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Theorem Proving: Learning to Solve
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ABSTRACT
The decision problem for Boolean satisfiability, generally
referred to as SAT, is the archetypal NP-complete problem,
and encodings of many problems of practical interest exist
allowing them to be treated as SAT problems. Its generaliza-
tion to quantified SAT (QSAT) is PSPACE-complete, and
is useful for the same reason. Despite the computational
complexity of SAT and QSAT, methods have been devel-
oped allowing large instances to be solved within reasonable
resource constraints. These techniques have largely exploited
algorithmic developments; however machine learning also
exerts a significant influence in the development of state-of-
the-art solvers. Here, the application of machine learning
is delicate, as in many cases, even if a relevant learning
problem can be solved, it may be that incorporating the
result into a SAT or QSAT solver is counterproductive, be-
cause the run-time of such solvers can be sensitive to small
implementation changes. The application of better machine
learning methods in this area is thus an ongoing challenge,
with characteristics unique to the field. This work provides
a comprehensive review of the research to date on incorpo-
rating machine learning into SAT and QSAT solvers, as a
resource for those interested in further advancing the field.

Sean B. Holden (2021), “Machine Learning for Automated Theorem Proving: Learning
to Solve SAT and QSAT”, Foundations and Trends® in Machine Learning: Vol. 14,
No. 6, pp 807–989. DOI: 10.1561/2200000081.
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1
Introduction

Automated theorem proving represents a significant and long-standing
area of research in computer science, with numerous applications. A
large proportion of the methods developed to date for the implemen-
tation of automated theorem provers (ATPs) have been algorithmic,
sharing a great deal in common with the wider study of heuristic search
algorithms (Harrison, 2009). However in recent years researchers have
begun to incorporate machine learning (ML) methods (Murphy, 2012)
into ATPs in an effort to extract better performance.

ATPs represent a compelling area in which to explore the application
of ML. It is well-known that theorem-proving problems are computa-
tionally intractable, with the exception of specific, limited cases. Even
in the apparently simple case of propositional logic the task is NP-hard,
and adding quantifiers makes the task PSPACE-complete (Garey and
Johnson, 1979). Taking a small step further we arrive at first-order
logic (FOL), which is undecidable (Boolos et al., 2007). In addition
to the general computational complexity of theorem-proving problems,
they have a common property that makes them challenging as a target
for ML: even the most trivial change to the statement of a problem
can have a huge impact on the complexity of any subsequent proof

2
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1.1. Coverage 3

attempt (Fuchs and Fuchs, 1998; Hutter et al., 2007; Hutter et al., 2009;
Biere and Fröhlich, 2015; Biere and Fröhlich, 2019).

The aim of this work is to review the research that has appeared
to date on incorporating ML methods into solvers for propositional
satisfiability (SAT) problems, and also solvers for its immediate variants
such as quantified SAT (QSAT).

In a sense, these are some of the simplest possible ATP problems.
(Any instance of a SAT problem can be represented as a Boolean
formula in conjunctive normal form, and it is undeniably hard to propose
anything much simpler.) But the combination of the computational
challenges such problems present, and the enormous range of significant,
practical applications that can be addressed this way, makes general
solvers for SAT and its friends a compelling target for research. Marques-
Silva (2008) reviews applications of SAT solvers circa 2008, and the
interested reader might consult work applying them to bounded model
checking (Biere et al., 1999; Clarke et al., 2001), planning (Kautz and
Selman, 1992; Kautz, 2006), bioinformatics (Lynce and Marques-Silva,
2006; Graça et al., 2010), allocation of radio spectrum (Fréchette et al.,
2016), and software verification (Babić and Hu, 2007). A further notable
application has been the solution of the Boolean Pythagorean triples
problem by Heule et al. (2016), resulting in what is currently considered
the longest mathematical proof in history.

1.1 Coverage

Work on applying ML in this context appears to have started with Ertel
et al. (1989) and Johnson (1989). At that time the limited availability
of computing power and the limitations of existing solvers made the
studies necessarily small by current standards, in terms of the size of the
problems addressed, and also of the ML methods applied. This review
is the result of a systematic search for literature appearing from then
until late 2020.

SAT/QSAT solving and machine learning are both large and long-
standing areas of research, and each has a correspondingly large litera-
ture. As these are two apparently rather unrelated fields, it is therefore
inevitable that any reader versed in one might feel less confident with
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4 Introduction

the other. (It has certainly been my experience in talking to researchers
from both domains that this is often the case.) It would not be feasible
to explain either, let alone both, areas in full detail here; and in any
case, this is not intended to be a textbook on either subject. I have
provided an introduction to each, but experts in either area might find
one presentation overly elementary and the other too brief. The aim has
been to provide sufficient information to make this work self-contained
for both sides while maintaining a manageable length; however I expect
that for many there will be areas where further reading will be necessary.

