design
better solvers. For both constituencies, I aim to show what has already
been achieved at the time of writing, at a level of detail sufficient to
provide a basis for new work.

Full text available at: http://dx.doi.org/10.1561/2200000081

Acknowledgements

In 2016 Josef Urban invited me to speak at the 1st Conference on
Artificial Intelligence and Theorem Proving (AITP). I offered to give a
survey talk on applications of machine learning to automated theorem
provers. Having given the talk it seemed like a good idea to write it up
in full.

I thought this would be a straightforward process, but it did not
take long to discover that the full extent of the literature on the subject
is genuinely impressive. In any case, here is the result.

Thanks for the invitation Josef.
I’ve done my share of reviewing, and I’m aware that reviewing a

work of this length is a major undertaking. I therefore offer great thanks
to the anonymous reviewer for their careful reading and numerous useful
suggestions.

In reading the literature underlying this work there were inevitably
occasions where I felt the need to contact the original authors for
clarification. All responded quickly and helpfully. Thanks to all of
them.

149

Full text available at: http://dx.doi.org/10.1561/2200000081

Appendices

Full text available at: http://dx.doi.org/10.1561/2200000081

A
Abbreviations

Abbreviation Meaning

ATP Automated theorem-prover
CAL Clauses active list
CDCL Conflict-Driven Clause Learning
CHB Conflict history-based
CIG Clause incidence graph
CNF Conjunctive normal form
CNN Convolutional neural network
CSP Constraint satisfaction problem
CVIG Clause-variable incidence graph
DAG Directed acyclic graph
DPLL Davis, Putnam, Logemann, Loveland
DRAT Deletion Resolution Asymmetric Tautology
EHM Empirical hardness model
EP Evolutionary programming
ES Evolutionary strategy

Continued overleaf...

151

Full text available at: http://dx.doi.org/10.1561/2200000081

152 Abbreviations

Abbreviation Meaning

ERWA Exponential recency weighted average
EVSIDS Exponential VSIDS
GA Genetic algorithm
GLR Global learning rate
GNN Graph neural network
GP Genetic program
IPL Intuitionistic propositional logic
LBD Literals blocks distance
LRB Learning rate branching
LSTM Long short-term memory
MAB Multi-armed bandit
ML Machine learning
MLB Machine learning-based restart
MLP Multi-layer perceptron
MPNN Message-passing neural network
NN Neural network
QSAT Quantified satisfiability
RL Reinforcement learning
SAT Satisfiability
SVM Support vector machine
SGDB Stochastic Gradient Descent Branching
UC Unsatisfiable core
UCB Upper confidence bound
UIP Unique implication point
VIG Variable incidence graph
VSIDS Variable State Independent Decaying Sum

Full text available at: http://dx.doi.org/10.1561/2200000081

B
Symbols

General

I Identity matrix
Ri Set of i-dimensional vectors with real elements
vi Element i of a vector v
Ri×j Set of i by j matrices with real elements
Mi,j Element at row i, column j of a matrix M
I Indicator function: I[P] is 1 if P is true

and 0 otherwise
1ij i by j matrix with all elements equal to 1.
N(x; µ,Σ) Multivariate normal density with mean µ

and covariance Σ
⊗ Element-by-element multiplication of vectors
[n] The set {1, . . . , n}

Continued overleaf...

153

Full text available at: http://dx.doi.org/10.1561/2200000081

154 Symbols

The SAT Problem

V Set of variables
C Set of clauses
v A variable. or |V|, according to context
c A clause, or |C|, according to context
l A literal
f , ϕ, ψ Propositional formulas
A Assignment
a(v) Activity of a variable
a(c) Activity of a clause

Machine Learning

n Dimension of feature space for a classifier
m Size of training set
s Sequence containing m training examples
F Function mapping instances of a problem to feature vectors
A Learning algorithm
H Hypothesis space
Z Constant normalizing a probability distribution
C Random variable denoting a class
x Instance vector
k Dimension of the extended space
p Number of basis functions
ϕi Basis functions
λ Regularization parameter
ϕ(x) Mapping from instance x to the extended space
Φ Matrix of ϕ(x) for x in a training sequence
σ(x) Step or sigmoid function
θ, w Vectors of parameters
K Number of clusters

Continued overleaf...

Full text available at: http://dx.doi.org/10.1561/2200000081

155

Machine Learning

ri Reward sequence
ri,t Reward from arm i of a multi-armed bandit at time t
α EWMA discounting factor
γ Bandit or reinforcement learning discount factor
r̂T Estimated bandit reward at time T
S RL state set
A RL action set
p RL policy
R RL discounted reward
µ Step size for gradient descent
c Number of classes in a problem
K CNN kernel
t Step in a sequence
T Final step in a sequence
O Objective function

Full text available at: http://dx.doi.org/10.1561/2200000081

References

Aksoy, L. and E. O. Gunes. (2005). “An Evolutionary Local Search
Algorithm for the Satisfiability Problem”. In: Proceedings of the 14th
Turkish Symposium on Artificial Intelligence and Neural Networks
(TAINN). Ed. by F. A. Savakı. Vol. 3949. Lecture Notes in Computer
Science. Springer. 185–193.

Allan, J. A. and S. Minton. (1996). “Selecting the Right Heuristic Algo-
rithm: Runtime Performance Predictors”. In: Advances in Artificial
Intelligence: 11th Biennial Conference of the Canadian Society for
Computational Studies of Intelligence. Ed. by G. McCalla. Vol. 1081.
Lecture Notes in Computer Science. Springer. 41–53.

Amadini, R., M. Gabbrielli, and J. Mauro. (2015). “A Multicore Tool
for Constraint Solving”. In: Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI). Ed. by Q. Yang
and M. Wooldridge. AAAI Press/International Joint Conferences
on Artificial Intelligence. 232–238.

Amizadeh, S., S. Matusevych, and M. Weimer. (2019). “Learning To
Solve Circuit-SAT: An Unsupervised Differentiable Approach”. In:
Proceedings of the International Conference on Learning Represen-
tations.

156

Full text available at: http://dx.doi.org/10.1561/2200000081

References 157

Ansótegui, C., M. L. Bonet, J. Giráldez-Cru, and J. Levy. (2014). “The
Fractal Dimension of SAT Formulas”. In: Proceedings of the 7th
International Joint Conference on Automated Reasoning (IJCAR).
Ed. by S. Demri, D. Kapur, and C. Weidenbach. Vol. 8562. Lecture
Notes in Computer Science. Springer. 107–121.

Ansótegui, C., M. L. Bonet, J. Giráldez-Cru, and J. Levy. (2017).
“Structure instances for SAT instances classification”. Journal of
Applied Logic. 23(Sept.): 27–39.

Ansótegui, C., J. Giráldez-Cru, and J. Levy. (2012). “The Community
Structure of SAT Formulas”. In: Proceedings of the 15th International
Conference on Theory and Applications of Satisfiability Testing.
Ed. by A. Cimatti and R. Sebastiani. Vol. 7317. Lecture Notes in
Computer Science. Springer. 410–423.

Ansótegui, C., M. Sellmann, and K. Tierney. (2009). “A Gender-Based
Genetic Algorithm for the Automatic Configuration of Algorithms”.
In: Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming (CP). Ed. by I. P. Gent.
Vol. 5732. Lecture Notes in Computer Science. Springer. 142–157.

Anthony, M. and P. L. Bartlett. (2009). Pattern Recognition and Ma-
chine Learning. Cambridge University Press.

Audemard, G. and L. Simon. (2018). “On the Glucose SAT Solver”.
International Journal on Artificial Intelligence Tools. 27(1).

Audemard, G. and L. Simon. (2009). “Predicting learnt clauses quality in
modern SAT solvers”. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann.
399–404.

Auer, P., N. Cesa-Bianci, Y. Freund, and R. E. Schapire. (1995). “Gam-
bling in a rigged casino: The adversarial multi-armed bandit prob-
lem”. In: Proceedings of the 36th IEEE Annual Symposium on Foun-
dations of Computer Science. IEEE. 332–331.

Ba, J. L., J. R. Kiros, and G. E. Hinton. (2016). “Layer Normalization”.
arXiv: 1607.06450v1.

