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ABSTRACT

Reinforcement learning agents have demonstrated remark-
able achievements in simulated environments. Data efficiency
poses an impediment to carrying this success over to real
environments. The design of data-efficient agents calls for
a deeper understanding of information acquisition and rep-
resentation. We discuss concepts and regret analysis that
together offer principled guidance. This line of thinking
sheds light on questions of what information to seek, how to
seek that information, and what information to retain. To
illustrate concepts, we design simple agents that build on
them and present computational results that highlight data
efficiency.

Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Os-
band and Zheng Wen (2023), “Reinforcement Learning, Bit by Bit”, Foundations and
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1
Introduction

“Other learning paradigms are about minimization;
reinforcement learning is about maximization.”

The statement quoted above has been attributed to Harry Klopf, though
it might only be accurate in sentiment. The statement may sound vacu-
ous, since minimization can be converted to maximization simply via
negation of an objective. However, further reflection reveals a deeper
observation. Many learning algorithms aim to mimic observed patterns,
minimizing differences between model and data. Reinforcement learn-
ing is distinguished by its open-ended view. A reinforcement learning
agent learns to improve its behavior over time, without a prescription
for eventual dynamics or the limits of performance. If the objective
takes nonnegative values, minimization suggests a well-defined desired
outcome while maximization conjures pursuit of the unknown. Indeed,
Klopf (1982) argued that, by focusing on minimization of deviations
from a desired operating point, then-prevailing theories of homeosta-
sis were too limiting to explain intelligence, while a theory centered
around heterostasis could by allowing for maximization of open-ended
objectives.

2
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1.1. Data Efficiency 3

1.1 Data Efficiency

In reinforcement learning, the nature of data depends on the agent’s
behavior. This bears important implications on the need for data ef-
ficiency. In supervised and unsupervised learning, data is typically
viewed as static or evolving slowly. If data is abundant, as is the case in
many modern application areas, the performance bottleneck often lies
in model capacity and computational infrastructure. This holds also
when reinforcement learning is applied to simulated environments; while
data generated in the course of learning does evolve, a slow rate can
be maintained, in which case model capacity and computation remain
bottlenecks, though data efficiency can be helpful in reducing simulation
time. On the other hand, in a real environment, data efficiency often
becomes the gating factor.

Data efficiency depends on what information the agent seeks, how
it seeks that information, and what it retains. This tutorial offers
a framework that can guide associated agent design decisions. This
framework is inspired in part by concepts from another field that has
grappled with data efficiency. In communication, the goal is typically to
transmit data through a channel in a way that maximizes throughput,
measured in bits per second. In reinforcement learning, an agent interacts
with an unknown environment with an aim to maximize reward. An
important difference that emerges is that bits of information serve as
means to maximizing reward and not ends. As such, an important factor
arising in reinforcement learning concerns weighing costs and benefits of
acquiring particular bits of information. Despite this distinction, some
concepts from communication can guide our thinking about information
in reinforcement learning.

1.2 Information Versus Computation

Communication was a particularly active area of research at the turn of
the twentieth century, with an emphasis on scaling up power generation
to enable transmission of analog signals over increasing distances. At
the time, encoding and decoding was handled heuristically. In the 1940s,
following Shannon’s maxim of “information first, then computation,”
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4 Introduction

the focus shifted to understanding what is possible or impossible. This
initiative introduced the bit1 as a unit of information and established
fundamental limits of communication. The maxim encouraged under-
standing possibilities and deferred the study of computation. Design
of encoding and decoding algorithms that attain fundamental limits
arrived in the 1960s, with practical implementations emerging in the
1990s. It is fair to say that this thread of research formed a cornerstone
for today’s connected world (Jha, 2016).

Reinforcement learning seems to have followed an opposite maxim:
“computation first, then information.” Beginning with heuristic evolu-
tion of algorithmic ideas such as temporal-difference learning (Witten,
1976; Witten, 1977; Sutton, 1988; Watkins, 1989) and actor-critic ar-
chitectures (Witten, 1977; Barto et al., 1983; Sutton, 1984), followed
by demonstrated promise (Tesauro, 1992; Tesauro, 1994), over the last
decades of the twentieth century, much effort was directed toward com-
putational methods, with little regard to data-efficiency (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 2018; Bertsekas, 2019). The
past decade has experienced a great deal of further innovation, with
an emphasis on scaling up computations and environments, leading to
reinforcement learning agents that have produced impressive results in
simulated environments and attracted enormous interest (Mnih et al.,
2015; Schrittwieser et al., 2020). However, data efficiency presents an
impediment to the transfer of this success to real environments. Unlike
communication, information has not been the focus in these lines of
research. Questions that are central to data efficiency, such as what
information an agent should acquire and the cost of gathering that
information, have mostly been ignored.

While much of the focus has been on developing heuristics and
scaling up computation, there is a few notable exceptions. The work of
Hutter (2007) aims to design a “universal” agent, building on ideas such
as Solomonoff’s universal prior while putting aside any computational
consideration. It remains unclear, though, how this line of thinking may
offer a path towards designing practical, data-efficient agents. There
is also a body of work that aims to address data efficiency and derive

1Originally termed the binary digit, then the binit, before the bit.
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1.3. Preview 5

sample complexity bounds in stylized environments including bandits
and Markov decision processes (Kearns and Singh, 2002; Brafman and
Tennenholtz, 2003; Jaksch et al., 2010; Azar et al., 2017; Jiang et al.,
2017; Jin et al., 2020). However, methods considered in this line of work
are not sufficiently scalable to address real, complex environments. The
generality of our theoretical framework for thinking about information
and data efficiency accommodates reasoning about scalable agent de-
signs. This serves our ultimate goal of designing practical, data-efficient
agents for real applications.

1.3 Preview

In this tutorial, we present a framework for studying costs and benefits
associated with information. As we will explain, this can guide how
agents represent knowledge and how they seek and retain new informa-
tion. In particular, the framework sheds light on the questions of what
information to seek, how to seek that information, and what information
to retain.

We begin in Section 2 with a formalism for studying agents and
environments. We present a simplified version of the DQN agent (Mnih
et al., 2013; Mnih et al., 2015) and an ensemble-DQN agent (Osband
et al., 2016; Osband et al., 2019) as examples. Then, in Section 3, we
discuss conceptual elements arising in the design of practical agents
that can operate effectively in complex environments, with particular
emphasis on informational considerations. By interpreting the DQN
and ensemble-DQN agents through this lens, we illustrate abstract
concepts and highlight sources of inefficiency. In Section 4, we study a
regret bound that applies to all agents and provides insight into design
trade-offs. We also illustrate insights offered by the bound when used
to study particular classes of environments and agents. As discussed
in Sections 5 and 6, this bound can be used to think about how to
design agents that seek and retain the right information. In Section
7, we present scalable agent designs. Computational results reported
in Section 7 serve to illustrate concepts covered in the tutorial and
demonstrate their practical applicability.
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A
Analysis of Thompson Sampling with an Episodic

MDP

In this appendix, we provide an analysis of Thompson sampling for
the episodic MDP described in Section 4.5.2. We start by establishing
useful concentration inequalities in Section A.1. We then propose an
optimism conjecture in Section A.2 and support it through empirical
simulations. Finally, in Section A.3, we establish a regret bound for
Thompson sampling in the environments described in Section 4.5.2,
assuming that the optimism conjecture holds. Note that all the entropy
and mutual information terms in this section are measured in nats.

A.1 Information and Concentration

Lemma A.1. If p and p̂ are independent and identically beta-distributed
random variables with parameters α ≥ 1 and β ≥ 1 then, for all c > 0,

P(
√
cI(p; b)− |p− p̂| ≤ 0) ≤ 2e−c/6,

where b ∼ Bernoulli(p) conditioned on p.

