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ABSTRACT

Federated learning (FL) is a machine learning setting where
many clients (e.g., mobile devices or whole organizations)
collaboratively train a model under the orchestration of
a central server (e.g., service provider), while keeping the
training data decentralized. FL embodies the principles of
focused data collection and minimization, and can mitigate
many of the systemic privacy risks and costs resulting from
traditional, centralized machine learning and data science ap-
proaches. Motivated by the explosive growth in FL research,
this monograph discusses recent advances and presents an
extensive collection of open problems and challenges.
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this work.
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1
Introduction

Federated learning (FL) is a machine learning setting where many clients
(e.g., mobile devices or whole organizations) collaboratively train a model
under the orchestration of a central server (e.g., service provider), while
keeping the training data decentralized. It embodies the principles of
focused collection and data minimization, and can mitigate many of the
systemic privacy risks and costs resulting from traditional, centralized
machine learning. This area has received significant interest recently,
both from research and applied perspectives. This monograph describes
the defining characteristics and challenges of the federated learning
setting, highlights important practical constraints and considerations,
and then enumerates a range of valuable research directions. The goals
of this work are to highlight research problems that are of significant
theoretical and practical interest, and to encourage research on problems
that could have significant real-world impact.

The term federated learning was introduced in 2016 by McMahan
et al. [1]: “We term our approach Federated Learning, since the learning
task is solved by a loose federation of participating devices (which
we refer to as clients) which are coordinated by a central server.” An
unbalanced and non-IID (identically and independently distributed)

4
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5

data partitioning across a massive number of unreliable devices with
limited communication bandwidth was introduced as the defining set of
challenges.

Significant related work predates the introduction of the term feder-
ated learning. A longstanding goal pursued by many research commu-
nities (including cryptography, databases, and machine learning) is to
analyze and learn from data distributed among many owners without
exposing that data. Cryptographic methods for computing on encrypted
data were developed starting in the early 1980s [2], [3], and Agrawal and
Srikant [4] and Vaidya et al. [5] are early examples of work that sought
to learn from local data using a centralized server while preserving
privacy. Conversely, even since the introduction of the term federated
learning, we are aware of no single work that directly addresses the
full set of FL challenges. Thus, the term federated learning provides
a convenient shorthand for a set of characteristics, constraints, and
challenges that often co-occur in applied ML problems on decentralized
data where privacy is paramount.

This monograph originated at the Workshop on Federated Learning
and Analytics held June 17–18th, 2019, hosted at Google’s Seattle office.
During the course of this two-day event, the need for a broad paper
surveying the many open challenges in the area of federated learning
became clear.1

A key property of many of the problems discussed is that they
are inherently interdisciplinary—solving them likely requires not just
machine learning, but techniques from distributed optimization, cryp-
tography, security, differential privacy, fairness, compressed sensing,
systems, information theory, statistics, and more. Many of the hardest
problems are at the intersections of these areas, and so we believe
collaboration will be essential to ongoing progress. One of the goals of
this work is to highlight the ways in which techniques from these fields
can potentially be combined, raising both interesting possibilities as
well as new challenges.

1During the preparation of this work, Li et al. [6] independently released an
excellent but less comprehensive survey.
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6 Introduction

Since the term federated learning was initially introduced with an
emphasis on mobile and edge device applications [1], [7], interest in
applying FL to other applications has greatly increased, including some
which might involve only a small number of relatively reliable clients,
for example multiple organizations collaborating to train a model. We
term these two federated learning settings “cross-device” and “cross-silo”
respectively. Given these variations, we propose a somewhat broader
definition of federated learning:

Federated learning is a machine learning setting where
multiple entities (clients) collaborate in solving a machine
learning problem, under the coordination of a central server
or service provider. Each client’s raw data is stored locally
and not exchanged or transferred; instead, focused updates
intended for immediate aggregation are used to achieve the
learning objective.