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/1607.06450v1

158 References

Babić, D. and A. J. Hu. (2007). “Structural Abstraction of Software Ver-
ification Conditions”. In: Proceedings of the 19th International Con-
ference on Computer Aided Verification (CAV). Ed. by W. Damm
and H. Hermanns. Vol. 4590. Lecture Notes in Computer Science.
Springer. 366–378.

Bader-El-Den, M. and R. Poli. (2007). “Generating SAT Local Search
Heuristics Using a GP Hyper-Heuristic Framework”. In: Proceedings
of the 8th International Conference on Artificial Evolution. Ed. by N.
Monmarché, E.-G. Talbi, P. Collet, M. Schoenauer, and E. Lutton.
Vol. 4926. Lecture Notes in Computer Science. Springer. 37–49.

Bader-El-Den, M. and R. Poli. (2008a). “Analysis and extension of the
Inc* on the satisfiability testing problem”. In: Proceedings of the
IEEE Congress on Evolutionary Computation. IEEE. 3342–3349.

Bader-El-Den, M. and R. Poli. (2008b). “Evolving Effective Incremental
Solvers for SAT with a Hyper-Heuristic Framework Based on Genetic
Programming”. In: Genetic Programming Theory and Practice VI.
Ed. by B. Worzel, T. Soule, and R. Riolo. Genetic and Evolutionary
Computation. Springer. 1–16.

Bader-El-Den, M. and R. Poli. (2008c). “Inc*: An Incremental Approach
for Improving Local Search Heuristics”. In: Proceedings of the 8th
European Conference on Evolutionary Computation in Combinato-
rial Optimization (EvoCOP). Ed. by J. van Hemert and C. Cotta.
Vol. 4972. Lecture Notes in Computer Science. Springer. 194–205.

Bain, S., J. Thornton, and A. Sattar. (2005a). “A Comparison of Evo-
lutionary Methods for the Discovery of Local Search Heuristics”. In:
Proceedings of the 18th Australasian Joint Conference on Artificial
Intelligence. Ed. by S. Zhang and R. Jarvis. Vol. 3809. Lecture Notes
in Computer Science. Springer. 1068–1074.

Bain, S., J. Thornton, and A. Sattar. (2005b). “Evolving Variable-
Ordering Heuristics for Constrained Optimisation”. In: Proceedings
of the 11th International Conference on Principles and Practice of
Constraint Programming. Ed. by P. van Beek. Vol. 3709. Lecture
Notes in Computer Science. Springer. 732–736.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 159

Bertels, A. R. and D. R. Tauritz. (2016). “Why Asynchronous Parallel
Evolution is the Future of Hyper-heuristics: A CDCL SAT Solver
Case Study”. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO). Ed. by T. Friedrich. Association for
Computing Machinary. 1359–1365.

Bertels, A. R. (2016). “Automated design of boolean satisfiability solvers
employing evolutionary computation”. MA thesis. Missouri Institute
of Science and Technology. 7549.

Biere, A. (2008a). “Adaptive Restart Strategies for Conflict Driven
SAT Solvers”. In: Proceedings of the 11th International Conference
on Theory and Applications of Satisfiability Testing. Ed. by H. K.
Büning and X. Zhao. Vol. 4996. Lecture Notes in Computer Science.
Springer. 28–33.

Biere, A. (2008b). “PicoSAT Essentials”. Journal of Satisfiability, Boolean
Modeling and Computation. 4(2-4): 75–97.

Biere, A., A. Cimatti, E. Clarke, and Y. Zhu. (1999). “Symbolic Model
Checking without BDDs”. In: Proceedings of the 5th International
Conference on Construction and Analysis of Systems (TACAS). Ed.
by W. R. Cleaveland. Vol. 1579. Lecture Notes in Computer Science.
Springer. 197–207.

Biere, A., K. Fazekas, M. Fleury, and M. Heisinger. (2020). “CaDiCaL,
Kissat, Paracooba, Plingeling and Treengeling Entering the
SAT Competition 2020”. In: Proceedings of SAT Competition 2020:
Solver and Benchmark Descriptions. Ed. by T. Balyo, N. Froleyks,
M. J. Heule, M. Iser, M. Järvisalo, and M. Suda. Department of
Computer Science Report Series B. No. B-2020-1. Department of
Computer Science, University of Helsinki.

Biere, A. and A. Fröhlich. (2015). “Evaluating CDCL Variable Scoring
Schemes”. In: Proceedings of the 18th International Conference on
Theory and Applications of Satisfiability Testing. Ed. by M. Heule and
S. Weaver. Vol. 9340. Lecture Notes in Computer Science. Springer.
405–422.

Biere, A. and A. Fröhlich. (2019). “Evaluating CDCL Restart Schemes”.
In: Proceedings of Pragmatics of SAT 2015 and 2018. Vol. 59. EPiC
Series in Computing. EasyChair. 1–17.

Full text available at: http://dx.doi.org/10.1561/2200000081

160 References

Biere, A., M. Huele, H. van Maaren, and T. Walsh. (2009). Handbook
of Satisfiability. Vol. 85. Frontiers in Artificial Intelligence and
Applications. IOS Press.

Bischl, B., M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J.
Thomas, T. Ullmann, M. Becker, A.-L. Boulesteix, D. Deng, and
M. Lindauer. (2021). “Hyperparameter Optimization: Foundations,
Algorithms, Best Practices and Open Challenges”. arXiv: 2107 .
05847v2 [stat.ML].

Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer.

Blanchette, J. C., M. Fleury, P. Lammich, and C. Weidenbach. (2018).
“A Verified SAT Solver Framework with Learn, Forget, Restart and
Incrementality”. Journal of Automated Reasoning. 61(1–5): 333–365.

Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. (2008).
“Fast unfolding of communities in large networks”. Journal of Sta-
tistical Mechanics: Theory and Experiment. 2008(10).

Boolos, G. S., J. P. Burgess, and R. C. Jeffrey. (2007). Computability
and Logic. 5th Edition. Cambridge University Press.

Boyan, J. A. (1998). “Learning Evaluation Functions for Global Op-
timization”. PhD thesis. Pittsburgh, PA 15213: Carnegie Mellon
University. CMU-CS-98-152.

Boyan, J. A. and A. W. Moore. (1998). “Learning Evaluations Functions
for Global Optimization and Boolean Satisfiability”. In: Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI).
3–10.

Boyan, J. A. and A. W. Moore. (2000). “Learning Evaluation Functions
to Improve Optimization by Local Search”. Journal of Machine
Learning Research. 1: 77–112.

Breiman, L. (2001). “Random Forests”. Machine Learning. 45(1): 5–32.
Bridge, J. P., S. B. Holden, and L. C. Paulson. (2014). “Machine

Learning for First-Order Theorem Proving: Learning to Select a
Good Heuristic”. Journal of Automated Reasoning. 53(Feb.): 141–
172.

Bünz, B. and M. Lamm. (2017). “Graph Neural Networks and Boolean
Satisfiability”. arXiv: 1702.03592 [cs.AI].

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/2107.05847v2
https://arxiv.org/abs/2107.05847v2
https://arxiv.org/abs/1702.03592

References 161

Cameron, C., R. Chen, J. Hartford, and K. Leyton-Brown. (2020).
“Predicting Propositional Satisfiabilty via End-to-End Learning”.
In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI-20). Vol. 34. No. 4. AAAI Press.

Cameron, C., H. H. Hoos, K. Leyton-Brown, and F. Hutter. (2017).
“OASC-2017: *Zilla Submission”. In: Proceedings of Machine Learn-
ing Research. Ed. by M. Lindauer, J. N. van Rijn, and L. Kotthoff.
Vol. 79. 15–18.

Carvalho, E. and J. Marques-Silva. (2004). “Using Rewarding Mecha-
nisms for Improving Branching Heuristics”. In: Proceedings of the 7th
International Conference on Theory and Applications of Satisfiability
Testing.

Chang, W., G. Wu, and Y. Xu. (2017). “Adding a LBD-based Rewarding
Mechanism in Branching Heuristic for SAT Solvers”. In: Proceedings
of the 12th International Conference on Intelligent Systems and
Knowledge Engineering (ISKE).

Chang, W., Y. Xu, and S. Chen. (2018). “A New Rewarding Mechanism
for Branching Heuristic in SAT Solvers”. International Journal of
Computational Intelligence Systems. 12(1): 334–341.