Proof. A real-valued random variable X is said to be σ2-sub-Gaussian
if E[exp(λ(X − EX))] ≤ exp(λ2σ2/2) for all λ. We first prove that
p− p̂ is 1

2(α+β) -sub-Gaussian. Since p and p̂ are i.i.d. from Beta(α, β),

91
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92 Analysis of Thompson Sampling with an Episodic MDP

thus E[p − p̂] = 0. Moreover, from Theorem 4 of Elder (2016), for
p ∼ Beta(α, β), p−E[p] is 1

4(α+β)+2 -sub-Gaussian. Consequently, E[p]−
p̂ = E[p̂]−p̂ = − (p̂− E[p̂]) is also 1

4(α+β)+2 -sub-Gaussian. Since, p−E[p]
and E[p]− p̂ are also independent, we have

p− p̂ = (p− E[p]) + (E[p]− p̂)

is 1
2(α+β)+1 -sub-Gaussian. Since 1

2(α+β)+1 <
1

2(α+β) , p− p̂ is also 1
2(α+β) -

sub-Gaussian.
Consequently, from the sub-Gaussian tail bound, we have

P(
√
cI(p; b)− |p− p̂| ≤ 0)

= P
(
|p− p̂| ≥

√
cI(p; b)

)

≤ 2 exp

− cI(p; b)
2 · 1

2(α+β)

 = 2 exp (−cI(p; b)(α+ β)) .

From Lemma 10 of Lu (2020), for p ∼ Beta(α, β) with α ≥ 1 andβ ≥ 1,

I(p; b) ≥ 1
6(α+ β) .

Thus, we have

P(
√
cI(p; b)− |p− p̂| ≤ 0) ≤ 2 exp (−cI(p; b)(α+ β)) ≤ 2e−c/6.

Lemma A.2. For any positive integer N , if p1, . . . , pN are independent
beta-distributed random variables with parameters greater than or equal
to 1 and, for each n, p̂n is independent and distributed identically with
pn then, for all δ ∈ (0, 1),

E

 min
n∈{1,...,N}

√6I(pn; bn) ln 2N
δ
− |pn − p̂n|+ δ

 ≥ 0,

where bn ∼ Bernoulli(pn) conditioned on pn for n = 1, . . . , N .
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A.1. Information and Concentration 93

Proof. For any c > 6 ln(2), we have 2e−c/6 < 1, thus

P
(

min
n∈{1,...,N}

(√
cI(pn; bn)− |pn − p̂n|

)
≤ 0

)

= 1− P
(

min
n∈{1,...,N}

(√
cI(pn; bn)− |pn − p̂n|

)
≥ 0

)

= 1−
N∏

n=1
P
(√

cI(pn; bn)− |pn − p̂n| ≥ 0
)

= 1−
N∏

n=1

(
1− P

(√
cI(pn; bn)− |pn − p̂n| ≤ 0

))
≤ 1−

(
1− 2e−c/6

)N
from Lemma A.1 and 2e−c/6 < 1

≤ 1− 1 + 2Ne−c/6 from Bernoulli’s inequality
= 2Ne−c/6.

On substituting c = 6 ln 2N
δ > 6 ln(2),

P

 min
n∈{1,...,N}

√6I(pn; bn) ln 2N
δ
− |pn − p̂n|

 ≤ 0

 ≤ δ
To simplify the notation, we define

h = min
n∈{1,...,N}

√6I(pn; bn) ln 2N
δ
− |pn − p̂n|

 .
Notice that since pn, p̂n ∈ [0, 1], thus h ≥ −1 always holds. Also, from
the above results, P(h ≤ 0) ≤ δ. Therefore,

E[h] =E[h|h ≥ 0]P(h ≥ 0) + E[h|h < 0]P(h < 0)
(a)
≥ E[h|h < 0]P(h < 0)

(b)
≥ −δ,

where (a) holds since E[h|h ≥ 0]P(h ≥ 0) ≥ 0, and (b) holds since
E[h|h < 0] ≥ −1 and P(h < 0) ≤ P(h ≤ 0) ≤ δ. Consequently,
E[h+ δ] ≥ 0, that is

E

 min
n∈{1,...,N}

√6I(pn; bn) ln 2N
δ
− |pn − p̂n|+ δ

 ≥ 0.
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94 Analysis of Thompson Sampling with an Episodic MDP

Lemma A.3. Assume that p is a beta-distributed random variable with
α ≥ 1 and β ≥ 1, and b is drawn from Bernoulli(p) conditioned on p.
For δ = 1/2, 1/3, 1/4, . . ., define q = ⌈p/δ⌉. Then we have

I(p; b) ≥ I(q; b) ≥ I(p; b)−max
{

3, ln
(2
δ

)}
δ.

Proof. Notice that conditioning on p, q is deterministic, and q and b

are independent. Consequently,

I(p; b) = I(p, q; b) ≥ I(q; b).

Let f(·) denote the probability density function of p. To simplify
exposition, we use q̃i to denote P(b = 1|q = iδ) for i = 1, . . . , 1/δ. Note
that

q̃i = P(b = 1|q = iδ) = E [p|q = iδ] =

∫ iδ

(i−1)δ
pf(p)dp∫ iδ

(i−1)δ
f(p)dp

∀i = 1, 2, . . . , 1/δ.

With some algebraic manipulation, we can show that

H(b|q) =
1/δ∑
i=1

P(q = iδ)
(
q̃i ln 1

q̃i
+ (1− q̃i) ln 1

1− q̃i

)

=
1/δ∑
i=1

∫ iδ

(i−1)δ
pf(p)dp ln 1

q̃i
+
∫ iδ

(i−1)δ
(1− p)f(p)dp ln 1

1− q̃i

=
1/δ∑
i=1

∫ iδ

(i−1)δ

(
p ln 1

q̃i
+ (1− p) ln 1

1− q̃i

)
f(p)dp.

Thus,

I(p; b)− I(q; b) = H(b|q)−H(b|p)

=
1/δ∑
i=1

∫ iδ

(i−1)δ

(
p ln p

q̃i
+ (1− p) ln 1− p

1− q̃i

)
f(p)dp

=
1/δ∑
i=1

∫ iδ

(i−1)δ
dKL (p∥q̃i) f(p)dp,

where, with some abuse of notation, we use dKL(p∥q̃i) to denote a
shorthand for dKL (Bern(p)∥Bern(q̃i)).
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A.1. Information and Concentration 95

Without loss of generality, we assume that α ≤ β (the other case is
symmetric). Obviously, ∀i = 1, 2, . . . , 1/δ, we have (i − 1)δ ≤ q̃i ≤ iδ.
Moreover, since 1 ≤ α ≤ β, we have q̃1/δ ≤ 1− δ/2. This is because for
Beta(α, β) with 1 ≤ α ≤ β, Beta(α, β) is either a uniform distribution,
or a uni-modal distribution with mode less than or equal to 0.5. Hence,
f(p) is strictly decreasing on interval [1− δ, 1], and hence q̃1/δ ≤ 1− δ/2.
Consequently, for i = 2, . . . , 1/δ, we have

dKL(p∥q̃i)
(a)
≤ p2

q̃i
+ (1− p)2

1− q̃i
− 1 = (p− q̃i)2

q̃i(1− q̃i)
(b)
≤ δ2

3
8δ

= 8
3δ < 3δ,

where (a) follows from Theorem 1 of Dragomir et al. (2000), and (b)
follows from |p − q̃i| ≤ δ, and δ ≤ q̃i ≤ 1 − δ/2 for i ≥ 2. Specifically,
for δ ≤ q̃i ≤ 1− δ/2, we have

q̃i(1− q̃i) ≥
δ

2

(
1− δ

2

)
≥ δ

2

(
1− 1

4

)
= 3

8δ,

where the second inequality follows from δ ≤ 1
2 .

We now consider the case when i = 1 and bound dKL(p∥q̃1) for
p ∈ (0, δ]. Notice that for p ∈ (0, δ], we have

dKL(p∥q1)
(a)
≤ max {dKL(0∥q1), dKL(δ∥q1)}

= max
{

ln 1
1− q̃1

, δ ln δ

q̃1
+ (1− δ) ln 1− δ

1− q̃1

}
(b)
≤ max

{
2δ, δ ln δ

q̃1

}
,

where (a) follows from p ∈ (0, δ], and (b) follows from ln 1−δ
1−q̃1

≤ 0 and

ln 1
1− q̃1

≤ ln 1
1− δ ≤ ln

(
1 + δ

1− δ

)
≤ δ

1− δ ≤ 2δ,

where the last inequality follows from δ ≤ 1/2. We now derive a lower
bound on q̃1. Let F (·;α, β) denote the CDF of Beta(α, β), then we have

Full text available at: http://dx.doi.org/10.1561/2200000097



96 Analysis of Thompson Sampling with an Episodic MDP

q̃1 = 1
F (δ;α, β)

∫ δ

0

xα(1− x)β−1

B(α, β) dx

= B(α+ 1, β)
B(α, β)F (δ;α, β)

∫ δ

0

xα(1− x)β−1

B(α+ 1, β) dx

= B(α+ 1, β)F (δ;α+ 1, β)
B(α, β)F (δ;α, β)

(a)= α

α+ β

[
1− δα(1− δ)β

α
∫ δ

0 x
α−1(1− x)β−1dx

]
(b)
≥ α

α+ β

[
1− δα(1− δ)β

α
∫ δ

0 x
α−1(1− δ)β−1dx

]
= α

α+ β
δ,

where B(·, ·) is the beta function. Note that (a) follows from B(α +
1, β) = B(α, β) α

α+β , and

F (δ;α+ 1, β) = F (δ;α, β)− δα(1− δ)β

αB(α, β) ,

and (b) follows from 1−x ≥ 1−δ > 0 and β ≥ 1, and hence (1−x)β−1 ≥
(1− δ)β−1.