Focused updates are updates narrowly scoped to contain the min-
imum information necessary for the specific learning task at hand;
aggregation is performed as early as possible in the service of data min-
imization. We note that this definition distinguishes federated learning
from fully decentralized (peer-to-peer) learning techniques as discussed
in Subsection 2.1.

Although privacy-preserving data analysis has been studied for
more than 50 years, only in the past decade have solutions been widely
deployed at scale (e.g., [8], [9]). Cross-device federated learning and
federated data analysis are now being applied in consumer digital prod-
ucts. Google makes extensive use of federated learning in the Gboard
mobile keyboard [10]–[14], as well as in features on Pixel phones and
in Android Messages [15]. While Google has pioneered cross-device FL,
interest in this setting is now much broader, for example: Apple is using
cross-device FL in iOS 13 [16], for applications like the QuickType
keyboard and the vocal classifier for “Hey Siri” [17]; doc.ai is develop-
ing cross-device FL solutions for medical research [18], and Snips has
explored cross-device FL for hotword detection [19].

Cross-silo applications have also been proposed or described in
myriad domains including finance risk prediction for reinsurance [20],
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1.1. The Cross-Device Federated Learning Setting 7

pharmaceuticals discovery [21], electronic health records mining [22],
medical data segmentation [23], [24], and smart manufacturing [25].

The growing demand for federated learning technology has resulted
in a number of tools and frameworks becoming available. These in-
clude TensorFlow Federated [26], Federated AI Technology Enabler [27],
PySyft [28], Leaf [29], PaddleFL [30] and Clara Training Framework [31];
more details in Appendix A.1. Commercial data platforms incorporat-
ing federated learning are in development from established technology
companies as well as smaller start-ups.

Table 1.1 contrasts both cross-device and cross-silo federated learning
with traditional single-datacenter distributed learning across a range
of axes. These characteristics establish many of the constraints that
practical federated learning systems must typically satisfy, and hence
serve to both motivate and inform the open challenges in federated
learning. They will be discussed at length in the sections that follow.

These two FL variants are called out as representative and important
examples, but different FL settings may have different combinations of
these characteristics. For the remainder of this monograph, we consider
the cross-device FL setting unless otherwise noted, though many of
the problems apply to other FL settings as well. Section 2 specifically
addresses some of the many other variations and applications.

Next, we consider cross-device federated learning in more detail,
focusing on practical aspects common to a typical large-scale deploy-
ment of the technology; Bonawitz et al. [32] provides even more detail
for a particular production system, including a discussion of specific
architectural choices and considerations.

1.1 The Cross-Device Federated Learning Setting

This section takes an applied perspective, and unlike the previous
section, does not attempt to be definitional. Rather, the goal is to
describe some of the practical issues in cross-device FL and how they
might fit into a broader machine learning development and deployment
ecosystem. The hope is to provide useful context and motivation for the
open problems that follow, as well as to aid researchers in estimating
how straightforward it would be to deploy a particular new approach

Full text available at: http://dx.doi.org/10.1561/2200000083
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clients
server

engineers 
& analysts

model
deployment

model
testing

federated 
learning

rest of 
the world

admin

Figure 1.1: The lifecycle of an FL-trained model and the various actors in a
federated learning system. This figure is revisited in Section 4 from a threat models
perspective.

in a real-world system. We begin by sketching the lifecycle of a model
before considering a FL training process.

1.1.1 The Lifecycle of a Model in Federated Learning

The FL process is typically driven by a model engineer developing a
model for a particular application. For example, a domain expert in
natural language processing may develop a next word prediction model
for use in a virtual keyboard. Figure 1.1 shows the primary components
and actors. At a high level, a typical workflow is:

1. Problem identification: The model engineer identifies a prob-
lem to be solved with FL.

2. Client instrumentation: If needed, the clients (e.g., an app
running on mobile phones) are instrumented to store locally (with
limits on time and quantity) the necessary training data. In many
cases, the app already will have stored this data (e.g., a text
messaging app must store text messages, a photo management
app already stores photos). However, in some cases additional data
or metadata might need to be maintained, e.g., user interaction
data to provide labels for a supervised learning task.
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3. Simulation prototyping (optional): The model engineer may
prototype model architectures and test learning hyperparameters
in an FL simulation using a proxy dataset.