Chen, W., A. Howe, and D. Whitley. (2014). “MiniSAT with Classification-
based Preprocessing”. In: Proceedings of SAT Competition 2014:
Solver and Benchmark Descriptions. Ed. by A. Belov, D. Diepold,
M. J. Heule, and M. Järvisalo. Department of Computer Science
Report Series B. No. B-2014-2. Department of Computer Science,
University of Helsinki. 41–42.

Chen, Z. and Z. Yang. (2019). “Graph Neural Reasoning May Fail in
Certifying Boolean Unsatisfiability”. arXiv: 1909.11588 [cs.LG].

Chu, G., A. Harwood, and P. J. Stuckey. (2010). “Cache Conscious
Data Structures for Boolean Satisfiability Solvers”. Journal of Sat-
isfiability, Boolean Modeling and Computation. 6(1-3): 99–120.

Chvalovský, K. (2019). “Top-Down Neural Model For Formulae”. In:
Proceedings of the International Conference on Learning Represen-
tations.

Clarke, E., A. Biere, R. Raimi, and Y. Zhu. (2001). “Bounded Model
Checking Using Satisfiability Solving”. Formal Methods in System
Design. 19: 7–34.

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/1909.11588

162 References

Clauset, A., C. R. Shalizi, and M. E. J. Newman. (2009). “Power-Law
Distributions in Empirical Data”. SIAM Review. 51(4): 661–703.

Dalen, D. van. (2001). “Intuitionistic Logic”. In: The Blackwell Guide to
Philosophical Logic. Ed. by L. Goble. Blackwell Publishers. Chap. 11.
224–257.

Daumé, H. and D. Marcu. (2005). “Learning as Search Optimization:
Approximate Large Margin Methods for Structured Prediction”.
In: Proceedings of the 22nd International Conference on Machine
Learning (ICML). 169–176.

Davies, M., G. Logemann, and D. Loveland. (1962). “A machine program
for theorem-proving”. Communications of the ACM. 5(7): 394–397.

Dershowitz, N., Z. Hanna, and J. Katz. (2005). “Bounded Model Check-
ing with QBF”. In: Proceedings of the International Conference on
Theory and Applications of Satisfiability Testing. Ed. by F. Bacchus
and T. Walsh. Vol. 3569. Lecture Notes in Computer Science. 408–
414.

Devlin, D. and B. O’Sullivan. (2008). “Satisfiability as a Classification
Problem”. In: Proceedings of the 19th Irish Conference on Artificial
Intelligence and Cognitive Science. Ed. by D. Bridge, K. Brown,
B. O’Sullivan, and H. Sorensen. University College Cork.

Devroye, L., L. Györfi, and G. Lugosi. (1996). A Probabilistic Theory
of Pattern Recognition. Vol. 31. Stochastic Modelling and Applied
Probability. Springer.

Duda, R. O., P. E. Hart, and D. G. Stork. (2000). Pattern Classification.
2nd Edition. Wiley.

Dyckhoff, R. (1992). “Contraction-Free Sequent Calculi for Intuitionistic
Logic”. The Journal of Symbolic Logic. 57(3): 795–807.

Eén, N. and A. Biere. (2005). “Effective Preprocessing in SAT Through
Variable and Clause Elimination”. In: Proceedings of the 8th In-
ternational Conference on Theory and Applications of Satisfiability
Testing. Ed. by F. Bacchus and T. Walsh. Vol. 3569. Lecture Notes
in Computer Science. Springer. 61–75.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 163

Eén, N. and N. Sörensson. (2003). “An Extensible SAT-solver”. In:
Proceedings of the 6th International Conference on Theory and
Applications of Satisfiability Testing. Ed. by E. Giunchiglia and A.
Tacchella. Vol. 2919. Lecture Notes in Computer Science. Springer.
502–518.

Egly, U., T. Eiter, H. Tompits, and S. Woltran. (2000). “Solving Ad-
vanced Reasoning Tasks using Quantified Boolean Formulas”. In:
Proceedings of the Seventeenth National Conference on Artificial
Intelligence. The AAAI Press. 417–422.

Emmerich, M., O. M. Shir, and H. Wang. (2018). “Evolution Strategies”.
In: Handbook of Heuristics. Ed. by R. Marti, P. Panos, and M. G. C.
Resende. Springer. 1–31.

Engel, A. and C. V. den Broeck. (2001). Statistical Mechanics of Learn-
ing. Cambridge University Press.

Ertel, W., J. M. P. Schumann, and C. B. Suttner. (1989). “Learning
Heuristics for a Theorem Prover using Back Propagation”. In: 5.
Osterreichische Aertificial-Intelligence-Tagung. Ed. by J. Retti and
K. Leidlmair. Vol. 208. Informatik-Fachbericht. 87–95.

Evans, R., D. Saxton, D. Amos, P. Kohli, and E. Grefenstette. (2018).
“Can Neural Networks Understand Logical Entailment?” In: Pro-
ceedings of the 6th International Conference on Learning Represen-
tations.

Färber, M., C. Kaliszyk, and J. Urban. (2021). “Machine Learning Guid-
ance for Connection Tableaux”. Journal of Automated Reasoning.
65: 287–320.

Fernández-Delgado, M., E. Cernadas, S. Barro, and D. Amorim. (2014).
“Do we Need Hundreds of Classifiers to Solve Real World Clas-
sification Problems?” Journal of Machine Learning Research. 15:
3133–3181.

Ferrari, M., C. Fiorentini, and G. Fiorino. (2010). “fCube: An Efficient
Prover for Intuitionistic Propositional Logic”. In: Proceedings of the
17th International Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR). Ed. by C. G. Fermüller and A.
Voronkov. Vol. 6397. Lecture Notes in Computer Science. Springer.
294–301.

Full text available at: http://dx.doi.org/10.1561/2200000081

164 References

Fink, M. (2007). “Online Learning of Search Heuristics”. Proceedings of
Machine Learning Research. 2: 115–122.

Fleury, M., J. C. Blanchette, and P. Lammich. (2018). “A verified SAT
solver with watched literals using imperative HOL”. In: Proceedings
of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proof. 158–171.

Flint, A. and M. B. Blaschko. (2012). “Perceptron Learning of SAT”.
In: Proceedings of the 25th International Conference on Neural
Information Processing (NIPS). Ed. by F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger. Vol. 2. Curran Associates Inc.
2771–2779.

Fréchette, A., N. Newman, and K. Leyton-Brown. (2016). “Solving
the Station Repacking Problem”. In: Proceedings of the 30th AAAI
Conference on Artificial Intelligence. 702–709.

Fuchs, M. and M. Fuchs. (1998). “Feature-based learning of search-
guiding heuristics for theorem proving”. AI Communications. 11(3,4):
175–189.

Fukunaga, A. S. (2002). “Automated Discovery of Composite SAT
Variable-Selection Heuristics”. In: Proceedings of the 18th National
Conference on Artificial Intelligence (AAAI). The AAAI Press. 641–
648.

Fukunaga, A. S. (2004). “Evolving Local Search Heuristics for SAT
Using Genetic Programming”. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO). Ed. by K. Deb.
Vol. 3103. Lecture Notes in Computer Science. Springer. 483–494.

Fukunaga, A. S. (2008). “Automated Discovery of Local Search Heuris-
tics for Satisfiability Testing”. Evolutionary Computation. 16(1):
31–61.

Fukunaga, A. S. (2009). “Massively Parallel Evolution of SAT Heuris-
tics”. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation. 1478–1485.

Gagliolo, M. and J. Schmidhuber. (2007). “Learning Restart Strate-
gies”. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI). 792–797.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 165

Garey, M. R. and D. S. Johnson. (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company.

Garivier, A. and E. Moulines. (2011). “On Upper-Confidence Bound
Policies for Switching Bandit Problems”. In: Proceedings of the 22nd
International Conference on Algorithmic Learning Theory. Ed. by
J. Kivinen, C. Szepesvári, E. Ukkonen, and T. Zeugmann. Vol. 6925.
Lecture Notes in Computer Science. Springer. 174–188.

Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl.
(2017). “Neural message passing for Quantum chemistry”. In: Pro-
ceedings of the 34th International Conference on Machine Learning
(ICML). Vol. 70. 1263–1272.

Giunchiglia, E., M. Narizzano, L. Pulina, and A. Tacchella. (2005).
“Quantified Boolean Formulas satisfiability library (QBFLIB)”. url:
www.qbflib.org.