Combining the above results, we have dKL(p∥q1) ≤ max
{

2, ln α+β
α

}
δ. Since dKL(p∥qi) < 3δ for i ≥ 2, we then have

dKL(p∥qi) ≤ max
{

3, ln α+ β

α

}
δ ∀i = 1, 2, . . . , 1/δ and ∀p ∈ ((i− 1)δ, iδ].

This implies that

I(p; b)− I(q, b) ≤ max
{

3, ln α+ β

α

}
δ.

On the other hand, from Lemma 10 and Lemma 11 in Lu (2020),
we have

I(p; b) = α

α+ β
(ψ(α+ 1)− lnα)

+ β

α+ β
(ψ(β + 1)− ln β)− (ψ(α+ β + 1)− ln(α+ β)) ,

where ψ is the digamma function. From the digamma inequalities
ln(x + 0.5) ≤ ψ(x + 1) ≤ ln(x) + 1

2x for x > 0 (Lemma 11 of Lu,
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2020), we have ψ(α + 1) − lnα ≤ 1
2α , ψ(β + 1) − ln β ≤ 1

2β , and
ψ(α + β + 1) − ln(α + β) > 0. Consequently, we have I(p; b) < 1

α+β .
Thus we have

I(p; b)− I(q; b) ≤ I(p; b) < 1
α+ β

.

Combining the above results, we have

I(p; b)− I(q, b) ≤ min
{

max
{

3, ln α+ β

α

}
δ,

1
α+ β

}
.

Finally, note that

min
{

max
{

3, ln α+ β

α

}
δ,

1
α+ β

}
(a)
≤ max

{
3δ, min

{
δ ln(α+ β), 1

α+ β

}}
(b)
≤ max

{
3δ, max

x≥2
min

{
δ ln x, 1

x

}}
(c)= max

{
3δ, min

x≥2
max

{
δ ln x, 1

x

}}
(b)
≤ max

{
3δ, δ ln

(2
δ

)}
= max

{
3, ln

(2
δ

)}
δ,

where (a) follows from α ≥ 1, (b) follows from α+β ≥ 2, (c) follows from
maxx≥2 min

{
δ ln x, 1

x

}
= minx≥2 max

{
δ ln x, 1

x

}
for x ≥ 2 (note that

δ ≤ 1/2), and (d) follows by choosing x = 2/δ in max
{
δ ln x, 1

x

}
.

Lemma A.4. For any positive integer N , let p1, . . . , pN be independent,
beta-distributed random variables such that pn ∼ Beta(αn, βn) with
αn > 1 and βn > 1 for each n. Moreover, for each n, p̂n is independent
and distributed identically with pn, and bn ∼ Bernoullil(pn) conditioned
on pn. Then, for all δ = 1/2, 1/3, 1/4, . . .,

E
[

min
n∈{1,...,N}

(√
6I(qn; bn) ln 2N

δ
− |qn − q̂n|+ 2δ

+
√

6 max
{

3, ln
(2
δ

)}
δ ln 2N

δ

)]
≥ 0,

where qn = δ⌈pn/δ⌉ and q̂n = δ⌈p̂n/δ⌉ are quantized approximations.
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Proof. Notice that qn − δ < pn ≤ qn and q̂n − δ < p̂n ≤ q̂n. We now
prove that |qn − q̂n| ≤ |pn − p̂n|+ δ. Without loss of generality, assume
that qn ≥ q̂n (the other case is symmetric), then we have

|qn − q̂n| = qn − q̂n

(a)
≤ qn − p̂n

(b)
< pn + δ − p̂n ≤ |pn − p̂n|+ δ,

where (a) follows from p̂n ≤ q̂n, and (b) follows from qn < pn + δ. Thus,
we have −|qn − q̂n|+ δ ≥ −|pn − p̂n|.

On the other hand, we have√
6I(qn; bn) ln 2N

δ
+
√

6 max
{

3, ln
(2
δ

)}
δ ln 2N

δ

≥
√

6
(
I(qn; bn) + max

{
3, ln

(2
δ

)}
δ

)
ln 2N

δ

≥

√
6I(pn; bn) ln 2N

δ
,

where the last inequality follows from Lemma A.3. Combining the above
results, we have√

6I(qn; bn) ln 2N
δ
− |qn − q̂n|+ 2δ +

√
6 max

{
3, ln

(2
δ

)}
δ ln 2N

δ

≥

√
6I(pn; bn) ln 2N

δ
− |pn − p̂n|+ δ.

Then, the result of this lemma directly follows from Lemma A.2.

A.2 Optimism

The following conjecture concerns the optimistic behavior of Thompson
sampling for the “ring” MDPs considered in Section 4.5.2. Our analysis
in this appendix assumes that the conjecture holds.

Conjecture A.2.1. Under the “ring” MDPs considered in Section 4.5.2,
for any episode ℓ and any time t = ℓτ, . . . , (ℓ + 1)τ − 1 within the
episode,

E[Vτ,ρ(St)|Pℓτ ] ≤ E[V̂ℓ(St)|Pℓτ ].
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Note that Conjecture A.2.1 always holds with equality for t = ℓτ and
t = (ℓ+ 1)τ − 1, ∀ℓ = 0, 1, . . .. To understand why, note that for t = ℓτ ,
Sℓτ = S0 is deterministic, and Vτ,ρ and V̂ℓ are i.i.d. conditioned on Pℓτ .
Thus,

E[Vτ,ρ(Sℓτ )|Pℓτ ] = E[Vτ,ρ(S0)|Pℓτ ] = E[V̂ℓ(S0)|Pℓτ ] = E[V̂ℓ(Sℓτ )|Pℓτ ].

Note that the reward model r is deterministic. Consequently, Vτ,ρ(s) =
V̂ℓ(s) = maxa∈A r(s, a, S0) for all s ∈ Sτ−1. Thus, by definition, for
t = (ℓ+ 1)τ − 1, we have St ∈ Sτ−1 and

E[Vτ,ρ(St)|Pℓτ ] = E[V̂ℓ(St)|Pℓτ ] = E
[
max
a∈A

r(St, a, S0)
]
.

We leave the proof of Conjecture A.2.1 for ℓτ < t < (ℓ+ 1)τ − 1 in
this “ring” example for future work. In the remainder of this section, we
provide some numerical results suggesting that Conjecture A.2.1 holds.

It is worth pointing out that Conjecture A.2.1 might not hold in
more general problems. In particular, if the prior distribution admits
generalization of transition probabilities across state-action pairs – for
example, if ρ is correlated across state-action pairs – this conjecture
may fail to hold.