I wrote this work guided by two central aims for what the reader
should gain from it. First, they should know what has been tried. In
presenting the material, I concentrate on the learning methods used
and the way in which they have been incorporated into solvers. As the
literature rarely if ever presents methods not leading to performance
improvements of some kind, less consideration is given to the details of
the level of improvement achieved, because I believe such details are
secondary to my second aim, which is: that the reader should understand
the often complex interaction between ATP and ML that is needed for
success in these undeniably challenging applications.

In order to achieve these aims it was necessary to be quite selective
in the level of detail used to present various methods. Some research
is presented in very great detail, relating to the learning method and
its relationship with a solver, the description of the data used, or
the experimental method employed. Other research is presented in
less detail, although I hope at a level sufficient to allow the reader to
understand what was done, and why. With the exception of the Chapters
on ATP and ML, each Chapter presents a discussion summarizing what
I believe are the central lessons to be taken from it. Where methods
have been presented in greater detail, it is generally in the service of
these arguments.

1.2 Outline of the review

Chapter 2 presents an introduction to the SAT problem, and to con-
temporary methods for its solution. Much of this section is devoted to
summarizing the operation of Conflict-Driven Clause Learning (CDCL)
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1.2. Outline of the review 5

solvers;1 first, as these form the core of many of the most successful SAT
solvers available; and second, because there are many distinct areas
of their operation that have provided a point at which to introduce
ML, and this therefore provides a road map for a large portion of the
review. This section also briefly describes portfolio solvers and local
search solvers, which have also been targets for ML, and which will be
described further in later Chapters.

Chapter 3 provides a complementary introduction to some of the
ML methods most commonly applied to SAT and QSAT solvers; this
work spans supervised and unsupervised learning in addition to n-
armed bandits, reinforcement learning, neural networks and evolutionary
computing. In addition we describe some of the main sources of problems
available for testing SAT and QSAT solvers; as these are often annotated
such that we know which problems are satisfiable, and which are not,
they provide a valuable resource for training ML methods.

Many applications of ML in this domain have required a phase of
feature engineering, whereby a problem, typically expressed in conjunc-
tive normal form (CNF), is converted into a vector of real numbers
suitable for use by an ML method. Chapter 4 reviews common sets of
features that have been used, and that continue to form the basis for
many ongoing studies. More recent work has made significant use of
graph neural networks to (partially) automate the feature engineering
process, and we introduce these here also.

There are, broadly-speaking, four ways in which ML has been applied
to SAT solvers: by treating SAT directly as a classification problem; by
building portfolios of existing SAT solvers; by modifying CDCL solvers;
and by treating the problem as a form of local search.

In Chapter 5 we describe work aiming to identify satisfiability
directly, without necessarily also obtaining a satisfying assignment of
variables if one exists. Here, the SAT problem is treated as a classification

1There is an important distinction to be made here for the avoidance of confusion.
The term ‘learning’ in the context of a CDCL solver is, at least at first glance,
unconnected to the idea of machine learning. It is used to describe the addition of
one or more new clauses to a problem after analysing a conflict during the search for
a satisfying assignment; this is explained in more detail in Section 2.4.4. The use of
the term ‘learning’ in both contexts is ubiquitous however, and we expand on the
distinction a little further in Section 3.1.5.

Full text available at: http://dx.doi.org/10.1561/2200000081



6 Introduction

problem: given a formula f , we aim to return the answer ‘yes’ or ‘no’,
indicating whether or not the problem is satisfiable. In some cases it
may be possible to extract a satisfying assignment as a side-effect.

Portfolio solvers are addressed in Chapter 6. Here, a collection of
different SAT solvers is used in some combination to attack a problem.
Chapter 7 then reviews the application of ML to CDCL solvers, address-
ing in turn the way in which ML has been applied to the individual
elements described in Chapter 2. Chapter 8 describes the application of
ML to local search SAT solvers.

In Chapter 9 we address attempts to introduce ML into solvers for
QSAT. This area has received comparatively little attention, but work
has appeared addressing ML for both portfolio solvers, and individual
solvers.

While this review mainly addresses solvers for SAT and QSAT—
these problems having received considerable attention as they have clear
and significant applications—in Chapter 10 we briefly address machine
learning applied to intuitionistic propositional logic (IPL) (Dalen, 2001).
While this logic is of more foundational interest, having few applications
beyond the philosophy of mathematics, it is related sufficiently closely
to propositional logic that I feel attempts to apply machine learning to
the search for proofs in IPL are relevant.

Chapter 11 concludes.