Giunchiglia, E., M. Narizzano, and A. Tacchella. (2006). “Clause/Term
Resolution and Learning in the Evaluation of Quantified Boolean
Formulas”. Journal of Artificial Intelligence Research. 26(Aug.):
371–416.

Goldberg, E. and Y. Novikov. (2002). “BerkMin: A fast and robust SAT
solver”. In: Proceedings of the 2002 Design, Automation and Test in
Europe Conference and Exhibition. IEEE. 142–149.

Gomes, C. P. and B. Selman. (2001). “Algorithm portfolios”. Artificial
Intelligence. 126: 43–62.

Goodfellow, I., Y. Bengio, and A. Courville. (2016). Deep Learning.
MIT Press.

Gottlieb, J., E. Marchiori, and C. Rossi. (2002). “Evolutionary Algo-
rithms for the Satisfiability Problem”. Evolutionary Computation.
10(1): 35–50.

Graça, A., J. Marques-Silva, and I. Lynce. (2010). “Haplotype Inference
Using Propositional Satisfiability”. In: Mathematical Approaches to
Polymer Sequence Analysis and Related Problems. Ed. by R. Bruni.
Springer. 127–147.

Grozea, C. and M. Popescu. (2014). “Can Machine Learning Learn a
Decision Oracle for NP Problems? A Test on SAT”. Fundamenta
Informaticae. 131: 441–450.

Full text available at: http://dx.doi.org/10.1561/2200000081

www.qbflib.org

166 References

Guyon, I., S. Gunn, M. Nikravesh, and L. A. Zadeh, eds. (2006). Feature
Extraction: Foundations and Applications. Studies in Fuzziness and
Soft Computing. Springer.

Haim, S. and T. Walsh. (2008). “Online Estimation of SAT Solving
Runtime”. In: Proceedings of the 11th International Conference
on Theory and Applications of Satisfiability Testing. Ed. by H. K.
Büning and X. Zhao. Vol. 4996. Lecture Notes in Computer Science.
Springer. 133–138.

Haim, S. and T. Walsh. (2009). “Restart Strategy Selection Using
Machine Learning Techniques”. In: Proceedings of the 12th Inter-
national Conference on Theory and Applications of Satisfiability
Testing. Ed. by O. Kullmann. Vol. 5584. Lecture Notes in Computer
Science. Springer. 312–325.

Hamadi, Y., S. Jabbour, and L. Saïs. (2010). “Learning for Dynamic
Subsumption”. International Journal on Artificial Intelligence Tools:
Architectures, Languages, Algorithms. 19(4): 511–529.

Hamilton, W. L. (2020). “Graph Representation Learning”. Synthesis
Lectures on Artificial Intelligence and Machine Learning. 14(3): 1–
159.

Han, H. and F. Somenzi. (2009). “On-The-Fly Clause Improvement”.
In: Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing. Ed. by O. Kullmann. Vol. 5584.
Lecture Notes in Computer Science. Springer. 209–222.

Han, J. M. (2020a). “Enhancing SAT solvers with glue variable predic-
tions”. arXiv: 2007.02559v1 [cs.LO].

Han, J. M. (2020b). “Learning cubing heuristics for SAT from DRAT
proofs”. In: Conference on Artificial Intelligence and Theorem Prov-
ing (AITP).

Harrison, J. (2009). Handbook of Practical Logic and Automated Rea-
soning. Cambridge University Press.

Hartford, J., D. Graham, K. Leyton-Brown, and S. Ravanbakhsh. (2018).
“Deep Models of Interactions Across Sets”. In: Proceedings of the 35th
International Conference on Machine Learning. Vol. 80. Proceedings
of Machine Learning Research. 1909–1918.

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/2007.02559v1

References 167

Hastie, T., R. Tibshirani, and J. Friedman. (2009). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2nd
Edition. Springer.

Heule, M., M. Järvisalo, and M. Suda. (2019). The international SAT
Competitions web page. url: http://www.satcompetition.org/.

Heule, M. J. H., O. Kullmann, and V. W. Marek. (2016). “Solving and
Verifying the Boolean Pythagorean Triples Problem via Cube-And-
Conquer”. In: Proceedings of the 19th International Conference on
Theory and Applications of Satisfiability Testing. Ed. by N. Creignou
and D. L. Berre. Vol. 9710. Lecture Notes in Computer Science.
Springer. 228–245.

Heule, M. J. H., O. Kullmann, S. Wieringa, and A. Biere. (2011). “Cube
and Conquer: Guiding CDCL SAT Solvers by Lookaheads”. In:
Proceedings of the 7th International Haifa Verification Conference.
Ed. by K. Eder, J. Lourenço, and O. Shehory. Vol. 7261. Lecture
Notes in Computer Science. Springer. 50–65.

Heule, M. J., O. Kullmann, and V. W. Marek. (2017). “Solving Very
Hard Problems: Cube-and-Conquer, a Hybrid SAT Solving Method”.
In: Proceedings of the 26th International Conference on Artificial
Intelligence (IJCAI). Ed. by C. Sierra. 4864–4868.

Hochreiter, S. and J. Schmidhuber. (1997). “Long Short-Term Memory”.
Neural Computation. 9(8): 1735–1780.

Holldobler, S., N. Manthey, V. H. Nguyen, J. Stecklina, and P. Steinke.
(2011). “A short overview of modern parallel SAT-solvers”. In: Pro-
ceedings of the International Conference on Computer Science and
Information Systems. IEEE. 201–206.

Holte, R. C. (1993). “Very Simple Classification Rules Perform Well on
Most Commonly Used Datasets”. Machine Learning. 11: 63–91.

Hoos, H., T. Peitl, F. Slivovsky, and S. Szeider. (2018). “Portfolio-Based
Algorithm Selection for Circuit QBFs”. In: Proceedings of the 24th
International Conference on Principles and Practice of Constraint
Programming (CP). Ed. by J. Hooker. Vol. 11008. Lecture Notes in
Computer Science. Springer. 195–209.

Full text available at: http://dx.doi.org/10.1561/2200000081

http://www.satcompetition.org/

168 References

Hoos, H. H. (1999). “On the Run-Time Behavious of Stochastic Local
Search Algorithms for SAT”. In: Proceedings of the 16th National
Conference on Artificial Intelligence. Association for the Advance-
ment of Artificial Intelligence. AAAI Press. 661–666.

Hoos, H. H. and T. Stützle. (2000). “SATLIB: An Online Resource for
Research on SAT”. In: SAT2000: Highlights of Satisfiability Research
in the Year 2000. Ed. by I. P. Gent, H. V. Maaren, and T. Walsh.
Vol. 63. Frontiers in Artificial Intelligence and Applications. IOS
Press. 283–292.

Hoos, H. H. and T. Stützle. (2019). SATLIB—The Satisfiability Library.
url: https://www.cs.ubc.ca/~hoos/SATLIB/.

Hopfield, J. J. and D. W. Tank. (1985). “‘Neural’ Computation of Deci-
sions in Optimization Problems”. Biological Cybernetics. 52(July):
141–152.

Hu, Y., X. Si, C. Hu, and J. Zhang. (2019). “A Review of Recurrent
Neural Networks: LSTM Cells and Network Architectures”. Neural
Computation. 31: 1235–1270.

Huberman, B. A., R. M. Lukose, and T. Hogg. (1997). “An Economics
Approach to Hard Computational Problems”. Science. 275(Jan.):
51–54.

Hutter, F., D. Babić, H. H. Hoos, and A. J. Hu. (2007). “Boosting
Verification by Automatic Tuning of Decision Procedures”. In: Pro-
ceedings of the 7th International Conference on Formal Methods in
Computer-Aided Design. IEEE. 27–34.

Hutter, F., Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. (2006).
“Performance Prediction and Automated Tuning of Randomized and
Parametric Algorithms”. In: Proceedings of the 12th International
Conference on Principles and Practice of Constraint Programming.
Ed. by F. Benhamou. Vol. 4204. Lecture Notes in Computer Science.
Springer. 213–228.

Hutter, F., H. H. Hoos, and K. Leyton-Brown. (2011). “Sequential
Model-Based Optimization for General Algorithm Configuration”.
In: Proceedings of the 5th International Conference on Learning and
Intelligent Optimization (LION). Ed. by C. A. C. Coello. Vol. 6683.
Lecture Notes in Computer Science. Springer. 507–523.