A.2.1 Numerical Verification

We now provide numerical verification of Conjecture A.2.1. Note that
Conjecture A.2.1 states that for any episode ℓ and any time t =
ℓτ, . . . , (ℓ+ 1)τ − 1,

E[V̂ℓ(St)− Vτ,ρ(St)|Pℓτ ] ≥ 0. (A.1)

We numerically verify this conjecture as follows: we sweep over M =
5, 10, 20 and τ = 3, 8, 10, 20, 30. For each (M, τ) pair, we rerun the
Thompson sampling algorithm on the “ring” MDP with state space
S = {0, . . . ,M − 1}× {0, . . . , τ − 1} for 50 times, and each time we run
for 300 episodes. Then, we numerically test Conjecture A.2.1 every three
episodes. Moreover, when we test this conjecture, we test it for every
time t = ℓτ, . . . , (ℓ + 1)τ − 1. Thus, in total we test Conjecture A.2.1
for 3× 50× 100× (3 + 8 + 10 + 20 + 30) = 1, 065, 000 times.
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In particular, we test if the left-hand side of (A.1) is non-negative, as
well as if it is strictly positive in some cases. The former indicates if this
conjecture holds, while the latter indicates if this conjecture holds with
strict inequality in some cases. The following procedure illustrates how
we compute a point estimate of the left-hand side of Equation (A.1),
as well as its standard error, at a given episode ℓ based on the Monte-
Carlo simulation. Specifically, for each round of Monte-Carlo simulation
i = 1, 2, . . . , L:

1. sample transition models ρ, ρ̂ i.i.d. from Pℓτ

2. compute Vτ,ρ, the optimal state value function under ρ

3. compute V̂ℓ and π̂, which are respectively the optimal state value
function and an optimal policy under ρ̂

4. for all t = ℓτ, . . . , (ℓ+ 1)τ − 1, compute νt, the state distribution
of St, under policy π̂ and transition model ρ

5. finally, compute di
ℓ,t =

∑
s νt(s)

[
V̂ℓ(s)− Vτ,ρ(s)

]
for all t = ℓτ, . . . ,

(ℓ+ 1)τ − 1.

We carry out L = 10, 000 Monte-Carlo simulations, and compute the
point estimate of the left-hand side of Equation (A.1) and its standard
error according to

d̄ℓ,t = 1
L

L∑
i=1

di
ℓ,t and stderrℓ,t = 1

L

√√√√ L∑
i=1

(
di

ℓ,t − d̄ℓ,t

)2
.

For any κ > 0, we define the upper confidence bound (UCB) and the
lower confidence bound (LCB) parameterized by κ as

UCBℓ,t(κ) = d̄ℓ,t + κ · stderrℓ,t

LCBℓ,t(κ) = d̄ℓ,t − κ · stderrℓ,t

We report the fractions of cases for which UCBℓ,t(κ) < 0 or LCBℓ,t(κ) > 0
for a wide range of κ, and compare it with the Gaussian benchmark 1−
Φ(κ), where Φ(·) is the cumulative distribution function of the standard
normal distribution N(0, 1). Intuitively, a negative UCB suggests that
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Table A.1: Numerical verification of Conjecture A.2.1

κ frac. UCBℓ,t(κ) < 0 frac. LCBℓ,t(κ) > 0 1− Φ(κ)
1 6.31315% 45.29878% 15.86553%

1.5 2.49822% 34.76901% 6.68072%
2 0.80826% 26.56451% 2.27501%

2.5 0.20451% 20.3923% 0.62097%
3 0.04085% 15.8954% 0.13499%

3.5 0.00516% 12.53643% 0.02326%
4 0.00075% 10.02516% 0.00317%

4.5 0% 8.10714% 0.00034%
5 0% 6.62685% 0.00005%

5.5 0% 5.4477% 0%
6 0% 4.50235% 0%

the conjecture does not hold, while a positive LCB suggests that the
conjecture holds with strict inequality. The results are summarized in
Table A.1.

The experiment results suggest that Conjecture A.2.1 holds in the
“ring” MDP. In particular, for each chosen κ, the fraction of negative
UCBs is much smaller than the benchmark 1− Φ(κ). Moreover, they
also suggest that there are cases where the conjecture holds with strict
inequality. In particular, for each chosen κ, the fraction of positive LCBs
is much larger than the benchmark.

A.3 Regret

The following results pertain to application of Thompson sampling to
the “ring” episodic MDP described in Section 4.5.2.

Lemma A.5. Assume that Conjecture A.2.1 holds. Then, for all integers
m ≥ 2 and times t,

E[V∗(Ht)−Q∗(Ht, At)− g(δ)τ2]2+ ≤ 6τ3 ln 2SA
δ

I(χ;Ht:(ℓ+1)τ |Pt),

where δ = 1/m, g(δ) = 3δ +
√

6 max
{

3, ln
(

2
δ

)}
δ ln 2SA

δ , and χ is a
quantized approximation of ρ for which χ(s+1|s, a) = δ⌈ρ(s+1|s, a)/δ⌉
and χ(s− 1|s, a) = 1− χ(s+ 1|s, a).
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Proof. Time t resides in episode ℓ = ⌊t/τ⌋. Recall that ρ̂ℓ is the observa-
tion probability function sampled at the start of episode ℓ. Let χ̂ℓ be the
corresponding quantization, for which χ̂ℓ(s+1|s, a) = δ⌈ρ̂ℓ(s+1|s, a)/δ⌉
and χ̂ℓ(s− 1|s, a) = 1− χ̂ℓ(s+ 1|s, a). Also note that in this problem,
since Pt = P(·|Ht), St is conditionally deterministic given Pt; thus, con-
ditioning on Ht is equivalent to conditioning on (Pt, St) and conditioning
on Pt. Let

It = I(χ(St + 1|St, At);At, St+1|Pt = Pt).

Note that

I(χ(St + 1|St, At);At, St+1|Pt = Pt) = I(χ;At, St+1|Pt = Pt).

By the chain rule of mutual information, I(χ;Ht:(ℓ+1)τ |Pt = Pt) =∑(ℓ+1)τ
k=t E [Ik|Pt] . Recall that S = S0 ∪ · · · ∪ Sτ−1 and |S0| = · · · =
|Sτ−1| = M .

By Lemma A.4,

E
[
|ρ̂ℓ(St + 1|St, At)− ρ(St + 1|St, At)|

∣∣∣Pt

]
≤E

[
|χ̂ℓ(St + 1|St, At)− χ(St + 1|St, At)|

∣∣∣Pt

]
+ δ

≤E

√6It ln 2SA
δ

∣∣∣Pt

+ 3δ +
√

6 max
{

3, ln
(2
δ

)}
δ ln 2SA

δ︸ ︷︷ ︸
g(δ)

,

where we define g(δ) = 3δ+
√

6 max
{

3, ln
(

2
δ

)}
δ ln 2SA

δ to simplify the
exposition. It follows that, at time t = (ℓ+ 1)τ − 1,

E[V̂ℓ(St)−Qτ,ρ(St, At)|Pt]

=E

max
a∈A

∑
s′∈S

ρ̂ℓ(s′|St, a)r(St, a, s
′)−

∑
s′∈S

ρ(s′|St, At)r(St, At, s
′)|Pt


=E

∑
s′∈S

(ρ̂ℓ(s′|St, At)− ρ(s′|St, At))r(St, At, s
′)
∣∣∣Pt


≤1

2E

∑
s′∈S
|ρ̂ℓ(s′|St, At)− ρ(s′|St, At)|

∣∣∣Pt


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=E
[
|ρ̂ℓ(St + 1|St, At)− ρ(St + 1|St, At)|

∣∣∣Pt

]
≤E

√6It ln 2SA
δ

∣∣∣Pt

+ g(δ).

Similarly, at times t = ℓτ, ℓτ + 1, . . . , (ℓ+ 1)τ − 2,

E[V̂ℓ(St)−Qτ,ρ(St, At)
∣∣∣Pt]

=E
[

max
a∈A

∑
s′∈S

ρ̂ℓ(s′|St, a)(r(St, a, s
′) + V̂ℓ(s′))

−
∑
s′∈S

ρ(s′|St, At)(r(St, At, s
′) + Vτ,ρ(s′))

∣∣∣Pt

]

=E
[ ∑

s′∈S
ρ̂ℓ(s′|St, At)(r(St, At, s

′) + V̂ℓ(s′))

−
∑
s′∈S

ρ(s′|St, At)(r(St, At, s
′) + Vτ,ρ(s′))

∣∣∣Pt

]

=E
[ ∑

s′∈S
ρ̂ℓ(s′|St, At)(r(St, At, s

′) + V̂ℓ(s′)))

−
∑
s′∈S

ρ(s′|St, At)(r(St, At, s
′) + V̂ℓ(s′))

∣∣∣Pt

]

+ E

∑
s′∈S

ρ(s′|St, At)(V̂ℓ(s′)− Vτ,ρ(s′))
∣∣∣Pt


=E

[ ∑
s′∈S

(ρ̂ℓ(s′|St, At)− ρ(s′|St, At))(r(St, At, s
′) + V̂ℓ(s′))

∣∣∣Pt

]

+ E
[
V̂ℓ(St+1)− Vτ,ρ(St+1)

∣∣Pt

]
≤τ2E

[ ∑
s′∈S
|ρ̂ℓ(s′|St, At)− ρ(s′|St, At)|

∣∣Pt

]

+ E
[
V̂ℓ(St+1)− Vτ,ρ(St+1)

∣∣Pt

]
= τE

[
|ρ̂ℓ(St + 1|St, At)− ρ(St + 1|St, At)|

∣∣∣Pt

]
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+ E
[
V̂ℓ(St+1)− Vτ,ρ(St+1)

∣∣Pt

]
≤ τE

[√
6It ln 2SA

δ

∣∣∣Pt

]
+ g(δ)τ + E

[
V̂ℓ(St+1)−Qτ,ρ(St+1, At+1)

∣∣Pt

]
.