1.3 Limits to Coverage

A body of research exists addressing methods for automatically con-
figuring algorithms that expose parameters—a process sometimes re-
ferred to as the algorithm configuration problem. Effective methods
such as ParamILS (Hutter et al., 2009) and, perhaps the best-known
system of this kind, Sequential Model-based Algorithm Configuration
(SMAC) (Hutter et al., 2011), are now common. Algorithms in this
class can clearly be applied to SAT/QSAT and related solvers, which
invariably have parameters governing aspects of their operation. In
compiling this review, I have aimed to focus on material that has a
specific emphasis on SAT, QSAT and (closely) related problems. As a
result, I decided not to describe in detail work such as that of Kadioglu
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et al. (2010) and Malitsky et al. (2013), that develops a general method
for algorithm configuration and uses SAT as a test case, or Hutter et al.
(2007) and Mangla et al. (2020), that is predominantly an application
of an existing algorithm configuration method to SAT. For the same
reasons, I have not included work that mainly relies on the applica-
tion of general methods for selecting an algorithm from a collection of
candidates; see Kotthoff (2016) for a review of such methods.

1.4 What Should the Reader Gain?

It is my hope that ML researchers might gain from this work, an
understanding of state-of-the-art SAT and QSAT solvers that is sufficient
to make new opportunities for applying their own ML research to this
domain clearly visible. It is equally my hope that ATP researchers will
gain a complementary understanding, giving them a clear appreciation
of how state-of-the-art machine learning might help them to design
better solvers. For both constituencies, I aim to show what has already
been achieved at the time of writing, at a level of detail sufficient to
provide a basis for new work.
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A
Abbreviations

Abbreviation Meaning

ATP Automated theorem-prover
CAL Clauses active list
CDCL Conflict-Driven Clause Learning
CHB Conflict history-based
CIG Clause incidence graph
CNF Conjunctive normal form
CNN Convolutional neural network
CSP Constraint satisfaction problem
CVIG Clause-variable incidence graph
DAG Directed acyclic graph
DPLL Davis, Putnam, Logemann, Loveland
DRAT Deletion Resolution Asymmetric Tautology
EHM Empirical hardness model
EP Evolutionary programming
ES Evolutionary strategy

Continued overleaf...
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152 Abbreviations

Abbreviation Meaning

ERWA Exponential recency weighted average
EVSIDS Exponential VSIDS
GA Genetic algorithm
GLR Global learning rate
GNN Graph neural network
GP Genetic program
IPL Intuitionistic propositional logic
LBD Literals blocks distance
LRB Learning rate branching
LSTM Long short-term memory
MAB Multi-armed bandit
ML Machine learning
MLB Machine learning-based restart
MLP Multi-layer perceptron
MPNN Message-passing neural network
NN Neural network
QSAT Quantified satisfiability
RL Reinforcement learning
SAT Satisfiability
SVM Support vector machine
SGDB Stochastic Gradient Descent Branching
UC Unsatisfiable core
UCB Upper confidence bound
UIP Unique implication point
VIG Variable incidence graph
VSIDS Variable State Independent Decaying Sum
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B
Symbols

General

I Identity matrix
Ri Set of i-dimensional vectors with real elements
vi Element i of a vector v
Ri×j Set of i by j matrices with real elements
Mi,j Element at row i, column j of a matrix M
I Indicator function: I[P ] is 1 if P is true

and 0 otherwise
1ij i by j matrix with all elements equal to 1.
N(x; µ,Σ) Multivariate normal density with mean µ

and covariance Σ
⊗ Element-by-element multiplication of vectors
[n] The set {1, . . . , n}

Continued overleaf...
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154 Symbols

The SAT Problem

V Set of variables
C Set of clauses
v A variable. or |V|, according to context
c A clause, or |C|, according to context
l A literal
f , ϕ, ψ Propositional formulas
A Assignment
a(v) Activity of a variable
a(c) Activity of a clause

Machine Learning

n Dimension of feature space for a classifier
m Size of training set
s Sequence containing m training examples
F Function mapping instances of a problem to feature vectors
A Learning algorithm
H Hypothesis space
Z Constant normalizing a probability distribution
C Random variable denoting a class
x Instance vector
k Dimension of the extended space
p Number of basis functions
ϕi Basis functions
λ Regularization parameter
ϕ(x) Mapping from instance x to the extended space
Φ Matrix of ϕ(x) for x in a training sequence
σ(x) Step or sigmoid function
θ, w Vectors of parameters
K Number of clusters

Continued overleaf...
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Machine Learning

ri Reward sequence
ri,t Reward from arm i of a multi-armed bandit at time t
α EWMA discounting factor
γ Bandit or reinforcement learning discount factor
r̂T Estimated bandit reward at time T
S RL state set
A RL action set
p RL policy
R RL discounted reward
µ Step size for gradient descent
c Number of classes in a problem
K CNN kernel
t Step in a sequence
T Final step in a sequence
O Objective function
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