4. Federated model training: Multiple federated training tasks
are started to train different variations of the model, or use differ-
ent optimization hyperparameters.

5. (Federated) model evaluation: After the tasks have trained
sufficiently (typically a few days, see below), the models are
analyzed and good candidates selected. Analysis may include
metrics computed on standard datasets in the datacenter, or
federated evaluation wherein the models are pushed to held-out
clients for evaluation on local client data.

6. Deployment: Finally, once a good model is selected, it goes
through a standard model launch process, including manual quality
assurance, live A/B testing (usually by using the new model on
some devices and the previous generation model on other devices to
compare their in-vivo performance), and a staged rollout (so that
poor behavior can be discovered and rolled back before affecting
too many users). The specific launch process for a model is set by
the owner of the application and is usually independent of how
the model is trained. In other words, this step would apply equally
to a model trained with federated learning or with a traditional
datacenter approach.

One of the primary practical challenges an FL system faces is making
the above workflow as straightforward as possible, ideally approach-
ing the ease-of-use achieved by ML systems for centralized training.
While much of this monograph concerns federated training specifically,
there are many other components including federated analytics tasks
like model evaluation and debugging. Improving these is the focus of
Subsection 3.4. For now, we consider in more detail the training of a
single FL model (Step 4 above).

Full text available at: http://dx.doi.org/10.1561/2200000083
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1.1.2 A Typical Federated Training Process

We now consider a template for FL training that encompasses the
Federated Averaging algorithm of McMahan et al. [1] and many others;
again, variations are possible, but this gives a common starting point.

A server (service provider) orchestrates the training process, by
repeating the following steps until training is stopped (at the discretion
of the model engineer who is monitoring the training process):

1. Client selection: The server samples from a set of clients meeting
eligibility requirements. For example, mobile phones might only
check in to the server if they are plugged in, on an unmetered
wi-fi connection, and idle, in order to avoid impacting the user of
the device.

2. Broadcast: The selected clients download the current model
weights and a training program (e.g., a TensorFlow graph [34])
from the server.

3. Client computation: Each selected device locally computes an
update to the model by executing the training program, which
might for example run SGD on the local data (as in Federated
Averaging).

4. Aggregation: The server collects an aggregate of the device
updates. For efficiency, stragglers might be dropped at this point
once a sufficient number of devices have reported results. This
stage is also the integration point for many other techniques which
will be discussed later, possibly including: secure aggregation for
added privacy, lossy compression of aggregates for communication
efficiency, and noise addition and update clipping for differential
privacy.

5. Model update: The server locally updates the shared model
based on the aggregated update computed from the clients that
participated in the current round.

Table 1.2 gives typical order-of-magnitude sizes for the quantities
involved in a typical federated learning application on mobile devices.
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Table 1.2: Order-of-magnitude sizes for typical cross-device federated learning
applications

Total population size 106–1010 devices
Devices selected for one round of training 50–5000
Total devices that participate in training one model 105–107

Number of rounds for model convergence 500–10000
Wall-clock training time 1–10 days

The separation of the client computation, aggregation, and model
update phases is not a strict requirement of federated learning, and it
indeed excludes certain classes of algorithms, for example asynchronous
SGD where each client’s update is immediately applied to the model, be-
fore any aggregation with updates from other clients. Such asynchronous
approaches may simplify some aspects of system design, and also be
beneficial from an optimization perspective (though this point can be
debated). However, the approach presented above has a substantial
advantage in affording a separation of concerns between different lines
of research: advances in compression, differential privacy, and secure
multi-party computation can be developed for standard primitives like
computing sums or means over decentralized updates, and then com-
posed with arbitrary optimization or analytics algorithms, so long as
those algorithms are expressed in terms of aggregation primitives.