It follows that

E[V̂ℓ(St)−Qτ,ρ(St, At)|Pt]

≤
(ℓ+1)τ−1∑

k=t

τE
√6Ik ln 2SA

δ

∣∣∣Pt

+ g(δ)τ



≤τ3/2

√√√√√6
(ℓ+1)τ−1∑

k=t

E[Ik|Pt] ln 2SA
δ

+ g(δ)τ2

≤τ3/2

√
6I(χ;Ht:(ℓ+1)τ |Pt ← Pt) ln 2SA

δ
+ g(δ)τ2.

Further, under Conjecture A.2.1, for all episode ℓ and time t = ℓτ, . . . ,

(ℓ+ 1)τ − 1,

E[V∗(Ht)−Q∗(Ht, At)|Pℓτ ] =E[Vτ,ρ(St)−Qτ,ρ(St, At)|Pℓτ ]
≤E[V̂ℓ(St)−Qτ,ρ(St, At)|Pℓτ ],

where the last inequality follows from Conjecture A.2.1. Therefore, we
have

E[V∗(Ht)−Q∗(Ht, At)− g(δ)τ2|Pℓτ ]

≤ τ3/2

√
6 ln 2SA

δ
E
[√

I(χ;Ht:(ℓ+1)τ |Pt ← Pt)
∣∣∣Pℓτ

]
,

which further implies that

E[V∗(Ht)−Q∗(Ht, At)− g(δ)τ2]

≤ τ3/2

√
6 ln 2SA

δ
E
[√

I(χ;Ht:(ℓ+1)τ |Pt ← Pt)
]
.
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Since the right-hand side of the above inequality is positive, we then
have

E[V∗(Ht)−Q∗(Ht, At)− g(δ)τ2]+

≤ τ3/2

√
6 ln 2SA

δ
E
[√

I(χ;Ht:(ℓ+1)τ |Pt ← Pt)
]
.

Therefore, we have

E[V∗(Ht)−Q∗(Ht, At)− g(δ)τ2]2+

≤ 6τ3 ln 2SA
δ

(
E
[√

I(χ;Ht:(ℓ+1)τ |Pt ← Pt)
])2

≤ 6τ3 ln 2SA
δ

E
[
I(χ;Ht:(ℓ+1)τ |Pt ← Pt)

]
= 6τ3 ln 2SA

δ
I(χ;Ht:(ℓ+1)τ |Pt).

Finally, we prove the following theorem based on Lemma A.5 and
Theorem 4.3, under Conjecture A.2.1.

Theorem A.6. Assume Conjecture A.2.1 holds. Then, for all integers
m ≥ 2 and times t,

Regret(T |πTS)

≤ τ2

√
6SAT ln

(1
δ

)
ln
(2SA

δ

)
+

[
3δ +

√
6 max

{
3, ln

(2
δ

)}
δ ln
(2SA

δ

)]
τ2T

=O

(
τ2

√
log
(1

δ

)
log
(SA

δ

) [√
SAT + T

√
δ
])

,

where δ = 1/m.

Proof. By Lemma A.5, we first prove that Γτ,ϵ,t ≤ 6τ4 ln 2SA
δ for

ϵ = g(δ)τ2 =
[
3δ +

√
6 max

{
3, ln

(2
δ

)}
δ ln 2SA

δ

]
τ2.

From Lemma A.5, we have

E[V∗(Ht)−Q∗(Ht, At)− ϵ]2+ ≤ 6τ3 ln 2SA
δ

I(χ;Ht:(ℓ+1)τ |Pt).
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Also, note that in this case, the environment E determines the proxy Ẽ
and hence the target χ, and consequently

I(χ; E|Pt)− I(χ; E|Pt+τ )
=H(χ|Pt)−H(χ|Pt+τ ) = I(χ;Ht:t+τ |Pt) ≥ I(χ;Ht:(ℓ+1)τ |Pt),

where H is the entropy function in nats. Consequently, by definition of
Γτ,ϵ,t, we have

Γτ,ϵ,t =
E[V∗(Ht)−Q∗(Ht, At)− ϵt]2+
(I(χ; E|Pt)− I(χ; E|Pt+τ ))/τ

=
E[V∗(Ht)−Q∗(Ht, At)− ϵt]2+

I(χ;Ht:t+τ |Pt)/τ

≤
E[V∗(Ht)−Q∗(Ht, At)− ϵt]2+

I(χ;Ht:(ℓ+1)τ |Pt)/τ
≤ 6τ4 ln 2SA

δ
.

Then, by Theorem 4.3, we have

Regret(T |πTS) ≤

√√√√I(χ; E)
T −1∑
t=0

Γτ,ϵ,t + Tϵ ≤

√
6τ4TH(χ) ln 2SA

δ
+ Tϵ.

Note that H(χ) ≤ SA ln
(

1
δ

)
, we have

Regret(T |πTS)

≤ τ2

√
6TSA ln

(1
δ

)
ln
(2SA

δ

)
+

[
3δ +

√
6 max

{
3, ln

(2
δ

)}
δ ln
(2SA

δ

)]
τ2T

=O

(
τ2

√
ln
(1

δ

)
ln
(SA

δ

) [√
SAT + T

√
δ
])

.

This concludes the proof.
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B
Analysis of IDS in an Episodic Environment

Consider the environment and agent described in Section 4.5.3. Let
Ẽ = E and let the epistemic state indicate the value of rτ−1 or that
it has not been observed. The value-IDS agent in Section 4.5.3 selects
actions by optimizing

min
ν∈∆A

E
[
V∗(St)−Q∗(St, Ãt)|Xt

]2
I(π∗(·|St); Ãt, Q∗(St, Ãt)|Xt ← Xt)

where Ãt is drawn from ν.
We will bound the τ -information ratio. Since E determines χ = π∗,

the τ -information ratio simplifies to

Γτ,t = E[V∗(St)−Q∗(St, At)]2

(H(π∗|Pt)−H(π∗|Pt+τ ))/τ .

To do this, we will find a uniform bound Γ on the conditional information
ratio,

Γ̃τ,t = E[V∗(St)−Q∗(St, At)|Xt]2

E[H(π∗|Pt ← Pt)−H(π∗|Pt+τ ← Pt+τ )|Xt]/τ
≡ ∆2

t

It
.
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108 Analysis of IDS in an Episodic Environment

If Γ̃τ,t ≤ Γ for all t, then

E[V∗(St)−Q∗(St, At)]2

≤E
[
E[V∗(St)−Q∗(St, At)|Xt]2

]
=E

[
Γ̃τ,tE[H(π∗|Pt ← Pt)−H(π∗|Pt+τ ← Pt+τ )|Xt]/τ

]
≤Γ (H(π∗|Pt)−H(π∗|Pt+τ )) /τ,

and so Γτ,t ≤ Γ.
Let’s consider an episode where the agent is still uncertain about the

environment. Otherwise, the agent is done learning and the conditional
information ratio will be zero. Let us overload Γ̃s to denote the condi-
tional τ -step information ratio for convenience for s = 0, . . . , τ − 2, with
the intention that Γ̃s = Γ̃τ,t given St = s and Pt = null. Similarly, we
use ∆s and Is to denote the corresponding regret and information gain.
Further, let νa,s denote the probability that value-IDS selects action a

given St = s and Pt = null.
Let rτ−2 = 0 and rs = max{rs+1, . . . , rτ−2} for 0 ≤ s ≤ τ−3 denote

the maximum exit rewards starting from state s+1 to state τ −2. Then,
for 0 ≤ s ≤ τ − 2, we have

Q∗(s, 0) = rs,

Q∗(s, 1) =

1 w.p. 1
2 ,

rs w.p. 1
2 .