Full text available at: http://dx.doi.org/10.1561/2200000081

https://www.cs.ubc.ca/~hoos/SATLIB/

References 169

Hutter, F., H. H. Hoos, K. Leyton-Brown, and T. Stützle. (2009).
“ParamILS: An Automatic Algorithm Configuration Framework”.
Journal of Artificial Intelligence Research. 36(Oct.): 267–306.

Hutter, F., L. Kotthoff, and J. Vanschoren, eds. (2019). Automated
Machine Learning: Methods, Systems, Challenges. The Springer
Series on Challenges in Machine Learning. Springer.

Hutter, F., M. Lindauer, A. Balint, S. Bayless, H. Hoos, and K. Leyton-
Brown. (2017). “The Configurable SAT Solver Challenge (CSSC)”.
Artificial Intelligence. 243: 1–25.

Hutter, F., D. A. D. Tompkins, and H. H. Hoos. (2002). “Scaling and
Probabilistic Smoothing: Efficient Dynamic Local Search for SAT”.
In: Proceedings of the 8th International Conference on Principles
and Practice of Constraint Programming. Ed. by P. V. Hentenryck.
Vol. 2470. Lecture Notes in Computer Science. Springer. 233–248.

Illetskova, M., A. R. Bertels, J. M. Tuggle, A. Harter, S. Richter,
D. R. Tauritz, S. Mulder, D. Bueno, M. Leger, and W. M. Siever.
(2017). “Improving performance of CDCL SAT solvers by automated
design of variable selection heuristics”. In: Proceedings of the IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE.
617–624.

Janota, M. (2018). “Towards Generalization in QBF Solving via Machine
Learning”. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18). AAAI Press. 6607–6614.

Janota, M., W. Klieber, J. Marques-Silva, and E. Clarke. (2016). “Solv-
ing QBF with counterexample guided refinement”. Artificial Intelli-
gence. 234: 1–25.

Järvisalo, M., M. J. H. Heule, and A. Biere. (2012). “Inprocessing
Rules”. In: Proceedings of the 6th International Joint Conference on
Automated Reasoning (IJCAR). Ed. by B. Gramlich, D. Miller, and
U. Sattler. Vol. 7364. Lecture Notes in Computer Science. Springer.
355–370.

Jaszczur, S., M. Łuszczyk, and H. Michalewski. (2019). “Neural heuris-
tics for SAT solving”. In: Proceedings of the 7th International Con-
ference on Learning Representations.

Full text available at: http://dx.doi.org/10.1561/2200000081

170 References

Jeroslow, R. G. and J. Wang. (1990). “Solving propositional satisfiability
problems”. Annals of Mathematics and Artificial Intelligence. 1(1–4):
167–187.

Johnson, J. L. (1989). “A Neural Network Approach to the 3-Satisfiability
Problem”. Journal of Parallel and Distributed Computing. 6: 435–
449.

Jordan, C. and Ł. Kaiser. (2013). “Experiments with Reduction Finding”.
In: Proceedings of the 16th International Conference on Theory and
Applications of Satisfiability Testing (SAT). Ed. by M. Järvisalo
and A. V. Gelder. Vol. 7962. Lecture Notes in Computer Science.
Springer. 192–207.

Kadioglu, S., Y. Malitski, A. Sabharwal, H. Samulowitz, and M. Sell-
mann. (2011). “Algorithm Selection and Scheduling”. In: Proceedings
of the 17th International Conference on Principles and Practice of
Constraint Programming. Ed. by J. Lee. Vol. 6876. Lecture Notes in
Computer Science. Springer. 454–469.

Kadioglu, S., Y. Malitsky, M. Sellman, and K. Tierney. (2010). “ISAC—
Instance-Specific Algorithm Configuration”. In: Proceedings of the
19th European Conference on Artificial Intelligence (ECAI). 751–
756.

Kaplan, E. L. and P. Meier. (1958). “Nonparametric Estimation from
Incomplete Observations”. Journal of the American Statistical As-
sociation. 53(282): 457–481.

Kaufman, L. and P. J. Rousseeuw. (1990). Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley Series in Probability and
Statistics. John Wiley & Sons, Inc.

Kautz, H. and B. Selman. (1992). “Planning as Satisfiability”. In: Pro-
ceedings of the 10th European Conference on Articifial Intelligence
(ECAI). Wiley. 359–363.

Kautz, H. A. (2006). “Deconstructing Planning as Satisfiability”. In:
Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI). Vol. 2. 1524–1526.

Khudabukhsh, A. R., L. Xu, H. H. Hoos, and K. Leyton-Brown. (2016).
“SATenstein: Automatically building local search SAT solvers from
components”. Artificial Intelligence. 232: 20–42.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 171

Kibria, R. H. (2007). “Evolving a Neural Network-Based Decision and
Search Heuristic for DPLL SAT Solvers”. In: Proceedings of the
International Joint Conference on Neural Networks (IJCNN). 765–
770.

Kibria, R. H. and Y. Li. (2006). “Optimizing the Initialization of Dy-
namic Decision Heuristics in DPLL SAT Solvers Using Genetic
Programming”. In: Proceedings of the 9th European Conference on
Genetic Programming (EuroGP). Ed. by P. Collett, M. Tomassini,
M. Ebner, S. Gustafson, and A. Ekárt. Vol. 3905. Lecture Notes in
Computer Science. Springer. 331–340.

Kibria, R. H. (2011). “Soft Computing Approaches to DPLL SAT Solver
Optimization”. PhD thesis. Technische Universität Darmstadt.

Kingma, D. P. and J. Ba. (2015). “Adam: A Method For Stochastic
Optimization”. In: Proceedings of the International Conference on
Learning Representations.

Klieber, W., S. Sapra, S. Gao, and E. Clarke. (2010). “A Non-prenex,
Non-clausal QBF Solver with Game-State Learning”. In: Proceedings
of the 13th International Conference on Theory and Applications of
Satisfiability Testing. Ed. by O. Strichman and S. Szeider. Vol. 6175.
Lecture Notes in Computer Science. Springer. 128–142.

Kohavi, R. (1995). “A study of cross-validation and bootstrap for
accuracy estimation and model selection”. In: Proceedings of the 14th
International Joint Conference on Artificial Intelligence (IJCAI).
Vol. 2. Morgan Kaufmann. 1137–1143.

Kotthoff, L. (2016). “Algorithm Selection for Combinatorial Search
Problems: A Survey”. In: Data Mining and Constraint Programming:
Foundations of a Cross-Disciplinary Approach. Ed. by C. Bessiere,
L. D. Raedt, L. Kotthoff, S. Nijssen, B. O’Sullivan, and D. Pedreschi.
Vol. 10101. Lecture Notes in Computer Science. Springer. 149–190.

Koza, J. R. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press.

Kurin, V., S. Godil, S. Whiteson, and B. Catanzaro. (2019). “Improving
SAT Solver Heuristics with Graph Networks and Reinforcement
Learning”. arXiv: 1909.11830 [cs.LG].

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/1909.11830

172 References

Kusumoto, M., K. Yahata, and M. Sakai. (2018). “Automated Theorem
Proving in Intuitionistic Propositional Logic by Deep Reinforcement
Learning”. arXiv: 1811.00796 [cs.LG].

Laarhoven, P. J. van and E. H. Aarts. (1987). Simulated Annealing:
Theory and Applications. Springer.

Lagoudakis, M. G. and M. L. Littman. (2000). “Algorithm Selection
using Reinforcement Learning”. In: Proceedings of the 17th Interna-
tional Conference on Machine Learning (ICML). Morgan Kaufmann.
511–518.

Lagoudakis, M. G. and M. L. Littman. (2001). “Learning to Select
Branching Rules in the DPLL Procedure for Satisfiability”. Elec-
tronic Notes in Discrete Mathematics. 9(June): 344–359.

Lederman, G., M. N. Rabe, E. A. Lee, and S. A. Seshia. (2019). “Learn-
ing Heuristics for Quantified Formulas through Deep Reinforcement
Learning”. arXiv: 1807.08058v3 [cs.LO].

Letz, R., J. Schumann, S. Bayeri, and W. Bibel. (1992). “SETHEO: A
high-performance theorem prover”. Journal of Automated Reasoning.
8(2): 183–212.