It is also worth emphasizing that in two respects, the FL training
process should not impact the user experience. First, as outlined above,
even though model parameters are typically sent to some devices during
the broadcast phase of each round of federated training, these models
are an ephemeral part of the training process, and not used to make
“live” predictions shown to the user. This is crucial, because training
ML models is challenging, and a misconfiguration of hyperparameters
can produce a model that makes bad predictions. Instead, user-visible
use of the model is deferred to a rollout process as detailed above in
Step 6 of the model lifecycle. Second, the training itself is intended to
be invisible to the user—as described under client selection, training
does not slow the device or drain the battery because it only executes
when the device is idle and connected to power. However, the limited

Full text available at: http://dx.doi.org/10.1561/2200000083
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availability these constraints introduce leads directly to open research
challenges which will be discussed subsequently, such as semi-cyclic
data availability and the potential for bias in client selection.

1.2 Federated Learning Research

The remainder of this monograph surveys many open problems that
are motivated by the constraints and challenges of real-world federated
learning settings, from training models on medical data from a hospital
system to training using hundreds of millions of mobile devices. Needless
to say, most researchers working on federated learning problems will
likely not be deploying production FL systems, nor have access to
fleets of millions of real-world devices. This leads to a key distinction
between the practical settings that motivate the work and experiments
conducted in simulation which provide evidence of the suitability of a
given approach to the motivating problem.

This makes FL research somewhat different than other ML fields
from an experimental perspective, leading to additional considerations in
conducting FL research. In particular, when highlighting open problems,
we have attempted, when possible, to also indicate relevant performance
metrics which can be measured in simulation, the characteristics of
datasets which will make them more representative of real-world per-
formance, etc. The need for simulation also has ramifications for the
presentation of FL research. While not intended to be authoritative or
absolute, we make the following modest suggestions for presenting FL
research that addresses the open problems we describe:

• As shown in Table 1.1, the FL setting can encompass a wide
range of problems. Compared to fields where the setting and
goals are well-established, it is important to precisely describe
the details of the particular FL setting of interest, particularly
when the proposed approach makes assumptions that may not be
appropriate in all settings (e.g., stateful clients that participate
in all rounds).

• Of course, details of any simulations should be presented in order
to make the research reproducible. But it is also important to
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explain which aspects of the real-world setting the simulation is
designed to capture (and which it is not), in order to effectively
make the case that success on the simulated problem implies useful
progress on the real-world objective. We hope that the guidance
in this monograph will help with this.

• Privacy and communication efficiency are always first-order con-
cerns in FL, even if the experiments are simulations running on
a single machine using public data. More so than with other
types of ML, for any proposed approach it is important to be
unambiguous about where computation happens as well as what
is communicated.

Software libraries for federated learning simulation as well as stan-
dard datasets can help ease the challenges of conducting effective FL
research; Appendix A.1 summarizes some of the currently available op-
tions. Developing standard evaluation metrics and establishing standard
benchmark datasets for different federated learning settings (cross-device
and cross-silo) remain highly important directions for ongoing work.

1.3 Organization

Section 2 builds on the ideas in Table 1.1, exploring other FL settings
and problems beyond the original focus on cross-device settings. Sec-
tion 3 then turns to core questions around improving the efficiency and
effectiveness of federated learning. Section 4 undertakes a careful con-
sideration of threat models and considers a range of technologies toward
the goal of achieving rigorous privacy protections. As with all machine
learning systems, in federated learning applications there may be incen-
tives to manipulate the models being trained, and failures of various
kinds are inevitable; these challenges are discussed in Section 5. Finally,
we address the important challenges of providing fair and unbiased
models in Section 6.
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