Let ∆a,s = E[V∗(s)−Q∗(s, a)]. We have for states s = 0, . . . , τ − 2

∆0,s = 1
2(1− rs) + 1

2(rs − rs)+, and ∆1,s = 1
2(rs − rs)+.

The information gain in the denominator of value-IDS is zero for action
0, and 1 bit for action 1. Thus, value-IDS selects probabilities (ν0,s, ν1,s)
that minimizes

min
ν′

0,s,ν′
1,s

(ν ′
0,s∆0,s + ν ′

1,s∆1,s)2

ν ′
1,s

.

Note that
1

ν′
1,s

(ν′
0,s∆0,s + ν′

1,s∆1,s)2 = 1
ν′

1,s
((1− ν′

1,s)∆0,s + ν′
1,s∆1,s)2

= (∆1,s −∆0,s)2ν′
1,s + ∆2

0,s

ν′
1,s

+ 2∆0,s(∆1,s −∆0,s).
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Thus, the minimizer

ν1,s = min
(

∆0,s

(∆1,s −∆0,s)+
, 1
)
.

Also note that ν1,s < 1 if and only if

2∆0,s < ∆1,s ⇔ rs >
2 + rs

3 .

Now, we show inductively that Γ̃s ≤ τ
8 for all 0 ≤ s ≤ τ − 2.

For the base case s = τ−2, note that the average τ -step information
gain is equal to ν1,s/τ . Thus,

Γ̃s = ∆2
s

ν1,s/τ
=

τ(1− rs)(2rs − rs − 1) ν1,s < 1
τ
4 ((rs − rs)+)2 ν1,s = 1.

For s = τ − 2, rs = 0. We have (1 − rs)(2rs − 1) ≤ 1
8 , and 1

4r
2
s ≤ 1

9 if
ν1,s = 1, since ν1,s = 1 implies that rs ≤ 2

3 . Thus, the base case holds.
Our induction hypothesis is that Γ̃s′ ≤ τ

8 for all s+ 1 ≤ s′ ≤ τ − 2.
Now let’s consider state 1 ≤ s < τ − 2. Let s = min{s′ : s < s′ ≤
τ − 2, ν1,s′ < 1} and if the set is empty, let s = null. We have three
cases to consider.

(i) If s is null, then ν1,s′ = 1 for all s′ = s+ 1, . . . , τ − 2. Thus, the
average information gain Is = ν1,s/τ . Then, similar to the base
case,

Γ̃s = ∆2
s

ν1,s/τ
=

τ(1− rs)(2rs − rs − 1) ν1,s < 1
τ
4 ((rs − rs)+)2 ν1,s = 1.

Now, (1 − rs)(2rs − rs − 1) ≤ 1
8(1 − xs)2 ≤ 1

8 . When ν1,s = 1,
we have 1

4 ((rs − rs)+)2 ≤ (1−rs)2

9 ≤ 1
9 since ν1,s = 1 implies that

rs ≤ 2+rs
3 . Therefore, we have Γ̃s ≤ τ

8 .

(ii) If s is not null and ν1,s = 1, then the average information gain
Is = Is. Further, we have

∆s = ∆1,s = 1
2(rs − rs),
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and

∆s = ν0,s∆0,s + ν1,s∆1,s

=
(

1− ∆0,s

∆1,s −∆0,s

)
∆0,s + ∆0,s

∆1,s −∆0,s
∆1,s

= 2∆0,s = 1− rs.

Since rs ≥ rs by definition, we have ∆s ≤ 1
2∆s. Therefore, Γ̃s ≤

1
4 Γ̃s, and by the induction hypothesis, Γ̃s ≤ τ

32 .

(iii) If s is not null and ν1,s < 1, then the average information gain
Is = ν1,sIs. Since,

Γ̃s = ∆2
s

Is
= ∆2

s

ν1,sIs
= ∆2

s

ν1,s∆2
s

Γs,

we will upper bound ∆2
s

ν1,s∆2
s

and then apply the inductive hypothesis.
We have

∆2
s

ν1,s∆2
s

= (1− rs)(2rs − rs − 1)
(1− rs)2 ≤ (1− rs)(2rs − rs − 1)

(1− rs)2 .

Write y = 1− rs and define α = 1−rs
1−rs

. We have

(1− rs)(2rs − rs − 1)
(1− rs)2 = αy(y − 2αy)

y2 = α(1− 2α) ≤ 1
8 .

Therefore, ∆2
s

ν1,s∆2
s

≤ 1
8 , and Γ̃s ≤ 1

8 Γ̃s. By the induction hypothesis,
Γ̃s ≤ τ

64 .

Therefore, Γ̃s ≤ τ
8 for all 0 ≤ s ≤ τ − 2. This implies that for any

exit rewards r0, . . . , rτ−2 ∈ [0, 1), the τ -information ratio Γτ,t ≤ τ
8 for

all t. By Theorem 4.3, this implies a regret bound

Regret(T ) ≤
√

1
8τTH(π∗) =

√
1
8τT .
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C
Convexity and Support of Value-IDS

The following result and proof are based on an analysis from Russo and
Van Roy (2014a) and Russo and Van Roy (2018).

Theorem C.1. For all vectors α, β ∈ ℜN and functions ψ : ℜN 7→ ℜ
of the form ψ(ν) = (ν⊤α)2/ν⊤β, ψ is convex on {ν ∈ ℜN : ν⊤β > 0},
and there exists a vector ν∗ ∈ ∆N such that |{n : ν∗

n > 0}| ≤ 2 and
ψ(ν∗) = minν∈∆N

ψ(ν).

Proof. Consider a function ϕ : ℜ2 7→ ℜ given by ϕ(x) = x2
1/x2. We have

∇xϕ(x) =
[

2x1/x2
−x2

1/x
2
2

]
and ∇2

xϕ(x) =
[

2/x2 −2x1/x
2
2

−2x1/x
2
2 2x2

1/x
3
2

]
.

If x2 > 0 then the tr(∇2
xϕ(x)) = 4x2

1/x
4
2 > 0 and |∇2

xϕ(x)| = 0. It
follows that ϕ is convex. For any γ ∈ [0, 1] and ν, ν ∈ ℜN such that
ν⊤β > 0 and ν⊤β > 0,

111
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112 Convexity and Support of Value-IDS

ψ(γν + (1− γ)ν) =ϕ
([

(γν + (1− γ)ν)⊤α

(γν + (1− γ)ν)⊤b

])

=ϕ
(
γ

[
ν⊤α

ν⊤β

]
+ (1− γ)

[
ν⊤α

ν⊤b

])

≤γϕ
([

ν⊤α

ν⊤β

])
+ (1− γ)ϕ

([
ν⊤α

ν⊤β

])
=γψ(ν) + (1− γ)ψ(ν).

Hence, ψ is convex.
Let ν∗ ∈ arg minν∈∆N

ψ(ν) and ζ(ν) = (ν⊤α)2 − ψ(ν∗)ν⊤β. Note
that, for all ν ∈ ∆N ,

ζ(ν) = (ν⊤α)2 − ψ(ν∗)ν⊤β ≥ (ν⊤α)2 − ψ(ν)ν⊤β = 0,

and ζ(ν∗) = 0, implying arg minν∈∆N
ψ(ν) ⊆ arg minν∈∆N

ζ(ν). Let
ν ∈ arg minν∈∆N

ζ(ν). Then, ζ(ν) = 0 and

ψ(ν) = (ν⊤α)2

ν⊤β
= ζ(ν) + ψ(ν∗)ν⊤β

ν⊤β
= ψ∗,

implying arg minν∈∆N
ψ(ν) ⊇ arg minν∈∆N

ζ(ν). It follows that

arg min
ν∈∆N

ψ(ν) = arg min
ν∈∆N

ζ(ν).

To complete the proof, we will establish that there exists ν† ∈
arg minν∈∆N

ζ(ν) with at most two positive components. If ν has two
or fewer positive components, we are done, we will treat the case
where ν has more than two positive components. Note that ∇νζ(ν) =
2αν⊤α− ψ(ν∗)β. By the KKT conditions, ν ∈ arg minν∈∆N

ζ(ν) if and
only if there exists a vector d ≥ 0 and a scalar c such that

2αν⊤α− ψ(ν∗)β − d+ c1 = 0 and d⊤ν = 0.

These conditions can equivalently be written as

ν⊤(2αν⊤α− ψ(ν∗)β + c1) = 0.