Li, C.-M., F. Xiao, M. Luo, F. Manyà, Z. Lü, and Y. Li. (2020). “Clause
vivification by unit propagation in CDCL SAT Solvers”. Artificial
Intelligence. 279(Feb.).

Liang, J. H., V. Ganesh, P. Poupart, and K. Czarnecki. (2016a). “Ex-
ponential recency weighted average branching heuristic for SAT
solvers”. In: Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI-16). 3434–3440.

Liang, J. H., V. Ganesh, P. Poupart, and K. Czarnecki. (2016b). “Learn-
ing Rate Based Branching Heuristic for SAT Solvers”. In: Proceedings
of the 19th International Conference on Theory and Applications of
Satisfiability Testing. Ed. by N. Creignew and D. L. Berre. Vol. 9710.
Lecture Notes in Computer Science. Springer. 123–140.

Liang, J. H., C. Oh, M. Mathew, C. Thomas, C. Li, and V. Ganesh.
(2018). “Machine Learning-Based Restart Policy for CDCL SAT
Solvers”. In: Proceedings of the 21st International Conference on
Theory and Applications of Satisfiability Testing. Ed. by O. Bey-
ersdorff and C. M. Wintersteiger. Vol. 10929. Lecture Notes in
Computer Science. Springer. 94–110.

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/1807.08058v3

References 173

Liang, J. H., H. G. P. Poupart, K. Czarnecki, and V. Ganesh. (2017).
“An Empirical Study of Branching Heuristics Through the Lens of
Global Learning Rate”. In: Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing. Ed.
by S. Gaspers and T. Walsh. Vol. 10491. Lecture Notes in Computer
Science. Springer. 119–135.

Lindauer, M., H. H. Hoos, F. Hutter, and T. Schaub. (2015). “Autofolio:
an automatically configured algorithm selector”. Journal of Artificial
Intelligence Research. 53(1): 745–778.

Lonsing, F. and U. Egly. (2018). “Evaluating QBF Solvers: Quantifier
Alternations Matter”. In: Proceedings of the 24th International
Conference on Theory and Applications of Satisfiability Testing.
Ed. by J. Hooker. Vol. 11008. Lecture Notes in Computer Science.
Springer. 276–294.

Loreggia, A., Y. Malitsky, H. Samulowitz, and V. Saraswat. (2016).
“Deep Learning for Algorithm Portfolios”. In: Proceedings of the
30th AAAI Conference on Artificial Intelligence. The AAAI Press.
1280–1286.

Luby, M., A. Sinclair, and D. Zuckerman. (1993). “Optimal speedup of
Las Vegas algorithms”. In: Proceedings of the 2nd Israel Symposium
on Theory and Computing Systems. IEEE. 128–133.

Luenberger, D. (2003). Linear and Nonlinear Programming. 2nd Edition.
Kluwer Academic Publishers.

Luo, M., C.-M. Li, F. Xiao, F. Manyà, and Z. Lü. (2017). “An Effective
Learnt Clause Minimization Approach for CDCL SAT Solvers”. In:
Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI). 703–711.

Lynce, I. and J. Marques-Silva. (2005). “Efficient data structures for
backtrack search SAT solvers”. Annals of Mathematics and Artificial
Intelligence. 43(1–4): 137–152.

Lynce, I. and J. Marques-Silva. (2006). “Efficient Haplotype Inference
with Boolean Satisfiability”. In: Proceedings of the 21st AAAI Con-
ference on Artificial Intelligence. Vol. 1. The AAAI Press. 104–
109.

Full text available at: http://dx.doi.org/10.1561/2200000081

174 References

Malitsky, Y., A. Sabharwal, H. Samulowitz, and M. Sellmann. (2011).
“Non-Model-Based Algorithm Portfolios for SAT”. In: Proceedings
of the 14th International Conference on Theory and Applications of
Satisfiability Testing. Ed. by K. A. Sakallah and L. Simon. Vol. 6695.
Lecture Notes in Computer Science. Springer. 369–370.

Malitsky, Y., A. Sabharwal, H. Samulowitz, and M. Sellmann. (2012).
“Parallel SAT Solver Selection and Scheduling”. In: Proceedings
of the 18th International Conference on Principles and Practice
of Constraint Programming. Ed. by M. Milano. Vol. 7514. Lecture
Notes in Computer Science. Springer. 512–526.

Malitsky, Y., A. Sabharwal, H. Samulowitz, and M. Sellmann. (2013).
“Algorithm Portfolios Based on Cost-Sensitive Hierarchical Cluster-
ing”. In: Proceedings of the 23rd International Joint Conference on
Artifical Intelligence. Ed. by F. Rossi. AAAI Press. 608–614.

Mangla, C., S. Holden, and L. Paulson. (2020). “Bayesian Optimiza-
tion of Solver Parameters in CBMC”. In: Proceedings of the 18th
International Workshop on Satisfiability Modulo Theories (SMT).

Marić, F. (2009). “Formalization, Implementation and Verification of
SAT Solvers”. PhD thesis. University of Belgrade.

Marques-Silva, J. (1999). “The Impact of Branching Heuristics in Propo-
sitional Satisfiability Algorithms”. In: Proceedings of the 9th Por-
tugese Conference on Artificial Intelligence (EPIA). Ed. by P. Bara-
hona and J. J. Alferes. Vol. 1695. Lecture Notes in Computer Science.
Springer. 62–74.

Marques-Silva, J. (2008). “Practical Applications of Boolean Satisfiabil-
ity”. In: Proceedings of the 9th International Workshop on Discrete
Event Systems. IEEE. 74–80.

Marques-Silva, J. and K. A. Sakallah. (1999). “GRASP: a search algo-
rithm for propositional satisfiability”. IEEE Transactions on Com-
puters. 48(5): 506–521.

McCarthy, J. (1960). “Recursive functions of symbolic expressions and
their computation by machine, Part I”. Communications of the
ACM. 3(4): 184–195.

McCune, W. (2003). “Otter 3.3 Reference Manual”. Tech. rep. No. MCS-
TM-263. 9700 South Cass Avenue, Argonne, IL 60439: Argonne
National Laboratory.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 175

McLaughlin, S. and F. Pfenning. (2008). “Imogen: Focusing the Po-
larized Inverse Method for Intuitionistic Propositional Logic”. In:
Proceedings of the 15th International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning (LPAR). Ed. by I.
Cervesato, H. Veith, and A. Voronkov. Vol. 5330. Lecture Notes in
Computer Science. Springer. 174–181.

Minton, S. (1996). “Automatically Configuring Constraint Satisfaction
Programs: A Case Study”. Constraints: An International Journal.
1: 7–43.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. The MIT
Press.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.
Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Ku-
maran, D. Wierstra, S. Legg, and D. Hassabis. (2015). “Human-level
control through deep reinforcement learning”. Nature. 518(Feb.):
529–533.

Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
(2001). “Chaff: engineering an efficient SAT solver”. In: Proceedings
of the 38th Design Automation Conference. IEEE. 530–535.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective.
MIT Press.

Nadel, A. and V. Ryvchin. (2018). “Chronological Backtracking”. In:
Proceedings of the 21st International Conference on Theory and
Applications of Satisfiability Testing (SAT). Ed. by O. Beyersdorff
and C. M. Wintersteiger. Vol. 10929. Lecture Notes in Computer
Science. Springer. 111–121.

Narizzano, M., L. Pulina, and A. Tacchella. (2006). “The QBFEVAL
Web Portal”. In: Proceedings of the 10th European Workshop on
Logics in Artificial Intelligence (JELIA). Ed. by M. Fisher, W. van
der Hoek, B. Konev, and A. Lisitsa. Vol. 4160. Lecture Notes in
Computer Science. Springer. 494–497.

Full text available at: http://dx.doi.org/10.1561/2200000081

176 References

Nejati, S., J. H. Liang, C. Gebotys, K. Czarnecki, and V. Ganesh. (2017).
“Adaptive Restart and CEGAR-Based Solver for Inverting Crypto-
graphic Hash Functions”. In: Proceedings of the 9th International
Working Conference on Verified Software: Theories, Tools, and Ex-
periments. Ed. by A. Paskevich and T. Weis. Vol. 10712. Lecture
Notes in Computer Science. Springer. 120–131.