Let n = arg maxn:νn>0 νn and n = arg minn:νn>0 νn. Let γ ∈ [0, 1] be
such that

ν⊤α = γνnαn + (1− γ)νnαn,
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and let ν̃ = γνn1n + (1− γ)νn1n. Note that ν̃⊤α = ν⊤a and

ν̃⊤(2αν̃⊤α− ψ(ν∗)β + c1) = 0,

since support(ν̃) ⊂ support(ν). It follows that ν̃ ∈ arg minν∈∆N
ζ(ν).

Since ν̃ has two positive components, the result follows.

This result implies that the objective minimized by each version
of value-IDS is convex and that the minimum can be attained by
randomizing between at most two actions. To see why, consider the
objective of the basic version:

min
ν∈∆A

E
[
Vπχ(Ht)−Qπχ(Ht, Ãt)|Xt

]2
I(χ; Ãt, Ỹt+1|Xt ← Xt)

.

Shortfall and information gain can be rewritten as

E
[
Vπχ(Ht)−Qπχ(Ht, Ãt)|Xt

]
=
∑
a∈A

ν(a)E
[
Vπχ(Ht)−Qπχ(Ht, Ãt)|Xt, Ãt = a

]
,

and

I(χ; Ãt, Ỹt+1|Xt ← Xt)
(a)= I(χ; Ỹt+1|Xt ← Xt, Ãt) + I(χ; Ãt|Xt ← Xt)
(b)= I(χ; Ỹt+1|Xt ← Xt, Ãt)

=
∑
a∈A

ν(a)I(χ; Ỹt+1|Xt ← Xt, Ãt = a),

where (a) follows from the chain rule of mutual information and (b)
follows from the fact that χ ⊥ Ãt|Xt. Without loss of generality, let
A = {1, . . . , |A|}. Then, letting

αa = E
[
Vπχ(Ht)−Qπχ(Ht, Ãt)|Xt, Ãt = a

]
,

and
βa = I(χ; Ỹt+1|Xt ← Xt, Ãt = a),

Theorem C.1 confirms our assertion about convexity of the value-IDS
objective and existence of a 2-sparse optimal solution.
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D
Relation Between Information Gain and Variance

All the mutual information terms are in nats in this section.

Lemma D.1. LetXt = (Zt, St, Pt) be the agent state at timestep t, Ãt be
a random action sampled from some distribution ν that only depends on
Xt, Q† be a vector of GVFs with dimension n, Ỹt+1 = Q†(Ht, Ãt)+Wt+1
be a pseudo-observation of Q† where Wt+1 is some zero-mean random
noise, and πχ be a target policy. If each component of Q† has a span of
at most M1 and each component of Wt+1 has a span of at most M2,

I(πχ(·|St); Ãt, Ỹt+1|Xt ← Xt)

≥ 2
n(M1 +M2)2E

[
tr
(
Cov

[
E
[
Q†(Ht, Ãt)|Xt, Ãt, πχ(·|St)

] ∣∣Xt, Ãt

])
|Xt

]
.

Proof. We have

I(πχ(·|St); Ãt, Ỹt+1|Xt ← Xt)
= I(πχ(·|St); Ỹt+1|Xt ← Xt, Ãt) + I(πχ(·|St); Ãt, |Xt ← Xt)
(a)= I(πχ(·|St); Ỹt+1|Xt ← Xt, Ãt)

=
∑
ã∈A

ν(ã)I(πχ(·|St); Ỹt+1|Xt ← Xt, Ãt = ã)
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where (a) follows from πχ(·|St) ⊥ Ãt|Xt. Then,

nI(πχ(·|St); Ỹt+1|Xt ← Xt, Ãt = a)
(a)
≥

n∑
i=1

I(πχ(·|St); Ỹt+1,i|Xt, Ãt = a)

=
n∑

i=1
E
[
dKL

(
P(Ỹt+1,i ∈ ·|Xt, πχ(·|St), Ãt = a)

∥P(Ỹt+1,i ∈ ·|Xt, Ãt = a)
)
|Xt, Ãt = a

]
(b)
≥ 2

(M1 +M2)2

n∑
i=1

E
[(

E
[
Ỹt+1,i|Xt, πχ(·|St), Ãt = a

]
− E

[
Ỹt+1,i|Xt, Ãt = a

])2
|Xt, Ãt = a

]
= 2

(M1 +M2)2

n∑
i=1

Var
[
E
[
Ỹt+1,i|Xt, Ãt = a, πχ(·|St)

]
|Xt, Ãt = a

]
,

where (a) follows from chain rule and mutual information being non-
negative, and (b) follows from Pinsker’s inequality with span of each
component of Ỹt+1 being at most M1 +M2. Since each component of
Q†(·, ·) has a span of atmost M1 and each component of Wt+1 has a
span of at most M2, each component of Ỹt+1 = Q†(Ht, Ãt) +Wt+1 has
a span of at most M1 +M2.

I(πχ(·|St); Ãt, Ỹt+1|Xt ← Xt)

=
∑
ã∈A

ν(ã)I(πχ(·|St); Ỹt+1|Xt ← Xt, Ãt = ã)

≥ 2
n(M1 + M2)2

∑
ã∈A

ν(ã)
n∑

i=1

Var
[
E
[
Ỹt+1,i|Xt, Ãt = ã, πχ(·|St)

]
|Xt, Ãt = ã

]
= 2

n(M1 + M2)2

n∑
i=1

E
[
Var

[
E
[
Ỹt+1,i|Xt, Ãt, πχ(·|St)

]
|Xt, Ãt

]]
= 2

n(M1 + M2)2

n∑
i=1

E
[
Var

[
E
[
Q†(Ht, Ãt)i|Xt, Ãt, πχ(·|St)

]
|Xt, Ãt

]]
= 2

n(M1 + M2)2 E
[
tr
(
Cov

[
E
[
Q†(Ht, Ãt)|Xt, Ãt, πχ(·|St)

]
|Xt, Ãt

]) ∣∣Xt

]
.
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Lemma D.2. Let Xt = (Zt, St, Pt) be the agent state at timestep t, Ãt

be a random action sampled from some distribution ν over actions, Q†
be a vector of GVFs with dimension n, and Ỹt+1 = Q†(Ht, Ãt) +Wt+1
be a pseudo-observation of Q† where Wt+1 is some zero-mean random
noise. If each component of Q† has a span of at most M1 and each
component of Wt+1 has a span of at most M2,

I(Q†(Ht, Ãt); Ãt, Ỹt+1|Xt ← Xt)

≥ 2
n(M1 +M2)2E

[
tr
(
Cov

[
Q†(Ht, Ãt)|Xt, Ãt

])
|Xt

]
.

Proof. We have

I(Q†(Ht, Ãt); Ãt, Ỹt+1|Xt ← Xt)
= I(Q†(Ht, Ãt); Ãt|Xt ← Xt) + I(Q†(Ht, Ãt); Ỹt+1|Xt ← Xt, Ãt)
(a)
≥ I(Q†(Ht, Ãt); Ỹt+1|Xt ← Xt, Ãt)

=
∑
a∈A

ν(a)(I(Q†(Ht, Ãt); Ỹt+1|Xt ← Xt, Ãt = a),

where (a) follows from mutual information being non-negative. Then,

nI(Q†(Ht, Ãt); Ỹt+1|Xt ← Xt, Ãt = a)
(a)
≥

n∑
i=1

I(Q†(Ht, Ãt)i; Ỹt+1,i|Xt ← Xt, Ãt = a)

=
n∑

i=1
E
[
dKL

(
P(Ỹt+1,i|Q†(Ht, Ãt)i, Xt, Ãt = a)

∥P(Ỹt+1,i|Xt, Ãt = a)
)
|Xt, Ãt = a

]
(b)
≥ 2

(M1 +M2)2

n∑
i=1

E
[(
E
[
Ỹt+1,i|Q†(Ht, Ãt)i, Xt, Ãt = a

]
− E

[
Ỹt+1,i|Xt, Ãt = a

] )2
|Xt, Ãt = a

]
= 2

(M1 +M2)2

n∑
i=1

Var
[
Q†(Ht, Ãt)i|Xt, Ãt = a

]
,

where (a) follows from the fact that mutual information between two
random vectors is not less than mutual information between any of there
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components, and (b) follows from Pinsker’s inequality with span of each
component of Ỹt+1 being at most M1 +M2. Since each component of
Q†(·, ·) has a span of atmost M1 and each component of Wt+1 has a
span of at most M2, each component of Ỹt+1 = Q†(Ht, Ãt) +Wt+1 has
a span of at most M1 +M2. Therefore,

I(Q†(Ht, Ãt); Ãt, Ỹt+1|Xt ← Xt)

≥ 2
n(M1 +M2)2

∑
a∈A

ν(a)
n∑

i=1
Var

[
Q†(Ht, Ãt)i|Xt, Ãt = a

]
= 2

n(M1 +M2)2

n∑
i=1

E
[
Var

[
Q†(Ht, Ãt)i|Xt, Ãt

]
|Xt

]
= 2

n(M1 +M2)2E
[
tr
(
Cov

[
Q†(Ht, Ãt)|Xt, Ãt

])
|Xt

]
.
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E
Implementation and Computation

This section provides the details and parameters for our computational
experiments. We specify the agent through the agent state, and the ac-
tion selection policy π(·|Xt). For the most part, these are both explained
in the main body of our monograph. However, our next subsections
expand on these implementational details.