Nieuwenhuis, R., A. Oliveras, and C. Tinelli. (2006). “Solving SAT and
SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-
Loveland procedure to DPLL(T)”. Journal of the ACM. 53(6): 937–
977.

Nikolić, M., F. Marić, and P. Janičić. (2009). “Instance-Based Selection
of Policies for SAT Solvers”. In: Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing. Ed.
by O. Kullman. Vol. 5584. Lecture Notes in Computer Science.
Springer. 326–340.

Nikolić, M., F. Marić, and P. Janičić. (2013). “Simple algorithm portfolio
for SAT”. Artificial Intelligence Review. 40: 457–465.

Nudelman, E., K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y.
Shoham. (2004). “Understanding Random SAT: Beyond the Clauses-
to-Variables Ratio”. In: Proceedings of the 10th International Con-
ference on Principles and Practice of Constraint Programming (CP).
Ed. by M. Wallace. Vol. 3258. Lecture Notes in Computer Science.
Springer. 438–452.

O’Mahony, E., E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan.
(2008). “Using Case-based Reasoning in an Algorithm Portfolio for
Constraint Solving”. In: Proceedings of the 19th Irish Conference
on Artificial Intelligence and Cognitive Science.

Oh, C. (2015). “Between SAT and UNSAT: The Fundamental Difference
in CDCL SAT”. In: Proceedings of the 18th International Conference
on Theory and Applications of Satisfiability Testing (SAT). Ed. by
M. Heule and S. Weaver. Vol. 9340. Lecture Notes in Computer
Science. Springer. 307–323.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Coimputer
Problem Solving. Addison-Wesley.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 177

Peitl, T. and F. Slivovsky. (2017). “Dependency Learning for QBF”.
In: Proceedings of the 20th International Conference on Theory
and Applications of Satisfiability Testing. Ed. by S. Gaspers and
T. Walsh. Vol. 10491. Lecture Notes in Computer Science. Springer.
298–313.

Petke, J., M. Harman, W. B. Langdon, and W. Weimer. (2014). “Using
Genetic Improevement and Code Transplants to Specialise a C++
Program to a Problem Class”. In: Proceedings of the 17th European
Conference on Genetic Programming (EuroGP). Ed. by M. Nikolau,
K. Krewiek, M. I. Heywood, M. Castelli, P. Garcia-Sánchez, J. J.
Morello, V. M. R. Santos, and K. Sim. Vol. 8599. Lecture Notes in
Computer Science. Springer. 137–149.

Petke, J., W. B. Langdon, and M. Harman. (2013). “Applying Genetic
Improvement to MiniSAT”. In: Proceedings of the 5th International
Symposium on Search Based Software Engineering (SSBSE). Ed.
by G. Ruhe and Y. Zhang. Vol. 8084. Lecture Notes in Computer
Science. Springer. 257–262.

Pfahringer, B., H. Bensusan, and C. Giraud-Carrier. (2000). “Meta-
Learning by Landmarking Various Learning Algorithms”. In: Pro-
ceedings of the 17th International Conference on Machine Learning
(ICML). Ed. by P. Langley. Morgan Kaufmann. 743–750.

Pierce, B. C. (2002). Types and Programming Languages. The MIT
Press.

Pipatsrisawat, K. and A. Darwiche. (2007). “A Lightweight Component
Caching Scheme for Satisfiability Solvers”. In: Proceedings of the 10th
International Conference on Theory and Applications of Satisfiability
Tesing. Ed. by J. Marques-Silva and K. A. Sakallah. Vol. 4501.
Lecture Notes in Computer Science. 294–299.

Pisinger, D. and S. Ropke. (2010). “Large Neighborhood Search”. In:
Handbook of Metaheuristics. Ed. by M. Gendreau and J.-Y. Potvin.
Vol. 146. International Series in Operations Research and Manage-
ment Science. Springer. 399–419.

Full text available at: http://dx.doi.org/10.1561/2200000081

178 References

Pulina, L. and A. Tacchella. (2007). “A Multi-engine Solver for Quanti-
fied Boolean Formulas”. In: Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming.
Ed. by C. Bessière. Vol. 4741. Lecture Notes in Computer Science.
Springer. 574–589.

Pulina, L. and A. Tacchella. (2009). “A self-adaptive multi-engine solver
for quantified Boolean formulas”. Constraints. 14: 80–116.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. 1st Edition.
Morgan Kaufmann.

Quinlan, J. R. (1986). “Induction of Decision Trees”. Machine Learning.
1: 81–106.

Rabe, M. N. and S. A. Seshia. (2016). “Incremental Determinization”.
In: Proceedings of the 19th International Conference on Theory and
Applications of Satisfiability Testing (SAT). Ed. by N. Creignou and
D. L. Berre. Vol. 9710. Lecture Notes in Computer Science. Springer.
375–392.

Raths, T., J. Otten, and C. Kreitz. (2007). “The ILTP Problem Library
for Intuitionistic Logic”. Journal of Automated Reasoning. 38: 261–
271.

Rintanen, J. (1999). “Constructing Conditional Plans by a Theorem-
Prover”. Journal of Artificial Intelligence Research. 10: 323–352.

Rivest, R. L. (1987). “Learning Decision Lists”. Machine Learning. 2(3):
229–246.

Russell, S. and P. Norvig. (2020). Artificial Intelligence: A Modern
Approach. 4th ed. Pearson.

Saitta, L., A. Giordana, and A. Cornuéjols. (2011). Phase Transitions
in Machine Learning. Cambridge University Press.

Samulowitz, H. and R. Memisevic. (2007). “Learning to Solve QBF”. In:
Proceedings of the 22nd AAAI Conference on Artificial Intelligence.
The AAAI Press. 255–260.

Santos Silva, R. J. M. dos. (2019). “Machine learning of strategies for
efficiently solving QBF with abstraction refinement”. MA thesis.
Instituto Superior Técnico, Universidade de Lisboa.

Schmee, J. and G. J. Hahn. (1979). “A Simple Method for Regression
Analysis with Censored Data”. Technometrics. 21(4): 417–432.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 179

Sekiyama, T., A. Imanishi, and K. Suenaga. (2017). “Towards Proof
Synthesis Guided by Neural Machine Translation for Intuitionistic
Propositional Logic”. arXiv: 1706.06462v1 [cs.PL].

Sekiyama, T. and K. Suenaga. (2018a). “Automated proof synthesis for
propositional logic with deep neural networks”. arXiv: 1805.11799v1
[cs.AI].

Sekiyama, T. and K. Suenaga. (2018b). “Automated Proof Synthesis
for the Minimal Propositional Logic with Deep Neural Networks”.
In: Proceedings of the 16th Asian Symposium on Programming Lan-
guages and Systems (APLAS). Ed. by S. Ryu. Vol. 11275. Lecture
Notes in Computer Science. Springer. 309–328.

Selman, B., H. Kautz, and B. Cohen. (1996). “Local search strategies
for satisfiability testing”. In: Cliques, Coloring and Satisfiability.
Ed. by D. S. Johnson and M. A. Trick. Vol. 26. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society. 521–532.

Selman, B., H. Levesque, and D. Mitchell. (1992). “A New Method for
Solving Hard Satisfiability Problems”. In: Proceedings of the 10th
National Conference on Artificial Intelligence. Association for the
Advancement of Artificial Intelligence. AAAI Press. 440–446.

Selsam, D. and N. Bjørner. (2019). “Guiding High-Performance SAT
Solvers with Unsat-Core Predictions”. In: Proceedings of the 22nd
International Conference on Theory and Applications of Satisfiability
Testing (SAT). Ed. by M. Janota and I. Lynce. Vol. 11628. Lecture
Notes in Computer Science. Springer. 336–353.

Selsam, D., M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill.
(2019). “Learning a SAT Solver from Single-Bit Supervision”. arXiv:
1802.03685 [cs.AI].

Shaw, P. (1998). “Using Constraint Programming and Local Search
Methods to Solve Vehicle Routing Problems”. In: Proceedings of
the 4th International Conference on Principles and Practice of
Constraint Solving (CP). Ed. by M. Maher and J.-F. Puget. Vol. 1520.
Lecture Notes in Computer Science. Springer. 417–431.

Shawe-Taylor, J. and N. Cristianini. (2000). Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University
Press.