E.1 Agent state update

Agent state dynamics are determined by the update rules (falgo, falea,
fepis) introduced in Equations (3.1), (3.2), and (3.3). For the most part,
these updates are already described in Section 7.2.1, but we use this
appendix to spell out some more of the details, particularly in regards
to the epistemic update.

Algorithmic state The algorithmic state is null Zt = ∅ for both IDS
and ϵ-greedy action selection. For Thompson sampling the algorithmic
state Zt = Ztk

is resampled uniformly from the set of epistemic indices
for the relevant ENN at the end of each episode. This fully specifies the
algorithmic update for all our experiments, and so we will not address
this further.

118
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Aleatoric state All of the agents considered are ‘feed-forward’ variants
of DQN with aleatoric state given by the current observation St = Ot.
This fully specifies the aleatoric update for all our experiments, and so
we will not address this further.

Epistemic state All agents’ epistemic state are given Pt = (θt, Bt).
Here θt are parameters of an ENN f and Bt is a FIFO experience replay
buffer. Further, all of our experiments are specialized to the case where
f represents a (potentially general) value function over A finite actions.
In all of our experiments we learn via minibatch SGD, according to
Equation (7.2).

For each experiment, we can therefore fully specify the epistemic up-
date through the ENN f , the loss function ℓ (θ; f, θ−, z, (s, a, r, s′))→ R,
the initial parameters θ0, the SGD update procedure, nbatch, nindex. For
the replay buffer in each experiment we set a minimum replay size equal
to nbatch and a maximum replay size of 10,000.

E.2 Action selection

Action selection via ϵ-greedy (Mnih et al., 2013) and Thompson sampling
(Osband et al., 2019) are relatively straightforward, and have been
covered extensively in prior work. In this subsection we expand on the
sample-based implementation of IDS that approximates Equations (6.6)
and (6.7). Note that, since we know the solution has support on at
most two actions in A, we can approximately optimize the objective by
effectively searching over a probability grid for each pair of actions in
A. In all of our experiments we search with granularity of 1

100 in each
action probability.

In all of our experiments, we use a simple sample-based approach to
approximating the shortfall and variance in Equations (6.6) and (6.7).
The first step is to generate nIDS samples from the ENN given the agents
epistemic state Pt. The expected shortfall is then calculated simply
as the average of the shortfall for each action, for each sample. The
variance-based information gain is approximated through the sample
variance, as detailed below.
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(a) Learning Target = Optimal Action. We use the same nIDS
samples from the ENN to approximate the information gain in
Equation (6.6). In our experiments we only perform experiments
with action-value learning targets, and so we can simplify the expo-
sition significantly. Let Q1, .., QnIDS ∈ RA be samples of the action
value generated by the agent, Qa := {Qn | a ∈ arg maxαQn(St, α)},
Qa := 1

|Qa|
∑

q∈Qa
q and Q = 1

nIDS

∑nIDS
n=1 Qn. Then the approximate

information gain used in our experiments can be written:

E
[
tr
(
Cov

[
E[Q†(Ht, Ãt)|Xt, Ãt, πχ(·|St)])]|Xt, Ãt

])
|Xt

]
≃ 1
nIDS

nA∑
a=1
|Qa|

(
Qa −Q

)2
. (E.1)

(b) Learning Target = GVF. In a similar manner, we reuse the same
nIDS samples from the ENN to approximate the information gain in
Equation (6.7). For a problem with general value function Q† ∈ Rd,
let Q1, .., QnIDS ∈ RA be samples of the action value generated by
the agent and Q the sample mean. The approximate information
gain used in our experiments is then:

E
[
tr
(
Cov

[
Q†(Ht, Ãt)|Xt, Ãt

])
|Xt

]
≃ 1
nIDS

d∑
i=1

nIDS∑
j=1

(
Qi,j −Qi

)2
. (E.2)

E.3 Parameters for each experiment

In this section we list the settings used to generate the results in Section
7. It is our intention to provide some elements of our agents and code
for opensource.

7.2.1, 7.3.1, and bsuite IDS implementation We use the exact same
settings for the experiments in these sections:

• ENN = ensemble of 20 50-50-MLPs with matched prior functions
initialized according to JAX standards (Osband et al., 2018).
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• Loss ℓ = ℓQ,γ (Equation (7.1)) with γ = 0.99.

• Action selection via Equation (E.1) with nIDS = 40.

• SGD update according with ADAM with learning rate α = 0.001.

• nbatch = 128 for RL tasks and nbatch = 1 for bandit task.

7.3.2 Sparse bandit Same settings as 7.2.1 except for the ENN and
loss function designed to encode the prior knowledge:

• ENN = ensemble of 20 logits over N possible rewarding arms.

• Loss ℓ of the cross-entropy on the posterior probabilty of the
observation given the rewarding arm.

• Action selection via Equation (E.1) with nIDS = 40, given the
knowledge of how to convert logits to associated action values.

• Vanilla SGD update with learning rate α = 0.1.

7.4 Variance-IDS with general value functions These settings are
almost identical to 7.3.2, but using a different action selection and with
specialized ENNs:

• ENN = ensemble of 20 logits over N possible rewarding arms
(rewarding states in the chain problem).

• Loss ℓ of the cross-entropy on the posterior probabilty of the
observation given the ENN logits.

• Action selection via Equation (E.2) with nIDS = 40, given the
knowledge of how to convert logits to associated action values.

• Vanilla SGD update with learning rate α = 0.1.
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E.4 bsuite Report

The Behaviour Suite for Core Reinforcement Learning, or bsuite for
short, is a collection of carefully-designed experiments that investigate
core capabilities of a reinforcement learning (RL) agent. The aim of the
bsuite project is to collect clear, informative and scalable problems
that capture key issues in the design of efficient and general learning
algorithms and study agent behaviour through their performance on
these shared benchmarks. This report provides a snapshot of agent
performance on bsuite2019, obtained by running the experiments
from github.com/deepmind/bsuite (Osband et al., 2020).

E.4.1 Agent Definition

We compare the performance of three agents as outlined in Section
7.2.1. In each case, the agents learn with an ensemble ENN formed of
20 50-50-MLPs and identical learning rules. The only difference is in
the action selection ‘planner’:

• egreedy: ϵ=5% greedy action selection, essentially DQN (Mnih
et al., 2013).

• TS: Thompson Sampling, aka bootstrapped DQN (Osband et al.,
2016).

• IDS: Information Directed Sampling, with 40 samples per step.

E.4.2 Summary Scores

Each bsuite experiment outputs a summary score in [0, 1]. We aggre-
gate these scores according to the bsuite analysis notebook available
at https://github.com/deepmind/bsuite/blob/main/bsuite/analysis/
results.ipynb.

E.4.3 Results Commentary

Figures E.1 and E.2 present the aggregate and individual performances
of ϵ-greedy, TS, and IDS agents on bsuite. These results show a strong
signal that action selection via IDS and TS can greatly outperform
that of ϵ-greedy in domains where exploration is crucial. At least in
the current collection of bsuite tasks, IDS and TS perform similarly
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overall. We also see some evidence that ϵ-greedy action selection is
more robust to changes in scale, but less robust to noise.

Figure E.1: Snapshot of agent behaviour.

Figure E.2: Score for each bsuite experiment.
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