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/1706.06462v1
https://arxiv.org/abs/1805.11799v1
https://arxiv.org/abs/1805.11799v1
https://arxiv.org/abs/1802.03685

180 References

Shawe-Taylor, J. and N. Cristianini. (2004). Kernel Methods for Pattern
Analysis. Cambridge University Press.

Silverthorn, B. (2012). “A Probabilistic Architecture for Algorithm
Portfolios”. PhD thesis. The University of Texas at Austin.

Silverthorn, B. and R. Miikkulainen. (2010). “Latent Class Models for
Algorithm Portfolio Methods”. In: Proceedings of the 24th AAAI
Conference on Artificial Intelligence. Ed. by M. Fox and D. Poole.
The AAAI Press. 167–172.

Singh, R., J. P. Near, V. Ganesh, and M. Rinard. (2009). “AvatarSAT:
An Auto-tuning Boolean SAT Solver”. Tech. rep. No. MIT-CSAIL-
TR-2009-039. MIT Computer Science and Artificial Intelligence
Laboratory.

Soos, M., R. Kulkami, and K. S. Meel. (2019). “CrystalBall: Gazing
in the Black Box of SAT Solving”. In: Proceedings of the 22nd
International Conference on Theory and Applications of Satisfiability
Testing (SAT). Ed. by M. Janota and I. Lynce. Vol. 11628. Lecture
Notes in Computer Science. Springer. 371–387.

Sörensson, N. and A. Biere. (2009). “Minimizing Learned Clauses”. In:
Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing. Ed. by O. Kullmann. Vol. 5584.
Lecture Notes in Computer Science. Springer. 237–243.

Spears, W. M. (1996). “A NN Algorithm for Boolean Satisfiability
Problems”. In: Proceedings of the IEEE International Conference
on Neural Networks. 1121–1126.

Streeter, M. and D. Golovin. (2008). “An online algorithm for maximiz-
ing submodular functions”. In: Proceedings of the 21st International
Conference on Neural Information Processing Systems (NIPS). Ed.
by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou. Curran
Associates Inc. 1577–1584.

Sutskever, I., O. Vinyals, and Q. V. Lee. (2014). “Sequence to Sequence
Learning with Neural Networks”. In: Advances in Neural Information
Processing Systems (NIPS). Ed. by Z. Ghahramani, M. Welling, C.
Cortes, N. D. Lawrence, and K. Q. Weinberger. Vol. 2. 3104–3112.

Sutton, R. S. and A. G. Barto. (2018). Reinforcement Learning: An
Introduction. 2nd Edition. MIT Press.

Full text available at: http://dx.doi.org/10.1561/2200000081

References 181

Tentrup, L. (2019). “CAQE and QuAbS: Abstraction based QBF
solvers”. Journal on Satisfiability, Boolean Modeling and Computa-
tion. 11(1): 155–210.

Ting, K. M. (2002). “An instance-weighting method to induce cost-
sensitive trees”. IEEE Transactions on Knowledge and Data Engi-
neering. 14(3): 659–665.

Vaezipoor, P., G. Lederman, Y. Wu, R. Grosse, and F. Bacchus. (2020).
“Learning Clause Deletion Heuristics with Reinforcement Learning”.
In: Proceedings of the Conference on Artificial Intelligence and
Theorem Proving (AITP).

Vapnik, V. (2006). Estimation of Dependencies based on Empirical Data.
Springer.

Vishwanathan, S. V. N., N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt. (2010). “Graph Kernels”. Journal of Machine Learning
Research. 11: 1201–1242.

Wainberg, M., B. Alipanahi, and B. J. Frey. (2016). “Are Random
Forests Truly the Best Classifiers?” Journal of Machine Learning
Research. 17(1–5).

Wainer, J. and P. Fonseca. (2021). “How to tune the RBF SVM hy-
perparameters? An empirical evaluation of 18 search algorithms”.
Artificial Intelligence Review. 54: 4771–4797.

Wang, P.-W., P. L. Donti, B. Wilder, and Z. Kolter. (2019). “SATNet:
Bridging deep learning and logical reasoning using a differentiable
satisfiability solver”. In: Proceedings of the 36th International Con-
ference on Machine Learning. Ed. by K. Chaudhuri and R. Salakhut-
dinov. Vol. 97. Proceedings of Machine Learning Research. 6545–
6554.

Wetzler, N., M. J. H. Heule, and W. J. H. Jr. (2014). “DRAT-trim:
Efficient Checking and Trimming Using Expressive Clausal Proofs”.
In: Proceedings of the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT). Ed. by C. Sinz and U.
Egly. Vol. 8561. Lecture Notes in Computer Science. 422–429.

Williams, R. J. (1992). “Simple statistical gradient-following algorithms
for connectionist reinforcement learning”. Machine Learning. 8(3–4):
229–256.

Full text available at: http://dx.doi.org/10.1561/2200000081

182 References

Wos, L. (1964). “The Unit Preference Strategy in Theorem Proving”.
In: Proceedings of the Fall Joint Computer Conference (AFIPS).
Association for Computing Machinery. 615–622.

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. (2019). “A
Comprehensive Survey on Graph Neural Networks”. arXiv: 1901.
00596v4.

Xu, L., H. H. Hoos, and K. Leyton-Brown. (2007). “Hierarchical Hard-
ness Models for SAT”. In: Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming.
Ed. by C. Bessière. Vol. 4741. Lecture Notes in Computer Science.
Springer. 696–711.

Xu, L., F. Hutter, H. Hoos, and K. Leyton-Brown. (2012a). “Evaluat-
ing Component Solver Contributions to Portfolio-Based Algorithm
Selectors”. In: Proceedings of the 15th International Conference on
Theory and Applications of Satisfiability Testing. Ed. by A. Cimatti
and R. Sebastiani. Vol. 7317. Lecture Notes in Computer Science.
Springer. 228–241.

Xu, L., F. Hutter, H. H. Hoos, and K. Leyton-Brown. (2008). “SATzilla:
Portfolio-based Algorithm Selection for SAT”. Journal of Artificial
Intelligence Research. 32: 565–606.

Xu, L., F. Hutter, H. H. Hoos, and K. Leyton-Brown. (2009). “SATzilla2009:
an Automatic Algorithm Portfolio for SAT”. In: SAT 2009 competa-
tive events booklet. 53–55.

Xu, L., F. Hutter, H. Hughes, and K. Leyton-Brown. (2012b). “Features
for SAT”. Tech. rep. University of British Columbia. url: http:
//www.cs.ubc.ca/labs/beta/Projects/SATzilla/.

Xu, L., F. Hutter, J. Shen, H. H. Hoos, and K. Leyton-Brown. (2012c).
“SATzilla2012: Improved Algorithm Selection Based on Cost-sensitive
Classification Models”. In: Proceedings of SAT Challenge 2012:
Solver and Benchmark Descriptions. Ed. by A. Balint, A. Belov,
D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz. Department of
Computer Science Report Series B. No. B-2012-2. Department of
Computer Science, University of Helsinki. 57–58.

Yang, Z., F. Wang, Z. Chen, G. Wei, and T. Rompf. (2019). “Graph
Neural Reasoning for 2-Quantified Boolean Formula Solvers”. arXiv:
1904.12084v1 [cs.AI].

Full text available at: http://dx.doi.org/10.1561/2200000081

https://arxiv.org/abs/1901.00596v4
https://arxiv.org/abs/1901.00596v4
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
https://arxiv.org/abs/1904.12084v1

References 183

Yolcu, E. and B. Póczos. (2019). “Learning Local Search Heuristics
for Boolean Satisfiability”. In: Proceedings of the 32nd Conference
on Neural Information Processing Systems (NeurIPS). Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett. 7992–8003.

Yun, X. and S. L. Epstein. (2012). “Learning Algorithm Portfolios
for Parallel Execution”. In: Proceedings of the 6th International
Conference on Learning and Intelligent Optimization (LION). Ed.
by Y. Hamadi and M. Schoenauer. Vol. 7219. Lecture Notes in
Computer Science. Springer. 323–338.

Zhang, L., C. F. Madigan, M. H. Moskewicz, and S. Malik. (2001).
“Efficient Conflict Driven Learning in a Boolean Satisfiability Solver”.
In: Proceedings of the IEEE/ACM International Conference on
Computer Aided Design. 279–285.

Full text available at: http://dx.doi.org/10.1561/2200000081

